Lecture 20 Randomized Algorithms

April 2020

1 Quick Selection

1.1 Quick Selection Algorithm

The goal of Quick Selection algorithm is to find the k-th smallest element in an array. The idea of this algorithm is very similar to Quick Sort.
Algorithm: It first pick a random pivot number from array a, and then divides the array into two smaller sub-arrays: the left sub-array contains the numbers smaller than the pivot and the right sub-array contains the numbers larger than the pivot. After that, it counts the number of elements in the left sub-array. Assume there are i1 elements in the left sub-array, i.e., the pivot is the ith smallest element in the original array. If $i>k$, we recurse on the left sub-array, if $i<k$, we recurse on the right sub-array, and if $i=k$, we directly return the pivot. (Note that this algorithm only recurses on one side.)
Example: To selected the $5_{t h}$ smallest number in a list of numbers a[]$=4,2$, $8,6,3,1,7,5$, we first pick a random pivot number (say 3), then partition the array into two sub-arrays: $(2,1,4,8,6,7,5)$. After that, we recurse on the right sub-array, i.e., we want to find the 2 nd smallest number in $4,8,6,7,5$. We keep doing this until the algorithm returns, and the output of this algorithm should be 5 .
Worst Case: Suppose we are extremely unlucky and always pick the smallest/largest element as the pivot, then the running time of this instance can be $\Theta\left(n^{2}\right)$.

1.2 Quick Selection Running Time Analysis

Let X_{n} be the running time of quickselect on n numbers. Assume the elements in the list are distinct.
The expectation of the running time for the list of n items is thus:

$$
\begin{gathered}
\mathbf{E}\left[X_{n}\right]=\sum \mathbf{E}\left[x_{n} \mid \text { pivot }=i\right] * \operatorname{Prob}[\text { pivot }=i] \\
\mathbf{E}\left[x_{n} \mid \text { pivot }=i\right]= \begin{cases}\text { if } i<k & \text { recurse on right part of } X_{n-i} \\
\text { if } i=k & \text { output the pivot } \\
\text { if } i>k & \text { recurse on the left part of } X_{i-1}\end{cases}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{E}\left[X_{n}\right]=\sum_{i=1}^{k-1} \frac{1}{n}\left(X_{n-i}+n\right) & +\frac{1}{n} * n+\sum_{i=k+1}^{n} \frac{1}{n}\left(X_{i-1}+n\right) \\
= & n+\sum_{i=1}^{k-1} \frac{X_{n-i}}{n}+\sum_{i=\frac{n}{2}+1}^{n} \frac{X_{i-1}}{n}
\end{aligned}
$$

While the worst case is $k=\frac{n}{2}$.

$$
\mathbf{E}\left[X_{n}\right] \leq n+\sum_{i=1}^{\frac{n}{2}-1} \frac{X_{n-1}}{n}+\sum_{i=\frac{n}{2}+1}^{n} \frac{X_{i-1}}{n}
$$

2 Las Vegas and Monte Carlo Algorithm

2.1 Las Vegas Algorithm

1. Always output the correct answer
2. Running time is random

2.2 Monte Carlo Algorithm

1. Always run in a fixed amount of time
2. Result may be correct

2.3 Monte Carlo Example

Problem: Given a unit circle with its center at the origin, find the area of the circle.
Solution: Let X_{i} be the random variable which is defined as

$$
X_{i}= \begin{cases}1 & \text { if }\left(x_{i}, y_{i}\right) \text { in circle } \\ 0 & \text { if not }\end{cases}
$$

The probability of having $X_{i}=1$ is thus $\operatorname{Prob}\left[X_{i}=1\right]=\frac{\text { area of circle }}{4}$ We also defines Count $=\sum_{i=1}^{n} X_{i}$ and since the variances are bounded by $\frac{1}{4}$, we have $\operatorname{Var}\left[X_{i}\right]=p(1-p) \leq \frac{1}{4}$ and $\operatorname{Var}[$ Count $] \leq \frac{n}{4}$.
By Chebyshev inequality, we have $\operatorname{Prob}[\mid$ count $-p n \mid>\sqrt{n}] \leq \frac{1}{4}$. When this does not happen, the error of our estimation in compare with the true area of the circle is bounded:

$$
\left.\left|\frac{\text { Count }}{n} * 4-P * 4\right| \leq \frac{4}{n} \right\rvert\, \text { Count }-p n \left\lvert\, \leq \frac{4}{\sqrt{n}}\right.
$$

So if we choose $n \geq \frac{16}{\epsilon^{2}}$, with probability $\geq \frac{3}{4},\left|\frac{\text { Count }}{n} * 4-P * 4\right| \leq \epsilon$

3 Hashing

Set Problem: Maintain a dynamic subset of the universe $\{0,1,2, \ldots, N-1\}$. Supported Operation:

1. insert
2. delete
3. look-up

Goal:

1. all three operations can be done in $\mathbf{O}(1)$
2. space is proportional to the size of the set and independent of the size of the universe.

Design: Allocate an array $a[0,1, \ldots, m-1], m=\theta$ (size of set). In which size of set equals to n, which indicates the number of elements in the hashtable.
Hash function: $f:\{0,1, \ldots, m-1\} \rightarrow\{0, \ldots, m-1\}$ The function maps the element i to the location $f(i)$ where it is stored.
Problem: However, in practice, there can be some x and y in the set where $f(x)=f(y)$. We can such case a collision. The solution is to maintain a linkedlist at every a[] location, and add all numbers with the same $f(x)$ to the linkedlist.
However, by doing so, the running time for look-up operations become θ (length of list at $a[f(x)]$.
In worst cases, where the hash function allocate all the elements to a single location of the hash table, the worst case look-up performance can be as high as $O(n)$.

4 Hash Families

A hash family is a set of hash functions in which each function f in the family $f:\{0,1, \ldots, m-1\} \rightarrow\{0, \ldots, m-1\}$.

4.1 Pairwise independent/Universal hash family

Say a family \mathcal{F} of hash functions is pairwise independent/universal if for every $x \neq y \in\{0,1, \ldots, N-1\}, \operatorname{Pr}_{f} \mathcal{F}[f(x)=f(y)]=\frac{1}{m}$.
Example: Suppose hash table already contains n numbers, x_{1}, \ldots, x_{n}. Insert a new number y where $y \notin\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. What is the expected number of x_{i} that collides with y.

Solution: Let $X_{i}= \begin{cases}1 & f\left(x_{i}\right)=f(y) \\ 0 & f\left(x_{i}\right) \neq f(y)\end{cases}$

$$
\begin{array}{r}
\mathbf{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[X_{i}=1\right] \\
=\sum_{i=1}^{n} \operatorname{Pr}\left[f\left(x_{i}\right)=f(y)\right] \\
=\sum_{i=1}^{n} \frac{1}{m}=\frac{n}{m}
\end{array}
$$

