
Lecture 5: Dynamic Programming II

Scriber: Haoming Li

January 27, 2020

1 Designing a DP for Longest Increasing Subsequence
(LIS)

Given a sequence of numbers, we want to find a strictly increasing subsequence of it
that is also the longest. The numbers in the subsequence may not be consecutive in the
original sequence. For example, given sequence a[] = {4,2,5,3,9,7,8,10,6}, its LIS
is {2,5,7,8,10} or {2,3,7,8,10}, as they both have length 5.

1.1 A Failed Attempt
A natural subproblem is to have f [i] denote the length of the LIS of sequence a[1 . . . i].
A natural transition funtion is to consider whether the LIS of a[1 . . . i] should include
a[i] or not, and take max of the two.

If a[i] is not included, then simply f [i] = f [i−1]. If a[i] is included, however, we run
into a problem: when the last element a[i] is in the sequence, we have the additional
constraint that all other elements need to be smaller than a[i]. However, when we
reference a previous subproblem f [j] where j < i, we do not know whether the solution
for f [j] uses numbers strictly smaller than a[i], hence our proposed transition function
does not work.

1.2 Attempt 2
Consider the following subproblem definition: Let f [i] denote the length of the LIS of
sequence a[1 . . . i] that ends at a[i]. (i.e. the subsequence must include a[i])

The decision at f [i] is immediate, as we have to pick a[i] by definition. To compute
f [i], we can enumerate the number that is before a[i] in the sequence. This motivates
our transition function:

f [i] = max{1, max
j<i,a[j]<a[i]

f [j]+1}

If the max evaluates to the first case then the subsequence is simply {a[i]}; if it
evaluates to the second case then the subsequence is {LIS ending at a[j],a[i]}.

For example, for the sequence mentioned above, we would fill out a DP table like
below

1

a[] = {4,2,5,3,9,7,8,10,6}

i 1 2 3 4 5 6 7 8 9
f [i] 1 1 2 2 3 3 4 5 3

To complete our algorithm, we also need a base case that is f [0] = 0, and an output
that is max1≤i≤n f [i].

1.2.1 Analyze Running Time

The running time of a DP, in general, is

states× time for evaluating one transition function

In the DP above, there are n states, and we take O(n) to evaluate one transition
function. Hence the total running time is O(n2)

1.2.2 Proof of Correctness

We will use induction to prove that our DP computes the correct answer. Our inductive
hypothesis, in general, is to assume that “smaller subproblems are computed correctly.”

• Base case: f [0] = 0 is true by definition.

• Inductive hypothesis: assume that for every j < i, f [j] is indeed the length of the
LIS ending at a[j].

• Induction step: Let b[] denote the LIS ending at a[i]. b[] is either of length 1 or
of length greater than 1.

– If b[] is of length 1, then it is considered by the first case of the transition
function.

– If b[] is of length greater than 1, let a[j] denote the second-to-last number in
b[]. By definition j < i and a[j]< a[i]. By IH, f [j] is computed correctly.
Hence f [i] = f [j] + 1 is considered by the second case of the transition
function.

Therefore, f [i] is also computed correctly.

• By induction, f [i] is computed correctly for all i≥ 0.

2

