Lecture 9: Greedy Algorithm. 3

Scriber: Xiaoming Liu

Feb 9, 2020

1 Horn-SAT

Problem statement: Given a set of Horn clauses, determine whether there exists an assignment to variables such that all clauses are satisfied.
Proof:
If algorithm outputs a solution, by design of algorithm, the solution must satisfy all clauses $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$.
If the algorithm outpus no solution, assume towards contradiction, there is a satisfying assignment $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, \ldots, x_{n}^{\prime}\right)$. Let $i_{1}, i_{2}, \ldots, i_{k}$ be the ordering in which the algorithm sets the variables to be true.

1. if $\left(x_{i_{1}}^{\prime}, x_{i_{2}}^{\prime}, x_{i_{3}}^{\prime}, \ldots, x_{i_{k}}^{\prime}\right)$ are all true, let C be the type 3 clause that assignment $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ violates, the variables in C must in $\left(x_{i_{1}}^{\prime}, x_{i_{2}}^{\prime}, x_{i_{3}}^{\prime}, \ldots, x_{i_{k}}^{\prime}\right)$. Since $X_{i_{j}}^{\prime}$ is also true for $j=1,2, \ldots, k, C$ must be violated by X_{i}^{\prime}. Thus, there is a contradiction.
2. Let i_{j} be the first variable where $X_{i_{j}}$ is true and $X_{i_{j}}^{\prime}$ is false. When $X_{i_{j}}$ were set to true. There are two possible cases.
(a) $X_{i_{j}}$ is set to true by a type 2 clause.
(b) $X_{i_{j}}$ is set to true by a type 1 clause.

In both sub-cases, this particular clause will be violated by $\left(x_{i}^{\prime}\right)$. Thus, there is a contradiction.

2 Huffman Tree

Problem statement: Given a long string with n different characters in alphabet, find a way to encode these characters into binary codes that minimizes the length.

Algorithm

1. REPEAT
2. Select two characters with smallest frequencies
3. Merge them into a new character, whose frequency is the sum.

4. UNTIL (there is only one character)

Running Time:

1. Naive implementation: $O\left(n^{2}\right.$.
$\mathrm{n}-1$, every iterations reduces number of characters by 1
$O(n)$ for each iteration.
2. Priority Queue/Heap Implementation: O (nlogn)

Proof Of Correctness:

Induction Hypothesis: Huffman Tree algorithm finds an optimal encoding for all alphabets of size at most n.

Base Case: When $n=1$, there is only one solution with cost 0 .

Induction Step:

Assume induction hypothesis is true for n, consider an alphabet of size $n+1$, assume towards contradiction that Hoffman Tree algorithm does not find the optimal solution, let $T_{\text {alg }}$ be the tree found by the algorithm and $T_{\text {opt }}$ be the tree found by OPT, and i, j be the first two characters that the algorithm merged.
If i, j are not children of the same node in $T_{o p t}$:
Let i^{\prime}, j^{\prime} be the two nodes at the highest depth in $T_{o p t}$ that share the same parent. Let $T_{o p t}^{\prime}$ be a solution where i and j are swapped with i^{\prime} and j^{\prime} in $T_{o p t}$.
Let d_{i} be the depth of i in $T_{o p t}$, and similarly for d_{j}, d_{i}^{\prime} and d_{j}^{\prime}. We have thus:

$$
\begin{aligned}
\operatorname{cost}\left(T_{o p t}^{\prime}\right)= & \operatorname{cost}\left(T_{o p t}\right)-\left(W_{i} * d_{i}+W_{j} * d_{j}+W_{i^{\prime}} d_{i^{\prime}}+W_{j^{\prime}} * d_{j^{\prime}}\right)+\left(W_{i} * d_{i^{\prime}}+W_{j^{\prime}} * d_{j^{\prime}}+W_{i^{\prime}} d_{i}+W_{j^{\prime}} * d_{j}\right) \\
& \left.\left.=\operatorname{cost}\left(T_{o p t}\right)-\left(W_{i^{\prime}}-W_{i}\right)\right)\left(d_{i^{\prime}}-d_{i}\right)-\left(W_{j^{\prime}}-W_{j}\right)\right)\left(d_{j^{\prime}}-d_{j}\right) \\
& <=\operatorname{cost}\left(T_{o p t}\right)
\end{aligned}
$$

Therefore, $T_{o p t}^{\prime}$ is also an optimal solution.
Now that we know there is always an optimal solution that merges i and j, the problem reduces to an alphabet of size n . By induction hypothesis, Hoffman tree algorithm is optimal for this instance. Therefore, $\operatorname{cost}\left(T_{a l g}\right) \operatorname{cost}\left(T_{o p t}^{\prime}\right) \operatorname{cost}\left(T_{o p t}\right)$. Thus, it contradicts with the assumption that $T_{\text {alg }}$ is optimal.

