
COMPSCI330 Design and Analysis of Algorithms

Final Exam 2019

Guidelines

• Describing Algorithms If you are asked to provide an algorithm, you should clearly define
each step of the procedure and analyze its overall running time. There is no need to write
pseudo-code; an unambiguous description of your algorithm in plain text will suffice. If the
running time of your algorithm is worse than the suggested running time, you might receive
partial credits.

• Proof of Correctness You are only required to prove the correctness of your algorithm if
there is a subproblem that asks you to do that.

• Timing Exam starts at 2:00 pm and ends at 5:00 pm.

• Score The exam has 5 problems and each problem has 20 points. The total number of points
is 100.

Name: Duke ID:
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Problem 1 (Warm-up). (20 points)
(a) (10 points) Run Prim and Kruskal on the following graph. For Prim’s algorithm, start at vertex
1. List the edges in the order that they are added into the minimum spanning tree.

Please write an edge as a pair of vertices, like (1,2). Also, please always write the vertex with
smaller index in front (that is, write (1,2) instead of (2,1), even though both represent the same
edge).
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(b) (10 points) Solve the following recurrence relation:

T (n) =

log3 n∑
i=1

T (n/3i) + n.

In this problem you can assume n is a power of 3 and T (1) = 0. The sum expands to

T (n) = T (n/3) + T (n/9) + · · ·+ T (1) + n.
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Problem 2 (Meeting Scheduling). (20 points) There are n groups of people trying to schedule
meetings at the same time, and there are m meeting rooms available. Each group i (i = 1, 2, ..., n)
has ai people, and each room j (j = 1, 2, ...,m) has a capacity of bj . Group i can be scheduled to
use room j if and only if ai ≤ bj (i.e., the number of people is no larger than the capacity of the
room).

Of these n groups, the first k (1 ≤ k ≤ n) groups have high priority and they need to be
scheduled (there will always be at least one way to schedule them). Design an algorithm that
schedules all the high priority group, and schedules as many other groups as possible.
(a) (8 points) Describe your algorithm and analyze its running time. Your algorithm should run in
O(n log n + m logm) time.
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(b) (12 points) Prove the correctness of the algorithm you designed in part (a).
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Problem 3 (Flat Path). (20 points) You are driving in a hilly landscape. The map of this area
can be described as a directed graph G with n vertices and m edges. Your goal is to go from vertex
s to t.

Each edge (u, v) in the graph has a length l(u, v) > 0, and a slope p(u, v) ≥ 0. Your goal is
to find a path that (1) has the minimum length; and (2) among all the paths that have minimum
length, minimizes the maximum slope along the path.
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Example: For the graph on the left, there are three
paths from s to t. The path we are looking for is
(s, v1, t), with length 10 and maximum slope 15. The
reason why (s, v2, t) is bad is that it has total length
15, so it is not a shortest path. For the path (s, t),
even though it has the same length 10, its maximum
slope is 20, which is worse than that of (s, v1, t).

(a) (12 points) Design an algorithm for this problem and analyze its running time. Your algorithm
should run in O(m + n log n) time.
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(b) (8 points) Prove the correctness of the algorithm you designed in part (a). Note that if you
modified a classical algorithm you need to show what changes in the proof.
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Problem 4 (Shared-Bus Take II). (20 points) Remember how you helped the famous ride-sharing
company Ubyft to created a new “shared-bus” service during the first midterm? Well that didn’t
work very well. Turns out that the customers don’t like to specify two points, they just want to
give a single destination. Ubyft is redesigning their algorithm and they need your help.

The bus runs on a path, each point on the path is denoted by its distance from the starting
point. In this new problem, there are n passengers. They all board the bus at the starting point 0.
Passenger i specifies a destination xi where the passenger wants to go. You can assume that the
xi’s are already sorted in increasing order.

If passenger i leaves the bus at a position y, then the “unhappiness” of the passenger is (xi−y)2.
Similar to the previous problem, there are no fixed bus stops. Instead, the stops will be decided

after gathering the user information. The bus can make at most k stops, and your goal is to design
an algorithm that minimizes the sum of unhappiness of all the passengers.

As an example, if there are 4 passengers with with x1 = 1, x2 = 18, x3 = 19, x4 = 23, and k = 2,
then the optimal solution will make two stops at points 1 and 20. The first stop serves the first
passenger; the second stop serves the remaining three passengers. The unhappiness for passengers
1, 2, 3, 4 are 0, 4, 1, 9 respectively and the total unhappiness is 14.

(a) (12 points) Define the state (sub-problems), write the transition function and specify the base
cases.
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(b) (8 points) Design an algorithm for finding the locations where the bus needs to stop. (Your
algorithm only needs to output the optimal total unhappiness of the passengers). Analyze the
running time of your algorithm. (Your algorithm should run in time O(kn2).)
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Problem 5 (DOUBLE DOMINATING SET). (20 points)
In the DOMINATING SET problem, we are given an undirected graph G = (V,E) with n

vertices and a number k (1 ≤ k ≤ n). A vertex u dominates itself and all of its neighbors. That
is, vertex u dominates vertex v if v = u or v is adjacent to u. A set S of the vertices is called a
dominating set if every vertex v ∈ V is dominated by at least one vertex u ∈ S. DOMINATING
SET problem asks you to check whether there is a dominating set of size k in graph G. It is
well-known that DOMINATING SET is an NP-complete problem.

In this problem, we consider a variant called DOUBLE DOMINATING SET. In this problem,
the input is an undirected graph G′ = (V ′, E′) with n′ vertices, and a number k′ (1 ≤ k′ ≤ n′). A
set S′ ⊂ V ′ is called a double dominating set, if every vertex v ∈ V ′ is dominated by at least two
vertices in S′.
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34

Example: For the graph on the left, vertex {1} is a dominating set of size
1; vertices {2, 4} form a dominating set of size 2. However, neither {1} nor
{2, 4} is a double dominating set. The set {1, 3} is a double dominating
set of size 2.

(a) (3 points) To show DOUBLE DOMINATING SET is NP-hard based on the fact that DOMI-
NATING SET is NP-complete, what is the correct direction of reduction? (Please answer in the
form A to B)

_______________________________ TO _______________________________
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(b) (5 points) Prove that DOUBLE DOMINATING SET is in NP.
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(c) (12 points) Do a reduction (related to the DOMINATING SET problem) to show DOUBLE
DOMINATING SET is NP-hard. (Hint: The intended solution only creates 2 extra vertices in the
new instance. Duplicating the graph seems like a natural idea but I couldn’t make it work.)
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