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Overview

In this lecture, we will formulate the linear program (LP) for yet another graph problem. Then, we move
on to talk about LP duality and its implication.

16.1 Using LP to Solve Graph Problems

In the previous lecture, we formed an LP instance for the maximum bipartite matching problem. In this
section, we form and LP instance for the shortest path problem.

16.1.1 Example: Shortest Path

Given a weighted undirected graph G = (V,E) and s, t ∈ V , we want to find the shortest path from s to t.
We want to express the problem of finding (the weight of) such path as a linear program.

The variables of the LP will be the quantities that we would like to know. There are two possible choices:
1) xuv = 1 if edge (u, v) is in the shortest s-t path, or 2) xu = d[u] = length of the shortest path from s to
u. In this lecture, we will work with 1).

Let w(u, v) be the weight on edge (u, v). The constraint then follows:

xs = 0
xv ≤ xu + w(u, v) ∀(u, v) ∈ E

For the object, a naive guess would be to minimize xt since we are finding the shortest path. However, this
is incorrect because setting xu = 0 for all u would then be a feasible solution. The correct objective is, in
fact, to maximize xt. We will prove by induction that, with this objective, it is indeed true that the solution
to the LP x∗t = d[t].

Proof: For every edge (u, v), clearly d[v] ≤ d[u] + w(u, v). Therefore the d[u]’s form a feasible solution to
the LP. Since x∗t maximizes the value of variable xt over all the feasible solutions, we have x∗t ≥ d[t].

It remains to show that x∗t ≤ d[t]. Let v1, v2, . . . , vk be a shortest s-t path. Thus v1 = s and vk = t. We will
show by induction that x∗vi ≤ d[vi], ∀i ∈ [1, k].

Base case: The constraint forces x∗s = 0 and clearly d[s] = 0.
Induction hypothesis: Suppose x∗vi ≤ d[vi] for some i < k.
Inductive step: since the solution satisfy the constraint, we have x∗vi+1

≤ x∗vi + w(vi, vi+1). By the IH, we
have x∗vi + w(vi, vi+1) ≤ d[vi] + w(vi, vi+1) = d[vi+1]. Therefore, x∗vi+1

≤ d[vi+1]

In particular, since vk = t, x∗t ≤ d[t]. Therefore, x∗t = d[t]
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16.2 LP Duality

Now we move on to introduce LP duality. We will begin with a motivating example from game theory.

16.2.1 Two-Player Zero-Sum Games

In game theory, two-player zero-sum game is the game with two competing players; when one wins the other
loses. An example would be rock-paper-scissors. It can be specified by the payoff matrix illustrated in here.
There are two players, called Row and Column, and they each pick a move from {r, p, s}. They then look
up the matrix entry corresponding to their moves, and Column pays Row this amount. It is Row’s gain and
Column’s loss.

R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

A player can choose to use a single strategy at all time. This is called a pure strategy. This is obviously not
a good way to play the rock-paper-scissors game. It makes sense to consider using a mixed strategy: play
r with probability p1, etc. The expected payoff of a player, therefore, would be taken over the 9 possible
outcomes. Pure strategy, hence, is a special case of mixed strategy in which all the probability is put on one
of the actions.

16.2.2 Solving Two-Player Zero-Sum Games by LP

Consider the game specified by the payoff matrix (of the row player) below. We will use LP to try to find a
good strategy for the row player.

A B C
A 3 1 -1
B -2 3 2
C 1 -2 4

Let x1, x2, x3 denote the probability the row player plays A, B and C in her mixed strategy. What makes a
good strategy is that no matter what the opponent does, she gets a good payoff. Let x4 denote the payoff.
Consider the following LP:

maxx4

x1 + x2 + x3 = 1
3x1 − 2x2 + x3 ≥ x4

x1 + 3x2 − 2x3 ≥ x4

−x1 + 2x2 + 4x3 ≥ x4

x1, x2, x3 ≥ 0

The solution to this LP turns out to be (x1, x2, x3, x4) = (9/19, 6/19, 4/19, 1), which implies an expected
payoff of x4 = 1.

16.2.3 Duality in Two-Player Zero-Sum Games

Since what the row player loses is what the column player gains, and vice versa, another way to look at this
optimization is that the column player wants to make sure the row player’s payoff is low no matter what the
row player does.
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Let y1, y2, y3 denote the probability the column player plays A, B and C in her mixed strategy. She wants
to make sure that the row player’s payoff is lower than y4. Consider the following LP:

min y4
y1 + y2 + y3 = 1

3y1 + y2 − y3 ≤ y4
−2y1 + 3y2 + 2y3 ≤ y4

y1 − 2y2 + 4y3 ≤ y4
y1, y2, y3 ≥ 0

This second LP turns out to be the dual of the first LP. The solution to this LP turns out to be (y1, y2, y4, y4) =
(1/3, 1/3, 1/3, 1), which implies an expected payoff of y4 = 1.

