Lecture 15: Linear Programming

Scriber: Xiaoming Liu

Mar 24, 2020

1 Linear Program

Most optimization problems are defined by three major components:

1. Set of Variables (Parameters)
2. Constraints
3. Objective

In linear programming, the components are defined as:

1. Variables: n real numbers, $x_{1}, x_{2}, \ldots, x_{n} \in \mathscr{R}$.
2. Constraints: a set of linear inequalities. For instance, these are a set of valid linear inequalities:
(a) $2 * x_{1} \geq x_{2}-x_{3}$
(b) $x_{1} \leq x_{5}+10$
(c) $c * x_{1} \leq x_{2}$, given c is a known constant

These are not valid linear inequalities:
(a) $x_{1} * x_{2} \leq 1$
(b) $\log \left(x_{1}\right)+\log \left(x_{3}\right) \leq 3$
(c) $\log \left(x_{1}\right) \leq 10$
3. Objective: Linear function over the variables.

An example of the linear program is illustrated as follows:

1. Variables: x, y
2. Constraints:

$$
\begin{aligned}
x & \geq 0 \\
y & \geq 0 \\
x+y & \leq 1
\end{aligned}
$$

3. Objective: $\max (2 * x+y)$

2 Solutions to linear program

Solution: An assignment of the variables
Feasible Solution: A solution that satisfies all constraints. For instance, for the example linear program problem above, some possible feasible solutions can be $(x, y)=$ $(0,0),(1,0)),\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{4}, \frac{1}{2}\right), \ldots$, while for instace, $(x, y)=(-1,-1)$ is not a feasible solution.
Optimal Solution: A feasible solution that achieves the best objective value. For instance, an optimal solution for the linear program above is $(1,0)$.

3 Geometric Interpretation

1. Variables: $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ correspond to a point in n-dimensional space.
2. Constraints: Each linear inequality corresponds to a planes, and the group of linear inequalities indicates the intersection of half planes, which defines a feasible region.
3. Objective: The original objective can be rewritten as

$$
\max (\vec{c} \cdot x)=\max \sum_{i=1}^{n}\left(c_{i} x_{i}\right)
$$

The point \vec{c} represents a direction of gravity. When \vec{c} points down, the lowest point of the feasible region gives the optimal solution.

4 Canonical Form

A linear program is in canonical form if it is of the form:

$$
\begin{array}{r}
\min <c, x> \\
\text { s.t. } x \geq b \\
x \geq 0
\end{array}
$$

The form is equivalent to:

$$
\begin{array}{r}
\min \sum_{i=1}^{n}\left(c_{i} x_{i}\right) \\
\text { for every } j=1,2, \ldots, m \\
\sum_{i=1} n A_{j, i} x_{i} \geq b_{j} \tag{1}\\
\text { for every } i=1,2, \ldots, n \\
x_{i} \geq 0
\end{array}
$$

The max and min in the optimization objective can be interchanged by taking the negative of the original objective. For instance, the following linear programming problems are equivalent:

1. $\max (2 x+y), x+y \leq 1$
2. $\min (-2 x-y),-x-y \geq 1$

5 Applying Linear Programming

5.1 Fractional Knapsack

Problem statement: Given a set of n items, in which item i has a weight of w_{i} and a value of v_{i}. Given a knapsack of fixed capacity c and you can put fractions of items into the knapsack. How to pack the knapsack so that it has the max value.
Variables: let x_{i} be the fraction of item i in the knapsack
Constraints:

1. Capacity constraint: $\sum_{i=1}^{n}\left(w_{i} x_{i}\right) \leq c$
2. Fraction constraint: $0 \leq x_{i} \leq 1, \forall i \in 1,2, . ., n$

Objective: $\max \sum_{i=1}^{n}\left(v_{i} x_{i}\right)$

