Lecture 3: Divide and Conquer 2

Scriber: Xiaoming Liu

January 27, 2020

1 Integer Multiplications

Problem statement: Given two n-digit numbers x and y, find their multiplication.

1.1 Naive Recursive Approach

Suppose we are given $a=123456$ and $b=654321$. While a and b can be rewritten as $a=123 * 1000+456$ and $b=654 * 1000+321$ respectively, and thus the multiplication can be rewritten as $a * b=123 * 654 * 106+(123 * 321+456 * 654) * 103+456 * 321$.

To generalize the multiplication, we assume n is a power of 2 without the loss of generality and we can partition a and b respectively into their upper and lower digits, i.e, $a=a_{\text {upper }} * 10^{n / 2}+a_{\text {lower }}$ and $b=b_{\text {upper }} * 10^{n / 2}+b_{\text {lower }}$.

The recursive multiplication algorithm is thus:

```
Algorithm 1 Recursion
Result: multiplication of a and b
Assume \(\mathrm{n}=\) length \((\mathrm{a})=\) length \((\mathrm{b})\). Pad 0 's for shorter number;
if length \((a) j=1\) then
    return a * b ;
else
    partition a into \(a=a_{\text {upper }} * 10^{n / 2}+a_{\text {lower }}\)
    partition b into \(b=b_{\text {upper }} * 10^{n / 2}+b_{\text {lower }}\)
    \(A=\operatorname{Recursion}\left(a_{\text {upper }}, b_{\text {upper }}\right)\)
    \(B=\operatorname{Recursion}\left(a_{\text {lower }}, b_{\text {upper }}\right)\)
    \(C=\) Recursion \(\left(a_{\text {upper }}, b_{\text {lower }}\right)\)
    \(D=\operatorname{Recursion}\left(a_{\text {lower }}, b_{\text {lower }}\right)\)
    return \(A * 10^{n}+(B+C) * 10(n / 2)+D\)
end
```

The time complexity of the algorithm can thus be represented as:

$$
T(n)=4 T\left(\frac{n}{2}\right)+O(n)
$$

The recursion tree can be illustrated as follows:

Figure 1: Recursion Tree

As illustrated in the figure above, the recursion tree has a depth of $\log _{2}^{n}$. The overall complexity is thus:

$$
\begin{array}{r}
T(n)=\sum_{i=0}^{\log _{2}^{n}} 4^{i} A \frac{n}{2^{i}} \\
=A n \sum_{i=0}^{\log _{2}^{n}} 2^{i} \tag{1}\\
=A n(2 n-1) \\
=O\left(n^{2}\right)
\end{array}
$$

1.2 Improved Recursive Approach

We can improve the algorithm by doing one of the following:

1. Merging faster: However, this is not the bottleneck for integer multiplication. $\mathrm{O}(\mathrm{n})$ is not large.
2. Make subproblems smaller: If we do this naively, then that would result in more number of subproblems which defeats the purpose.
3. Decrease the number of subproblem: We see the details below.

The improved algorithm is as follows:

```
Algorithm 2 Recursion
Result: multiplication of \(\mathbf{a}\) and \(\mathbf{b}\)
Assume \(\mathrm{n}=\) length(a) \(=\) length(b). Pad 0 's for shorter number;
if length( \(a\) ) \(i=1\) then
    return a * b;
else
    partition a into \(a=a_{\text {upper }} * 10^{n / 2}+a_{\text {lower }}\)
    partition b into \(b=b_{\text {upper }} * 10^{n / 2}+b_{\text {lower }}\)
    \(A=\operatorname{Recursion}\left(a_{\text {upper }}, b_{\text {upper }}\right)\)
    \(B=\operatorname{Recursion}\left(a_{\text {lower }}, b_{\text {lower }}\right)\)
    \(C=\operatorname{Recursion}\left(a_{\text {upper }}+a_{\text {lower }}, b_{\text {upper }}+b_{\text {lower }}\right)\) return \(A * 10^{n}+(C-A-B) *\)
    \(10(n / 2)+B\)
end
```

The time complexity of the algorithm can thus be represented as:

$$
T(n)=3 T\left(\frac{n}{2}\right)+O(n)
$$

Thus,

$$
\begin{array}{r}
T(n)=\sum_{i=0}^{\log _{2}^{n}} 3^{i} A \frac{n}{2^{i}} \\
=A n \sum_{i=0}^{\log _{2}^{n}}\left(\frac{3}{2}\right)^{i} \tag{2}\\
=O\left(n \frac{3}{2}^{\log _{2}^{\frac{3}{2}}}\right) \\
=O\left(n^{\log _{2}^{3}}\right) \\
=O\left(n^{1} .585\right) \ll O\left(n^{2}\right)
\end{array}
$$

1.3 Master Theorem

Theorem: If $T(n)=a T(n / b)+f(n)$, then

1. $f(n)=O\left(n^{c}\right), c<\log _{b}^{a}$, then $T(n)=\Theta\left(n^{\log _{b}^{a}}\right)$
2. $f(n)=\Theta\left(n^{c} \log ^{t}(n)\right), c=\log _{b}^{a}$, then $T(n)=\Theta\left(n^{\log _{b}^{a}} \log ^{t+1}(n)\right)$
3. $f(n)=\Theta\left(n^{c}\right), c>\log _{b}^{a}$ then $T(n)=\Theta\left(n^{c}\right)$

For case 1 and case 3 of the master theorem, the recursion tree can be illustrated as follows. The recursion tree can be illustrated as follows:

Figure 2: Generalized Recursion Tree for case 1 and 3

For case 2 of the master theorem, the recursion tree can be illustrated as follows. The recursion tree can be illustrated as follows:

Figure 3: Generalized Recursion Tree for case 2

