
Lecture 3: Divide and Conquer 2

Scriber: Xiaoming Liu

January 27, 2020

1 Integer Multiplications
Problem statement: Given two n-digit numbers x and y, find their multiplication.

1.1 Naive Recursive Approach
Suppose we are given a = 123456 and b = 654321. While a and b can be rewritten as
a= 123∗1000+456 and b= 654∗1000+321 respectively, and thus the multiplication
can be rewritten as a∗b = 123∗654∗106+(123∗321+456∗654)∗103+456∗321.

To generalize the multiplication, we assume n is a power of 2 without the loss of
generality and we can partition a and b respectively into their upper and lower digits,
i.e, a = aupper ∗10n/2 +alower and b = bupper ∗10n/2 +blower.

The recursive multiplication algorithm is thus:

Algorithm 1 Recursion
Result: multiplication of a and b
Assume n = length(a) = length(b). Pad 0’s for shorter number;

if length(a) ¡= 1 then
return a * b;

else
partition a into a = aupper ∗10n/2 +alower

partition b into b = bupper ∗10n/2 +blower
A = Recursion(aupper,bupper)
B = Recursion(alower,bupper)
C = Recursion(aupper,blower)
D = Recursion(alower,blower)
return A∗10n +(B+C)∗10(n/2)+D

end

The time complexity of the algorithm can thus be represented as:

1

T (n) = 4T (n
2)+O(n)

The recursion tree can be illustrated as follows:

Figure 1: Recursion Tree

As illustrated in the figure above, the recursion tree has a depth of logn
2. The overall

complexity is thus:

T (n) =
logn

2

∑
i=0

4iA
n
2i

= An
logn

2

∑
i=0

2i

= An(2n−1)

= O(n2)

(1)

1.2 Improved Recursive Approach
We can improve the algorithm by doing one of the following:

1. Merging faster: However, this is not the bottleneck for integer multiplication.
O(n) is not large.

2. Make subproblems smaller: If we do this naively, then that would result in more
number of subproblems which defeats the purpose.

3. Decrease the number of subproblem: We see the details below.

The improved algorithm is as follows:

2

Algorithm 2 Recursion
Result: multiplication of a and b
Assume n = length(a) = length(b). Pad 0’s for shorter number;

if length(a) ¡= 1 then
return a * b;

else
partition a into a = aupper ∗10n/2 +alower

partition b into b = bupper ∗10n/2 +blower
A = Recursion(aupper,bupper)
B = Recursion(alower,blower)
C = Recursion(aupper + alower,bupper + blower) return A ∗ 10n + (C − A − B) ∗
10(n/2)+B

end

The time complexity of the algorithm can thus be represented as:

T (n) = 3T (n
2)+O(n)

Thus,

T (n) =
logn

2

∑
i=0

3iA
n
2i

= An
logn

2

∑
i=0

(
3
2
)i

= O(n
3
2

log
3
2
2
)

= O(nlog3
2)

= O(n1.585)<< O(n2)

(2)

1.3 Master Theorem
Theorem: If T (n) = aT (n/b)+ f (n), then

1. f (n) = O(nc),c < loga
b, then T (n) = Θ(nloga

b)

2. f (n) = Θ(nclogt(n)),c = loga
b, then T (n) = Θ(nloga

b logt+1(n))

3. f (n) = Θ(nc),c > loga
b then T (n) = Θ(nc)

For case 1 and case 3 of the master theorem, the recursion tree can be illustrated as
follows. The recursion tree can be illustrated as follows:

3

Figure 2: Generalized Recursion Tree for case 1 and 3

For case 2 of the master theorem, the recursion tree can be illustrated as follows.
The recursion tree can be illustrated as follows:

Figure 3: Generalized Recursion Tree for case 2

4

