Implementing RSA Encryption in Java

RSA algorithm

- Select two large prime numbers \(p, q \)
- Compute \(n = p \times q \)
- \(v = (p-1) \times (q-1) \)
- Select small odd integer \(k \) relatively prime to \(v \)
 - \(\gcd(k, v) = 1 \)
- Compute \(d \) such that \((d \times k)\%v = (k \times d)\%v = 1 \)
 - Public key is \((k, n) \)
 - Private key is \((d, n) \)

- example
 - \(p = 11 \)
 - \(q = 29 \)
 - \(n = 319 \)
 - \(v = 280 \)
 - \(k = 3 \)
 - \(d = 187 \)
 - public key \((3, 319) \)
 - private key \((187, 319) \)

Encryption and decryption

- Alice and Bob would like to communicate in private
- Alice uses RSA algorithm to generate her public and private keys
 - Alice makes key \((k, n) \) publicly available to Bob and anyone else wanting to send her private messages
- Bob uses Alice’s public key \((k, n)\) to encrypt message \(M \):
 - compute \(E(M) = (M^k)\%n \)
 - Bob sends encrypted message \(E(M) \) to Alice
- Alice receives \(E(M) \) and uses private key \((d, n)\) to decrypt it:
 - compute \(D(M) = (E(M)^d)\%n \)
 - decrypted message \(D(M) \) is original message \(M \)

Outline of implementation

- RSA algorithm for key generation
 - select two prime numbers \(p, q \)
 - compute \(n = p \times q \)
 - \(v = (p-1) \times (q-1) \)
 - select small odd integer \(k \) such that \(\gcd(k, v) = 1 \)
 - compute \(d \) such that \((d \times k)\%v = 1 \)
- RSA algorithm for encryption/decryption
 - encryption: compute \(E(M) = (M^k)\%n \)
 - decryption: compute \(D(M) = (E(M)^d)\%n \)

RSA algorithm for key generation

- Input: none
- Computation:
 - select two prime integers \(p, q \)
 - compute integers \(n = p \times q \)
 - \(v = (p-1) \times (q-1) \)
 - select small odd integer \(k \) such that \(\gcd(k, v) = 1 \)
 - compute integer \(d \) such that \((d \times k)\%v = 1 \)
- Output: \(n, k, \text{ and } d \)

RSA algorithm for encryption

- Input: integers \(k, n, M \)
 - \(M \) is integer representation of plaintext message
- Computation:
 - let \(C \) be integer representation of ciphertext
 - \(C = (M^k)\%n \)
- Output: integer \(C \)
 - ciphertext or encrypted message
RSA algorithm for decryption

- **Input:** integers \(d, n, C \)
 - \(C \) is integer representation of ciphertext message
- **Computation:**
 - let \(D \) be integer representation of decrypted ciphertext
 \[
 D = (C^d) \mod n
 \]
- **Output:** integer \(D \)
 - decrypted message

This seems hard ...

- How to find big primes?
- How to find mod inverse?
- How to compute greatest common divisor?
- How to translate text input to numeric values?
- Most importantly: RSA manipulates big numbers
 - Java integers are of limited size
 - how can we handle this?
- Two key items make the implementation easier
 - understanding the math
 - Java's `BigInteger` class

What is a `BigInteger`?

- Java class to represent and perform operations on integers of arbitrary precision
- Provides analogues to Java's primitive integer operations, e.g.
 - addition and subtraction
 - multiplication and division
- Along with operations for
 - modular arithmetic
 - gcd calculation
 - generation of primes
- http://java.sun.com/j2se/1.4.2/docs/api/

Using `BigInteger`

- If we understand what mathematical computations are involved in the RSA algorithm, we can use Java's `BigInteger` methods to perform them
- To declare a `BigInteger` named \(B \)
  ```java
  BigInteger B;
  ```
- Predefined constants
  ```java
  BigInteger.ZERO
  BigInteger.ONE
  ```

Randomly generated primes

- `BigInteger` `probablePrime(int b, Random rng)`
 - Returns random positive `BigInteger` of bit length \(b \) that is "probably" prime
 - probability that `BigInteger` is not prime \(< 2^{-100} \)
- `Random` is Java's class for random number generation
- The following statement
  ```java
  Random rng = new Random();
  ```
 creates a new random number generator named \(rng \)

