
COMPSCI330 Design and Analysis of Algorithms

Assignment 3

Due Date: Wednesday, February 12, 2020

Guidelines

• Describing Algorithms If you are asked to provide an algorithm, you should clearly define
each step of the procedure, establish its correctness, and then analyze its overall running
time. There is no need to write pseudo-code; an unambiguous description of your algorithm
in plain text will suffice. If the running time of your algorithm is worse than the suggested
running time, you might receive partial credits.

• Typesetting and Submission Please submit the problems to GradeScope. You will be
asked to label your solution for individual problems. Failing to label your solution can
cost you 5% of the total points (3 points out of 60 for this homework).

• LATEX is preferred, but answers typed with other software and converted to pdf is also ac-
cepted. Please make sure you submit to the correct problem, and your file can be opened by
standard pdf reader. Handwritten answers or pdf files that cannot be opened will
not be graded.

• Timing Please start early. The problems are difficult and they can take hours to solve. The
time you spend on finding the proof can be much longer than the time to write. If you need
more time for your homework please use this form and submit a STINF.

• Collaboration Policy Please check this page for the collaboration policy. You are not
allowed to discuss homework problems in groups of more than 3 students. Failure to adhere
to these guidelines will be promptly reported to the relevant authority without
exception.

1

https://goo.gl/forms/5nHAxJugNRBS1MjK2
http://www.cs.duke.edu/courses/spring20/compsci330/honesty.html


Problem 1 (Counter-Examples). (16 points) Give a counter-example to each greedy strategy.
When you give a counter-example, you need to specify the input, the output of the greedy strategy
and the optimal solution.
(a) (8 points) Consider the interval scheduling problem. Your input should be n, the number of
meetings, followed by n pairs of numbers (si, ti)(0 ≤ si < ti), which are the starting time and
ending time of the meetings. The goal is to schedule as many meetings as possible. Consider the
strategy where the algorithm schedules the shortest meeting first (the meeting with smallest ti−si).
Give a counter-example for this strategy (your example should have n ≤ 4).
(b) (8 points) Consider the Longest Increasing Subsequence problem (the problem we solved using
Dynamic Programming). Your input should be n, the length of the sequence, followed by n numbers
a[1..n]. The goal is to find the longest increasing subsequence of a[1..n]. Consider the strategy where
we enumerate the starting location a[i], then scan the array from a[i] to the right, and whenever a
number can be added to the subsequence (meaning it’s larger than all numbers added before) then
the algorithm adds it to the sequence. The strategy picks the longest sequence (among all starting
locations) generated this way. Give a counter-example for this strategy (your example should have
n ≤ 5).

Problem 2 (Diet Options II). (20 points) Remember Rong decided to go on a diet and he wants
to have between A and B calories at every meal (0 < A < B). Now he is at a buffet which has n
items. He can take these items in any fractions. One unit of item i has ci > 0 calories, and a (very
subjective) rating of tastiness ti (which need not be positive). Precisely, Rong can take a fraction
0 ≤ pi ≤ 1 for every item, and receive pici calories and piti tastiness (the buffet does not have a
constraint of pi ≤ 1, however Rong does not like to eat more than 1 unit of the same item). Rong
is looking for some items to take, such that the meal will have at least A calories and at most B
calories, while the sum of tastiness is as large as possible. Please design an algorithm to help Rong.
More precisely, given n,A,B, ci, ti, output the maximum sum of tastiness.

(a) (10 points) Design an algorithm to help Rong and analyze the running time of your algorithm.

(b) (10 points) Prove the correctness for the algorithm you designed in (a).

Problem 3 (Getting Coffee). (24 points) Rong is sleep deprived and needs coffee to stay awake.
During the day he has n meetings, meeting i has starting time si and ending time ti. The meetings
are scheduled to have no conflict (that is, for every 1 ≤ i < n, ti ≤ si+1. We also know that s1 ≥ 0
and tn ≤ T .

Rong needs to stay awake for the entire duration of the meetings. He can do so by getting coffee
in between the meetings (that is, between time ti and si+1 for 1 ≤ i < n, or between 0 and s1).
Drinking coffee takes 0 time (even if ti = si+1 Rong can get a coffee at time ti). Every cup of coffee
allows Rong to stay awake for a length L (which is longer than length of every meeting). Your goal
is to design an algorithm to minimize the number of cups Rong will take. Note: the times to drink
two cups of coffees do not need to be L apart.

(a) (6 points) Design an algorithm to compute the minimum number of coffees Rong will take.
Analyze its running time.

(b) (10 points) Prove the correctness for the algorithm you designed in (a).

(c) (8 points) Rong decides that he only wants to drink K cups of coffee per day. He can get
different amount of coffee so the length L can be changed. Design an algorithm to compute

2



what is the smallest length L that allows Rong to drink K cups of coffee while still being
able to stay awake for all the meetings. Analyze its running time. You don’t need to prove
correctness for this problem. (Note that in this subproblem K is an input and L is what
you need to output. For this subproblem you can assume every number in the problem is
an integer, and the smallest length L is also an integer. Hint: You can use algorithm you
designed in (a) as a subroutine. )

3


