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1 Quick Selection

1.1 Quick Selection Algorithm

The goal of Quick Selection algorithm is to find the k-th smallest element in an
array. The idea of this algorithm is very similar to Quick Sort.
Algorithm: It first pick a random pivot number from array a, and then divides
the array into two smaller sub-arrays: the left sub-array contains the numbers
smaller than the pivot and the right sub-array contains the numbers larger than
the pivot. After that, it counts the number of elements in the left sub-array.
Assume there are i1 elements in the left sub-array, i.e., the pivot is the ith small-
est element in the original array. If i > k, we recurse on the left sub-array, if
i < k, we recurse on the right sub-array, and if i = k, we directly return the
pivot. (Note that this algorithm only recurses on one side.)
Example: To selected the 5th smallest number in a list of numbers a[] = 4, 2,
8, 6, 3, 1, 7, 5, we first pick a random pivot number (say 3), then partition the
array into two sub-arrays: (2, 1, 4, 8, 6, 7, 5). After that, we recurse on the
right sub-array, i.e., we want to find the 2nd smallest number in 4, 8, 6, 7, 5.
We keep doing this until the algorithm returns, and the output of this algorithm
should be 5.
Worst Case: Suppose we are extremely unlucky and always pick the small-
est/largest element as the pivot, then the running time of this instance can be
Θ(n2).

1.2 Quick Selection Running Time Analysis

Let Xn be the running time of quickselect on n numbers. Assume the elements
in the list are distinct.
The expectation of the running time for the list of n items is thus:

E[Xn] =
∑

E[xn|pivot = i] ∗ Prob[pivot = i]

E[xn|pivot = i] =


if i < k recurse on right part of Xn−i

if i = k output the pivot

if i > k recurse on the left part of Xi−1

+ n
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While the worst case is k = n
2 .

E[Xn] ≤ n+
∑n
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2 Las Vegas and Monte Carlo Algorithm

2.1 Las Vegas Algorithm

1. Always output the correct answer

2. Running time is random

2.2 Monte Carlo Algorithm

1. Always run in a fixed amount of time

2. Result may be correct

2.3 Monte Carlo Example

Problem: Given a unit circle with its center at the origin, find the area of
the circle.
Solution: Let Xi be the random variable which is defined as

Xi =

{
1 if (xi, yi) in circle

0 if not

The probability of having Xi = 1 is thus Prob[Xi = 1] = area of circle
4 We also

defines Count =
∑n
i=1Xi and since the variances are bounded by 1

4 , we have
V ar[Xi] = p(1− p) ≤ 1

4 and V ar[Count] ≤ n
4 .

By Chebyshev inequality, we have Prob[|count − pn| >
√
n] ≤ 1

4 . When this
does not happen, the error of our estimation in compare with the true area of
the circle is bounded:

|Countn ∗ 4− P ∗ 4| ≤ 4
n |Count− pn| ≤

4√
n

So if we choose n ≥ 16
ε2 , with probability ≥ 3

4 , |Countn ∗ 4− P ∗ 4| ≤ ε
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3 Hashing

Set Problem: Maintain a dynamic subset of the universe {0, 1, 2, ..., N-1}.
Supported Operation:

1. insert

2. delete

3. look-up

Goal:

1. all three operations can be done in O(1)

2. space is proportional to the size of the set and independent of the size of
the universe.

Design: Allocate an array a[0, 1, ...,m− 1], m = θ(size of set). In which size
of set equals to n, which indicates the number of elements in the hashtable.
Hash function: f : {0, 1, ...,m − 1} → {0, ...,m − 1} The function maps the
element i to the location f(i) where it is stored.
Problem: However, in practice, there can be some x and y in the set where
f(x) = f(y). We can such case a collision. The solution is to maintain a
linkedlist at every a[] location, and add all numbers with the same f(x) to the
linkedlist.
However, by doing so, the running time for look-up operations become θ(length of list at a[f(x)].
In worst cases, where the hash function allocate all the elements to a single lo-
cation of the hash table, the worst case look-up performance can be as high as
O(n).

4 Hash Families

A hash family is a set of hash functions in which each function f in the family
f : {0, 1, ...,m− 1} → {0, ...,m− 1}.

4.1 Pairwise independent/Universal hash family

Say a family F of hash functions is pairwise independent/universal if for every
x 6= y ∈ {0, 1, ..., N − 1}, Prf F [f(x) = f(y)] = 1

m .
Example: Suppose hash table already contains n numbers, x1, ..., xn. Insert
a new number y where y /∈ {x1, x2, ..., xn}. What is the expected number of xi
that collides with y.
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Solution: Let Xi =

{
1 f(xi) = f(y)

0 f(xi) 6= f(y)

E[

n∑
i=1

Xi] =

n∑
i=1

E[Xi] =

n∑
i=1

Pr[Xi = 1]

=

n∑
i=1

Pr[f(xi) = f(y)]

=

n∑
i=1

1

m
=

n

m
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