
COMPSCI330 Design and Analysis of Algorithms

Assignment 8

Due Date: Wednesday, April 22, 2020

Guidelines

• Describing Algorithms If you are asked to provide an algorithm, you should clearly define
each step of the procedure, establish its correctness, and then analyze its overall running
time. There is no need to write pseudo-code; an unambiguous description of your algorithm
in plain text will suffice. If the running time of your algorithm is worse than the suggested
running time, you might receive partial credits.

• Typesetting and Submission Please submit the problems to GradeScope. You will be
asked to label your solution for individual problems. Failing to label your solution can
cost you 5% of the total points (3 points out of 60 for this homework).

• LATEX is preferred, but answers typed with other software and converted to pdf is also ac-
cepted. Please make sure you submit to the correct problem, and your file can be opened by
standard pdf reader. Handwritten answers or pdf files that cannot be opened will
not be graded. (Exceptions apply to students who don’t have regular access to
computers.)

• Timing Please start early. The problems are difficult and they can take hours to solve. The
time you spend on finding the proof can be much longer than the time to write. If you need
more time for your homework please use this form and submit a STINF.

• Collaboration Policy Please check this page for the collaboration policy. You are not
allowed to discuss homework problems in groups of more than 3 students. Failure to adhere
to these guidelines will be promptly reported to the relevant authority without
exception.
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https://goo.gl/forms/5nHAxJugNRBS1MjK2
http://www.cs.duke.edu/courses/spring20/compsci330/honesty.html


Special Policy for Last Homework
As this is commonly considered to be the most difficult problem set in the course, in this difficult

time we are providing an option to (effectively) skip one question.
To take advantage of this, when you submit your homework, you need to clearly state which

problem you are skipping. You can do that by just write “I am skipping this problem.” in place
of the solution for that problem. You will automatically receive 20 points for that problem (note
that this also applies to P2 which has two different subproblems, you will just receive full credit
for both (a) and (b)). To qualify for the skipping option, you need to attempt at least one other
problem (i.e., a completely blank submission will not receive 20 points).

If you have time, we still encourage you to work on all three problems. In that case you might
want to receive feedback while still making sure you get 20 points on a certain problem (for example,
maybe you are uncertain about your solution to Problem 3). In that case, you should just write “I
am skipping this problem but I would still like feedback.” Then write your solution after that. The
graders will grade your solution, but will add a +20 so your final score will be 20 for that problem.
You will still be able to see the regular feedback on gradescope.
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Problem 1 (STORE PLANNING). (20 points) SET COVER is a classical NP-complete problem.
In this problem, there are n sets S1, S2, ..., Sn. All of these n sets are subsets of {1, 2, ...,m}. The
input of the problem is n,m, k(1 ≤ k ≤ n) and a list of elements for each set. The answer to SET
COVER is YES, if and only if there is a way to select k out of the n sets (Si1 , Si2 , ..., Sik) such that
the union of these sets covers every element in {1, 2, ...,m}. That is, ∪kj=1Sij = {1, 2, ...,m}. You
can assume that every element appears in at least one set.

STORE PLANNING is a different problem. In this problem, there are m customers and n
potential store locations. Store location i can serve a subset of customers Si ⊂ {1, 2, ...,m}. Each
customer needs to be served by at least one store. Opening store i costs X + |Si| (where |Si| is the
size of set Si). The input to the STORE PLANNING problem consists of n,m, S′

is(i = 1, 2, ..., n), X
and a value K, the answer is YES if there is a way to serve all customers with total cost less than
K. You can assume that every customer can be served by at least one potential store.

Based on the fact that SET COVER is NP-complete, prove STORE PLANNING is NP-hard.
Hint: What happens if you set X to be large?

Problem 2 (MIN DIRECTED GRAPH). (20 points) Recall the minimum spanning tree problem
tries to find an undirected graph with minimum total edge weights such that all vertices are con-
nected. What if the graph is directed? Given a directed graph G with n vertices and m edges and
a number k, the MIN DIRECTED GRAPH problem wants to decide whether there exists a subset
of k edges, such there is a path from any vertex u to any vertex v using only these edges.
(a) (5 points) Show that MIN DIRECTED GRAPH is in NP.
(b) (15 points) HAMILTONIAN CYCLE is a classical NP-complete problem. In this problem,
given a directed graph with n vertices and m edges, the problem wants to decide whether there
exists a cycle that visit all vertices exactly once. Based on the fact that HAMILTONIAN CYCLE
is NP-complete, prove MIN DIRECTED GRAPH is NP-complete.

Problem 3 (SOCIAL DISTANCING). (20 Points) City X is implementing a social distancing
policy during this pandemic. Specifically, in a park which is described by an undirected graph G
(with n vertices and m edges), no one is allowed to be on adjacent vertices at any given time. There
are k people in the park, person i wants to go from vertex si to vertex ti (these vertices are not
adjacent to each other). At each step, a person can move along one edge in the graph, or stand still.
The SOCIAL DISTANCING problem wants to decide whether there is a way for everyone to go
from their respective starting point si to their ending point ti within p steps, while still observing
the social distancing policy.

INDEPENDENT SET is a classical NP-complete problem. In this problem, there is an undi-
rected graph G with n vertices and m edges, the goal is to decide whether there exists k vertices
such that no two vertices are connected by an edge.

Based on the fact that INDEPENDENT SET is NP-complete, prove SOCIAL DISTANCING
is NP-hard.

Hint: 1. You can fix p in SOCIAL DISTANCING to the distance between si and ti, so everyone
needs to move along an edge in every step; 2. You might need to create addtional vertices for si
and ti, how many of them do you need?
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