
COMPSCI 330: Design and Analysis of Algorithms

Lecture 22: More Reductions
Lecturer: Rong Ge Scribe: Mo Zhou

Overview

In this lecture, we review the concept of NP, NP-hard and NP-complete, and introduce a prototypical NP-
Complete problem, CIRCUIT-SAT. We then prove the NP-completeness of INDEPENDENT SET, CLIQUE
and 3-SAT by reduction.

22.1 NP, NP-hard and NP-complete

Recall that we say a problem A reduces to B in polynomial time if there is a polynomial time algorithm that
can transform an instance X of problem A to an instance Y of problem B in polynomial time, such that if
the answer to X is YES, answer to Y is also YES, and if answer to X is NO, answer to Y is also NO. Such
an algorithm is called a polynomial-time reduction. Then, we have if A reduces to B in polynomial time and
B can be solved in polynomial time, then A can also be solved in polynomial time.

Definition 22.1 (NP) A problem is in NP if its solution can be verified in poly-time.

In computational complexity theory, NP is the class of (decision) problems whose solution can be verified
in poly-time. Actually, there are harder problems that are not in NP, such as Halting Problem and Playing
Chess. Halting Problem is that given the code of a program, check if it will terminate or not. This problem
is not even solvable; Playing chess is that given a chess board with n× n size, with 4n chess pieces, decide
whether the first player can always win. This is believed to be PSPACE complete, and very unlikely to be
in NP.

Definition 22.2 (NP-hard) A problem is NP-hard if all problems in NP can be reduced to it in poly-time.

We can see that NP-hard problems are ”harder” than all problems in NP. By reduction, or more specifically
reducing problem B to problem A, we mean that given a “blackbox” solver that solves A, we can also solve
B by transforming the instance of B to an instance of A, and then transform the solver’s solution to the
instance of A to a solution to the instance of B. Observe that if A can be reduced to B and B can be reduced
to C, then A can be reduced to C.

Definition 22.3 (NP-complete) A problem is NP-complete if it is in NP and is NP-hard.

We can see that NP-complete problems are the hardest problem in NP. The reason is that if A is in NP,
and B is a NP-complete problem, then A can be reduced to B. Therefore, if any NP-complete problem has
a polynomial time algorithm, then P = NP. See Figure 22.1 for the relation between P,NP,NP-complete and
NP-hard.

From here, the road map to prove the NP-completeness of a problem is almost clear: we want to 1) show
that it is in NP and 2) show that all problems in NP can be reduced to it. The latter step seems unfeasible
at the moment, because there could be infinitely many problems in NP. In fact, we may instead prove that

22-1



22-2 Lecture 22: More Reductions

NP-hard NP-complete NP

P

Figure 22.1: Relationships between P,NP,NP-complete and NP-hard (When P 6=NP)

an NP-complete problem can be reduced to it; if we can do that, we know all problems in NP can be reduced
to it by the definition of NP-hard. Which NP-complete problem, then, should be reduced to it? Fortunately,
as we will demonstrate later, the following claim or observation says we don’t have to worry about this issue.

Claim 22.4 All NP-complete problems can be reduced to each other.

All NP-complete problems are equally “hard”. Hence, to prove the NP-completeness of a problem, all we
have to do is to 1) show that it is in NP and 2) show that an NP-complete problem can be reduced to it.

22.2 CIRCUIT-SAT: The First NP-Complete Problem

CIRCUIT-SAT is a decision problem that asks the following: Given a Boolean circuit with n inputs and 1
output, is there a possible input (represented by an n-bit binary string) that makes the output 1?

Theorem 22.5 (Cook-Levin) CIRCUIT-SAT is NP-compete

The proof of this theorem is beyond the scope of this course, but we will give you an (hopefully intuitive)
idea here. First of all, it is in NP because, given an n-bit string, we can simply follow the circuit and compute
the output in poly-time, and check if the output is indeed 1. As for the reduction, there is no better solver
for a CIRCUIT-SAT instance than (the circuit of) the computer in front of you. Given any problem in NP,
we can write a piece of program for it. (pick your favorite language) The compiler will turn it into a binary
machine code, essentially an instance of CIRCUIT-SAT, execute it, and print the output of your program.
This shows that all problems in NP can be reduced to CIRCUIT-SAT.

22.3 Reductions

In this section, we prove the NP-completeness of more problems by reduction. We first discuss the general
recipe for reductions:

22.3.1 General Recipe for Reductions

In order to prove B is NP-hard, given that we know A is NP hard, we want to reduce A to B. A complete
proof of reduction follows these steps:



Lecture 22: More Reductions 22-3

1. Given an instance X of A, construct an instance Y of B.

2. Prove that if answer to X is YES, then answer to Y is also YES.

3. Prove that if answer to X is NO, then answer to Y is also NO. (Usually prove the contrapositive: if
answer to Y is YES, answer to X is also YES)

We demonstrate this technique with the following examples

22.3.2 Reduction from INDEPENDENT SET to CLIQUE

Definition 22.6 (Independent set) In an undirected graph, an independent set is a set of vertices such
that no pair of vertices are connected by an edge.

The decision problem INDEPENDENT SET asks the following question: given a graph G and a number k,
does there exist an independent set of size k?

