
Lecture 23 Classical NP-Hard Problems

April 2020

1 Hamiltonian Path to TSP Cycle

1.1 Problem Analysis

Hamiltonian Path: Given a graph G (directed/undirected), a start vertex s
and an end vertex t, find a path from s to t that visits every vertex in G exactly
once.
Travelling Salesman Problem: Given a weighted graph G, and there is a
salesman who wants to start at a vertex s, visit all vertices and come back to s.
Similarity: Visit all vertices
Differences:

1. Hamiltonian Path is on unweighted graphs while TSP is on weighted
graphs

2. Path vs. Cycle

1.2 Proof

Given a Hamiltonian Path instance with n vertices.To make it a cycle, we can
add a vertex x, and add edges (t,x) and (x,s). To make the path weighted, we
can give a weight 1 to all edges. Set L = n + 1, we now have a TSP cycle
instance.
Thus we can conclude that for any Hamiltonian path P in the original graph,
the new set of edges P ∩ (t, x), (x, s) form a TSP cycle of length L = n + 1
For any cycle of length n + 1 that visits every vertex, it must visit every vertex
exactly once. Cut the cycle when it visits vertex x, (either by (t, x) or (x, s)).
We can thus get a path from s to t that visits every vertex in the original graph
exact once.

1

2 3-SAT to quadratic programming

2.1 Problem Analysis

2.1.1 3-SAT Problem

example: (X1 ∨X2 ∨X3) ∧ (X2 ∨X3 ∨X4) ∧ ...
clause: or of 3 literals
literal: X or X
formula: logical and of many clauses
goal: is there any assignment to the variable such that all clauses are satisfied.

2.1.2 Quadratic Programming

variables: x1, x2, ..., xn ∈ R
constraints:

x2
1 ≤ 3

x2
1 + 2x1x2 − x2

2 ≥ 5

x2
1 − 2x2 ≥ x2

3 − x2x3

......

goal: Is there an assignment to the variables such that all constraints are sat-
isfied.

2.1.3 Comparison

1. boolean variables vs. real variables

2. 3-SAT clauses vs. quadratic constraints

Decision Problem: Given a set of quadratic constraints, does there exist a
feasible solution for 3-SAT?

2.2 Reduction

In order to create an instance of Quadratic programming from an instance of
3-SAT, we need to add constraints to make the real variables binary(0/1) but
adding constraint y2i = yi for all variables yi. The negation of the variables in
3-SAT clauses thus becomes 1− yi in quadratic constraints.
Thus, for every clause in 3-SAT, we thus create a quadratic constraint out
of it. For instance, from the clause xa ∨ xb ∨ xc we can create a constraint
ya + yb + (1− yc) ≥ 1.

2

3 Tripartite matching to subset vector

3.1 Problem Analysis

3.1.1 Tripartite matching

Given three sets U, V and W , each containing n vertices, and hyperedges (u, v, w),
where u ∈ U , v ∈ V and w ∈ W . A tripartite matching is a way of selecting
n hyperedges, so that every vertex is adjacent to a hyperedge. If we want to
use n hyperedges to cover all 3n vertices, then we must use exactly one vertex
is each of the n edges. Is there is a tripartite matching in the given graph?

3.1.2 Subset Vector

Given n vectors {v1, v2, ..., vn} and a target vector u. The answer is YES iff a
subset of these vectors sums up to u.

3.1.3 Comparison

1. select hyperedges vs. select vectors

2. exact n hyperedges vs. select any number of vectors.

Idea: Encode hyperedges as vectors. For each hyperedges, it includes 3 out
of 3n vertices. Thus, we can convert each hyperedge to a one-hot encoding
the vertices in the edge. The encoding will be vectors of 3n dimension. For
instance, for edge (u1, v1, w1), the encoding E will have 0s in all other indices
while E[0], E[n + 1], E[2n + 1] will be 1s.
Thus, selecting n hyperedges in order for every vertex in the graph is adjacent
to exactly 1 hyper-edge is equivilent to having the sum of these hyper-edge
encoded vectors equals to ~1.

4 Subset vector to subset sum

4.1 Problem Analysis

4.1.1 Subset vector

Given n vectors {v1, v2, ..., vn} and a target vector u. The answer is YES iff a
subset of these vectors sums up to u.

4.1.2 Subset sum

Given n integers {a1, a2, ..., an} and a target m. The answer is YES iff a subset
of these integers sums up to m.

3

4.1.3 Comparison

1. Any integer can be viewed as a vector if we take its base B representation.
For instance, integer 9, if in base 2, can be seen as a vector [1, 0, 0, 1].

2. Sum of numbers are thus, behave like sum of vectors as long as there is
no carry operation.

3. When B is very large, when taking sums, there will be no carry operation.

4

