COMPSCI330 Design and Analysis of Algorithms Assignment 0

Just an Example, No Due Date

Problem 1 (Induction). Prove the following formulas using induction

1. $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$.
2. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.

Problem 2 (Euclid's Algorithm). For two nonnegative integers a and b, their Greatest Common Divisor (GCD) is the largest integer c such that c divides both a, b (both $a / c, b / c$ are integers). Euclid's algorithm is a $2000+$ year-old algorithm that can compute the GCD efficiently. The algorithm can be simply described as below:

```
\(\operatorname{GCD}(\mathrm{a}, \mathrm{b})\)
    If \(\mathrm{b}==0\) then
        return a
    Else
        return GCD (b, a \% b)
    End If
```

Here $a \% b$ computes the reminder of a being divided by b.
(a) Show that $G C D(a, 0)=a$ if a is a positive integer.
(b) Show that for any two positive integers $a, b, G C D(a, b)=G C D(b, a \% b)$.
(c) Show that Euclid's algorithm computes $G C D(a, b)$ in time $O(\log (a+b))$ assuming computing $a \% b$ takes 1 unit of time. (Hint: Do an induction on $a+b$.)

