Lecture 12: Shortest Path

Scriber: Xiaoming Liu

Feb 9, 2020

1 Shortest Path

1.1 s-t Shortest Path

Using the following graph as an example. Given that s is the starting node and t is the target node. Find the s-t shortest path.

The possible paths from s to t are:

1. $\mathrm{s} \xrightarrow{5} a \xrightarrow{10} t$.The total cost is 15 .
2. $\mathrm{s} \xrightarrow{5} a \xrightarrow{1} b \xrightarrow{5} t$.The total cost is 11 .
3. $\mathrm{s} \xrightarrow{5} a \xrightarrow{1} b \xrightarrow{1} c \xrightarrow{3} t$. The total cost is 10 .

1.2 Single Source Shortest Path

Problem Statement: Find the shortest path from a single source s to every other vertex in the graph.

State: Let $\mathrm{d}[\mathrm{v}]$ be the length of shortest path from s to v .
Transition Function

$$
d[v]=\min _{(u, v) \in E}(w(u, v)+d[u])
$$

In which $w(u, v)$ is the length of last edge and $d[u]$ is the distance from s to u .
Take the graph above as an example.

$$
d[t]=\min \begin{cases}d[a]+10, & 15 \\ d[b]+15, & 11 \\ d[c]+3, & 10\end{cases}
$$

1.3 Dijkstra's Algorithm

Maintain a set of visited vertices(the vertices that we have computed shortest path for) V. The set is initialized as s, which contains only the source node.

We also need to maintain a distance array.

1. For vertices that are visited. $(u \in V)$.

$$
\operatorname{dis}[u]=d[u]=\text { Length of shortest path from } s \text { to } u .
$$

2. For vertices not visited $(u \notin V)$
$\operatorname{dis}[u]=\mathrm{d}[\mathrm{u}]=$ Length of the shortest path from s to u , only use vertices in V as intermediate vertices.

At every iteration, select $u \notin V$ such that dis[u] is smallest. Add u to V, update the dis array.

Proof of Correctness

The main step here is to prove the claim that for vertex v with smallest dis[v] among the vertices not in set $\mathrm{V}, \mathrm{d}[\mathrm{v}]=\operatorname{dis}[\mathrm{v}]$.
Assume towards contradiction that there is a path from s to v with length shorter than dis[v]. By the inductive hypothesis, the shorter path must use vertices that are not visited as intermediate vertices. Let v^{\prime} be the first vertex on the path such that $v^{\prime} \notin V$. By induction hypothesis, wee know distance from s to v^{\prime} is at least dis[$\left.\mathrm{v}^{\prime}\right]$, but $\operatorname{dis}[v] \operatorname{dis}\left[v^{\prime}\right]$ by choice of the algorithm, so length of this path cannot be smaller than dis[v].