Definition 22.7 (Clique) In an undirected graph, a clique is a set of vertices such that all pairs of vertices
are connected by an edge.

The decision problem CLIQUE asks the following question: given a graph G and a number k, does there
exist a CLIQUE of size k?

We want to show that INDEPENDENT SET can be reduced to CLIQUE. Given an instance (G, k) of
INDEPENDENT SET, we want to construct an instance (G′, k′) of CLIQUE. Note that in INDEPENDENT
SET, we want to find vertices such that they are not connected. While in CLIQUE, we want to find vertices
such that they are connected. The idea comes from the observations that if a set S is an independent set in
G, then S is a clique in G′, where G′ is the complement of G. The complement of a graph G is a graph G′

on the same vertices such that two distinct vertices of G′ are adjacent if and only if they are not adjacent in
G.

By definition of the complement graph, u, v is connected in G′ iff u, v is not connected in G. Hence, S is an
independent set in G iff S is a clique in G′. Hence, if the answer to INDEPENDENT SET is YES iff the
answer to CLIQUE is YES. Hence, INDEPENDENT SET reduces to CLIQUE. You can see that the proof
that CLIQUE reduces to INDEPENDENT SET will be largely the same, only the direction of the argument
differs.

22.3.3 Reduction from 3-SAT to INDEPENDENT SET

The decision problem 3-SAT asks the following question: given a a Boolean formula in conjunctive normal
form where each clause contains at most three literals (ANDs of 3 ORs), is there a value (TRUE or FALSE)
of variables so that the formula is satisfied? An example of input to 3-SAT is (x1 ∨x2 ∨ x̄3)∧ (x̄2 ∨x3 ∨x4)∧
(x̄1 ∨ x2 ∨ x4). A solution to the problem assigns TRUE and FALSE to the variables. A clause is satisfied if
one of its literals is satisfied (evaluates to TRUE). The formula is satisfied if all clauses are satisfied. When
x1 = x2 = x3 = true and arbitrary x4, the above formula is satisfied, thus the answer is yes. When the input
is (x1 ∨ x2) ∧ (x̄1) ∧ (x̄2), the formula cannot be satisfied by any assignments of x1, x2. Thus, the answer to
this input is no.

We want to show that 3-SAT can be reduced to INDEPENDENT SET. Given such Boolean formula, we want
to construct an instance (G, k) of INDEPENDENT SET. The two problems look totally different at first
glance, but in fact there are many way to construct. Our idea is to construct “Gadgets”: for each concept
in 3-SAT (variables, clauses), construct a part of instance of INDEPENDENT SET (some vertices/edges)
so that we can connect the two problems.



22-4 Lecture 22: More Reductions

ui vi

Figure 22.2: Variable Gadget

For every variable xi, construct two vertices ui, vi that connect to each other. We hope that when xi is
set to TRUE, ui is in the independent set; xi is set to FALSE, vi is in the independent set. We call this a
“variable gadget” (see Figure 22.2).

For every clause Cj = (xi1 ∨ xi2 ∨ x̄i3), construct a gadget consists of three vertices wj1, wj2, wj3 connecting
to each other. We then connect (vi1, wj1), (vi2, wj2) and (ui3, wj1). We call this a “clause gadget.” For
example, for clause (x1 ∨ x3 ∨ x̄5), we construct

v1

v3

u5

w1

w2

w3

where the variable gadgets on the left also connect to other clause gadgets. With the help of this gadget,
when the clause is not satisfied, the solver for INDEPENDENT SET cannot select any vertex in gadget.
When clause is satisfied, the solver can select exactly one vertex in the gadget. This encourages all the
clauses to be satisfied. More formally, let n denote the number of variables and the m the number of clauses.
We will prove that a 3-SAT instance is satisfiable iff the corresponding graph constructed above has an
independent set of size k = n + m.

If the 3-SAT instance is satisfiable, then we choose our independent set in the following way: 1) for each
variable, if xi is set to TRUE, take ui; if xi is set to FALSE, take vi. This gives us n vertices that are
guaranteed not connected. 2) for each clause, take the w vertex that corresponds to one of the satisfied
literals. This gives us m vertices that are guaranteed not connected.

If there is an INDEPENDENT SET of size k in the graph constructed, by construction there can be at most
1 vertex from each variable gadget and 1 vertex from each clause gadget in the set. This means we must
have exactly one vertex selected in each gadget. Setting xi to TRUE if ui is in the independent set and xi to
FALSE if vi is in the independent set achieves a satisfying assignment: every variable is set to either TRUE
or FALSE and every clause has one satisfied literal.

22.3.4 Summary

It is also known that CIRCUIT-SAT can be reduced to 3-SAT, therefore 3-SAT is also an NP-complete
problem. Combine that with the reductions above, we have a complete picture of all the NP-complete
problems we know so far. Since all of them are in NP:

� CIRCUIT-SAT is NP-complete (by Cook-Levin Theorem.)

� 3-SAT is NP-complete (because CIRCUIT-SAT can be reduced to it.)

� INDEPENDENT SET is NP-complete (because 3-SAT can be reduced to it.)



Lecture 22: More Reductions 22-5

� CLIQUE is NP-complete (because INDEPENDENT SET can be reduced to it.)