`probablePrime`

- Example: randomly generate two `BigInteger` primes named \(p \) and \(q \) of bit length 32:
  ```java
  /* create a random number generator */
  Random rng = new Random();

  /* declare p and q as type BigInteger */
  BigInteger p, q;

  /* assign values to p and q as required */
  p = BigInteger.probablePrime(32, rng);
  q = BigInteger.probablePrime(32, rng);
  ```
Integer operations

- Suppose have declared and assigned values for \(p \) and \(q \) and now want to perform integer operations on them
 - use methods \(\text{add}, \text{subtract}, \text{multiply}, \text{divide} \)
 - result of \(\text{BigInteger} \) operations is a \(\text{BigInteger} \)
- Examples:
  ```java
  BigInteger w = p.add(q);
  BigInteger x = p.subtract(q);
  BigInteger y = p.multiply(q);
  BigInteger z = p.divide(q);
  ```

Greatest common divisor

- The **greatest common divisor** of two numbers \(x \) and \(y \) is the largest number that divides both \(x \) and \(y \)
 - this is usually written as \(\text{gcd}(x,y) \)
- Example: \(\text{gcd}(20,30) = 10 \)
 - 20 is divided by 1,2,4,5,10,20
 - 30 is divided by 1,2,3,5,6,10,15,30
- Example: \(\text{gcd}(13,15) = 1 \)
 - 13 is divided by 1,13
 - 15 is divided by 1,3,5,15
- When the \(\text{gcd} \) of two numbers is one, these numbers are said to be **relatively prime**

Euler's Phi Function

- For a positive integer \(n \), \(\phi(n) \) is the number of positive integers less than \(n \) and relatively prime to \(n \)
- Examples:
 - \(\phi(3) = 2 \) \(\{1,2\} \)
 - \(\phi(4) = 2 \) \(\{1,3\} \) (but 2 is not relatively prime to 4)
 - \(\phi(5) = 4 \) \(\{1,2,3,4\} \)
- For any prime number \(p \), \(\phi(p) = p-1 \)
- For any integer \(n \) that is the product of two distinct primes \(p \) and \(q \),
 \(\phi(n) = \phi(p)\phi(q) \)
 \(= (p-1)(q-1) \)

Relative primes

- Suppose we have an integer \(x \) and want to find an odd integer \(z \) such that
 - \(1 < z < x \) and
 - \(z \) is relatively prime to \(x \)
- We know that \(x \) and \(z \) are relatively prime if their greatest common divisor is one
 - randomly generate prime values for \(z \) until \(\text{gcd}(x,z)=1 \)
 - if \(x \) is a product of distinct primes, there is a value of \(z \) satisfying this equality

Relative BigInteger primes

- Suppose we have declared a \(\text{BigInteger} \) \(x \) and assigned it a value
- Declare a \(\text{BigInteger} \) \(z \)
- Assign a prime value to \(z \) using the \text{probablePrime} method
 - specifying an input bit length smaller than that of \(x \) gives a value \(z<|x| \)
- The expression
  ```java
  (x.gcd(z)).equals(BigInteger.ONE)
  ```
 returns true if \(\text{gcd}(x,z)=1 \) and false otherwise
- While the above expression evaluates to false, assign a new random to \(z \)

Multiplicative identities and inverses

- The multiplicative identity is the element \(e \) such that
 \(e \cdot x = x \cdot e = x \)
 for all elements \(x \in X \)
- The multiplicative inverse of \(x \) is the element \(x^{-1} \) such that
 \(x \cdot x^{-1} = x^{-1} \cdot x = 1 \)
- The multiplicative inverse of \(x \) \(\mod n \) is the element \(x^{-1} \) such that
 \((x \cdot x^{-1}) \mod n = (x^{-1} \cdot x) \mod n = 1 \)
 - \(x \) and \(x^{-1} \) are inverses only in multiplication \(\mod n \)
modInverse

- Suppose we have declared `BigInteger` variables `x`, `y` and assigned values to them.
- We want to find a `BigInteger` `z` such that
 \[(x \times z) \mod y = (z \times x) \mod y = 1\]
 that is, we want to find the inverse of `x` mod `y` and assign its value to `z`.
- This is accomplished by the following statement:
  ```java
  BigInteger z = x.modInverse(y);
  ```

Implementing RSA key generation

- We know have everything we need to implement the RSA key generation algorithm in Java, so let's get started …