# Lecture 5: Dynamic Programming II 

Scriber: Haoming Li

January 27, 2020

## 1 Designing a DP for Longest Increasing Subsequence (LIS)

Given a sequence of numbers, we want to find a strictly increasing subsequence of it that is also the longest. The numbers in the subsequence may not be consecutive in the original sequence. For example, given sequence $a[]=\{4,2,5,3,9,7,8,10,6\}$, its LIS is $\{2,5,7,8,10\}$ or $\{2,3,7,8,10\}$, as they both have length 5 .

### 1.1 A Failed Attempt

A natural subproblem is to have $f[i]$ denote the length of the LIS of sequence $a[1 \ldots i]$. A natural transition funtion is to consider whether the LIS of $a[1 \ldots i]$ should include $a[i]$ or not, and take max of the two.

If $a[i]$ is not included, then simply $f[i]=f[i-1]$. If $a[i]$ is included, however, we run into a problem: when the last element $a[i]$ is in the sequence, we have the additional constraint that all other elements need to be smaller than $a[i]$. However, when we reference a previous subproblem $f[j]$ where $j<i$, we do not know whether the solution for $f[j]$ uses numbers strictly smaller than $a[i]$, hence our proposed transition function does not work.

### 1.2 Attempt 2

Consider the following subproblem definition: Let $f[i]$ denote the length of the LIS of sequence $a[1 \ldots i]$ that ends at $a[i]$. (i.e. the subsequence must include $a[i]$ )

The decision at $f[i]$ is immediate, as we have to pick $a[i]$ by definition. To compute $f[i]$, we can enumerate the number that is before $a[i]$ in the sequence. This motivates our transition function:

$$
f[i]=\max \left\{1, \max _{j<i, a[j]<a[i]} f[j]+1\right\}
$$

If the max evaluates to the first case then the subsequence is simply $\{a[i]\}$; if it evaluates to the second case then the subsequence is $\{$ LIS ending at $a[j], a[i]\}$.

For example, for the sequence mentioned above, we would fill out a DP table like below

| $c$ | $a[]=\{4,2,5,3,9,7,8,10,6\}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $i$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| $f[i]$ | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 3 |

To complete our algorithm, we also need a base case that is $f[0]=0$, and an output that is $\max _{1 \leq i \leq n} f[i]$.

### 1.2.1 Analyze Running Time

The running time of a DP, in general, is

$$
\# \text { states } \times \text { time for evaluating one transition function }
$$

In the DP above, there are $n$ states, and we take $O(n)$ to evaluate one transition function. Hence the total running time is $O\left(n^{2}\right)$

### 1.2.2 Proof of Correctness

We will use induction to prove that our DP computes the correct answer. Our inductive hypothesis, in general, is to assume that "smaller subproblems are computed correctly."

- Base case: $f[0]=0$ is true by definition.
- Inductive hypothesis: assume that for every $j<i, f[j]$ is indeed the length of the LIS ending at $a[j]$.
- Induction step: Let $b[$ ] denote the LIS ending at $a[i]$. $b[]$ is either of length 1 or of length greater than 1.
- If $b[$ ] is of length 1 , then it is considered by the first case of the transition function.
- If $b[$ ] is of length greater than 1 , let $a[j]$ denote the second-to-last number in $b[]$. By definition $j<i$ and $a[j]<a[i]$. By IH, $f[j]$ is computed correctly. Hence $f[i]=f[j]+1$ is considered by the second case of the transition function.

Therefore, $f[i]$ is also computed correctly.

- By induction, $f[i]$ is computed correctly for all $i \geq 0$.