Let us summarize. By solving the LP (the first LP), the row player (the maximizer) can determine a strategy
for herself that guarantees an expected outcome of at least x4 no matter what the column player does. And
by solving the dual LP (the second LP), the column player (the minimizer) can guarantee an expected
outcome of at most y4, no matter what the row player does.

This example is easily generalized to arbitrary games and shows the existence of mixed strategies that are
optimal for both players and achieve the same value—a fundamental result of game theory called the min-max
theorem, which says the following:

Theorem 16.1 (Min-Max Theorem) For any two-player zero-sum game, there is always a pair of op-
timal strategies and a single value V. If the row player plays its optimal strategy, then it can guarantee a
payoff of at least V. If the column player plays its optimal strategy, then it can guarantee a payoff of at most
V.

This explains why, in our previous example, x4 = y4 = 1.

Corollary 16.2 (Weak Duality of LP) The optimal objective value of dual LP is less than or equal to
the optimal objective value of primal LP.

Corollary 16.3 (Strong Duality of LP) The solution to an LP and its dual must be equal.

16.2.4 Duality for LP, An Example

To demonstrate the duality for LP in general, let’s step away from our previous two-player game example,
and consider the following LP:

min 2x1 − 3x2 + x3

x1 − x2 ≥ 1 (1)
x2 − 2x3 ≥ 2 (2)

−x1 − x2 − x3 ≥ −7 (3)
x1, x2, x3 ≥ 0

The solution to this LP turns out to be setting (x1, x2, x3) = (4, 3, 0) and achieves an optimal solution of
−1. It follow directly, from the fact that the objective is to minimize, that the optimal solution is at most
−1. However, with the goal of driving the dual of this LP, we want to answer the question: how to prove
that the optimal is at least −1?

Proof: Our strategy is to use a linear combination of the three constraints.

2.5×(1)+0.5×(3), we get 2x1−3x2−0.5x3 ≥ −1. Since x3 ≥ 0, we have 2x1−3x2+x3 ≥ 2x1−3x2−0.5x3 ≥ −1
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The numbers 2.5 and 0.5 appears magical at the moment; in fact, they are the solution to the dual LP! To
see this, let’s generalize the proof idea above.

Let y1, y2, y3 ≥ 0. y1 × (1) + y2 × (2) + y3 × (3), we get:

y1(x1 − x2) + y2(x2 − 2x3) + y3(−x1 − x2 − x3) ≥ y1 + 2y2 − 7y3
(y1 − y3)x1 + (−y1 + y2 − y3)x2 + (−2y2 − y3)x3 ≥ y1 + 2y2 − 7y3

To lower-bound the optimal solution, we want:

2x1 − 3x2 + x3 ≥ (y1 − y3)x1 + (−y1 + y2 − y3)x2 + (−2y2 − y3)x3

Since x1, x2, x3 ≥ 0, this can be true only if the coefficient on LHS is greater than the coefficient on RHS,
that is:

y1 − y3 ≤ 2
−y1 + y2 − y3 ≤ −3
−2y2 − y3 ≤ 1

Hence, for any y1, y2, y3 that satisfy these three inequalities, we have:

2x1 − 3x2 + x3 ≥ y1 + 2y2 − 7y3

In order for the proof to be strong, we want to maximize y1 +2y2−7y3. Hence, we have derived the following
LP:

max y1 + 2y2 − 7y3
y1 − y3 ≤ 2

−y1 + y2 − y3 ≤ −3
−2y2 − y3 ≤ 1
y1, y2, y3 ≥ 0

This is LP is, in fact, the dual of the original LP. The optimal solution to this LP is to set (y1, y2, y3) =
(2.5, 0, 0.5) and achieves value −1.

16.2.5 Duality for LP, In general

For any (primal) LP of the form:

min c>x
Ax ≥ b
x ≥ 0

Its dual LP is defined by:

max b>y
AT y ≤ c

y ≥ 0

Each variable in the dual LP corresponds to a constraint in the primal LP, and each constraints in the dual
LP corresponds to a variable in the primal LP. The strong duality of LP, introduces in Corollary 17.2, says
that the two LP has the same optimal value.


