Lecture 2: Divide and Conquer I

Scriber: Haoming Li

January 13, 2020

1 Analyzing Running Time

We will use merge sort to demonstrate how to analyze the running time of a divide-and-conquer algorithm.

1.1 The Algorithm

MergeSort (a[]) :
0) base case

1) split $a[]$ into $b[]$ and $c[]$
2) MergeSort(b[]), MergeSort(c[])
3) Merge(b[], c[])

The running time (or cost) of merge sort is consists of merge cost (the cost of step 0,1 and 3) and recursion cost (the cost of step 2). The merge cost can be analyzed directly.

1.2 The Recurrence Relation $T(n)$

Let $T(n)$ be the running time of the algorithm for an input of size n. We will analyze the merge cost, which will be a function of n, as well as the recursion cost, which will be written as $T(k)$ for some $k<n$. From there, $T(n)$ is simply the sum of merge cost and recursion cost.

For merge sort, the merge cost is $O(n)$, as we go through and combine two sorted sublists in linear time. The recursion cost is $2 T(n / 2)$, since there are 2 recursive calls, and the input size for each call is $n / 2$. Therefore, we have $T(n)=2 T(n / 2)+O(n)$. Since the base case is a list of size 1 that does not need to be sorted, i.e. $T(1)=0$, we can be more precise and write $T(n)=2 T(n / 2)+n$.

1.3 The Analysis

So how do we solve the recurrence relation $T(n)$? There are 2 methods in general to upper-bound the running time.

1.3.1 Guess-and-Verify

A guess: $T(n) \leq c n \log _{2} n$. We will verify this guess by proving $T(n) \leq c n \log _{2} n$ for some c, by strong induction:

Proof. Induction hypothesis: $T(n) \leq c n \log _{2} n$ for some c.
Base case: when $n=1, T(1)=0 \leq c \cdot 1 \log _{2} 1$ is true for every c.
Induction step: suppose IH is true for all $k<n$. We will show that IH is also true for n.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n(\text { by recurrence relation }) \\
& \leq 2\left(c \frac{n}{2} \log _{2} \frac{n}{2}\right)+n(\text { by IH }) \\
& =2 c \frac{n}{2}\left(\log _{2} n-1\right)+n \\
& =c n \log _{2} n-c n+n
\end{aligned}
$$

And $T(n) \leq c n \log _{2} n-c n+n \leq c n \log _{2} n$ is true whenever $c \geq 1$.

Therefore, $T(n) \leq c n \log _{2} n$ for some c. Hence $T(n)=O(n \log n)$

1.3.2 Recursion Tree

We will draw a tree of all recursive calls: each node represents a recursive call; each edge represents one call calling another; each leaf is a base case. From there, $T(n)$ can be calculated by summing the merge cost over every node in the recursion tree. For merge sort, we have:

Below is a summary of this tree.

Depth	Number of nodes	Problem size (each node)	Total problem size
0	1	n	n
1	2	$n / 2$	n
2	4	$n / 4$	n
\vdots			
$\log _{2}(n)-1$	$2^{\log _{2}(n)}=n$	1	n

We are now ready to sum the merge cost over every node in the recursion tree, which is simply

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{\log _{2} n-1} \text { merge cost for level } i \\
& =\sum_{i=0}^{\log _{2} n-1} n \\
& =n \log _{2} n
\end{aligned}
$$

One way to interpret the recursion tree method is that we are substituting in the expression for lower levels. That is:

$$
\begin{aligned}
T(n) & =2(T / 2)+n \\
& =4 T(n / 4)+2 \frac{n}{2}+n \\
& =8 T(n / 8)+4 \frac{n}{4}+2 \frac{n}{2}+n
\end{aligned}
$$

From right to left, we can see that we are essentially summing the merge cost for layer 0, layer 1, layer 2, etc. Hence, we are finding

$$
\sum_{i=0}^{\text {\# layers }} \text { merge cost for layer } i
$$

