Lecture 6: Dynamic Programming 3

Scriber: Xiaoming Liu

Feb 9, 2020

1 Longest Common Subsequence(LCS)

Problem statement: A subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. Longest common subsequence (LCS) of 2 sequences is a subsequence, with maximal length, which is common to both the sequences. Given two sequences a and b, find the longest common subsequence.

State Description: Let $F[i, j]$ be length of the longest common sequence for $a[1 \ldots i]$ and $b[1 \ldots j]$.

Analysis: There are three possible cases.

1. Last character of $a[]$ is not in LCS. e.q. $\operatorname{LCS}=\operatorname{LCS}($ 'ababcd', 'abbecd').
2. Last character of $b[]$ is not in LCS. e.q. $\operatorname{LCS}=\operatorname{LCS}(' a b a b c d e ', ~ ' a b b e c ')$.
3. Last characters of. both $a[]$ and $b[]$ are in LCS. The case only happens if the last characters are equal. e.q. for a[]$=$ 'ababcd', b[]$=$ 'abbecd', LCS = LCS('ababc', 'abbec') + 'd'

Transition Function

$$
\left\{[i, j]=\max \left\{\begin{array}{l}
\{[i-1, j] \\
\{[i, j-1] \\
\{[i-1, j-1]+1(\text { if } a[i]==b[i])
\end{array}\right.\right.
$$

Base Case

$$
\left\{\begin{array}{l}
f[0, j]=0 \forall 0<j<=\operatorname{length}(b) \\
f[i, 0]=0 \forall 0<i<=\operatorname{length}(a)
\end{array}\right.
$$

Running Time:

$O(n * m)$ (number of possible states) $* O(1)$ (time to compute each state)

2 Voice Recognition

Problem statement: Given n segments of sounds, output the phonemes. Each sound might represent one of k phonemes. You are given a list of scores for all the k phonemes for each sound segment. For every pair of phonemes, a score for how likely one comes after the other is also given.
Input:

1. n : number of sound segments
2. k : number of phonemes
3. $\mathrm{a}[\mathrm{i}, \mathrm{j}]$: score of assigning phoneme j to sound segment i , in which $\forall 1<=i<=n$, $\forall 1<=j<=k$.
4. $\mathrm{b}[\mathrm{i}, \mathrm{j}]$: score of phoneme j appear immediately after phoneme i. $\forall 1<=i<=k$, $\forall 1<=j<=k$.

Goal: We want to obtain sequence $v[1 \ldots n]$, in which $v[i] \in 1,2, \ldots, k . v[i]$ is the phoneme assigned to sound segment i.
More specifically, we wish to obtain:

$$
\underset{v}{\operatorname{argmax}} \sum_{i=1}^{n} a[i, v[i]]+\sum_{i=1 n-1} b[v[i], v[i+1]]
$$

State: $f[i, j]$ refers to the max score for the first i sound segments while sound segment i is phoneme j.

Transition Function:

$$
f[i, j]=\max _{p=1,2 \ldots k}(f[i-1, p]+b[p, j])+a[i, j]
$$

Base Case $f[1, j]=a[1, j]$
Algorithm:

```
Algorithm 1 Viterbi Algorithm
\(\overline{f[i, j]}=a[i, j]\) for all j
for \(\mathrm{i}=2\) to n :
    for \(\mathrm{j}=2\) to k :
        evaluate transition function \(\mathrm{f}[\mathrm{i}, \mathrm{j}]\)
return \(\max _{j=1, \ldots, k} f[n, j]\)
```


Running Time:

$O(n * k)($ number of possible states) $* O(k)$ (time to compute each state)

