Games

Adversaries

- Consider the process of reasoning when an adversary is trying to defeat our efforts
- In game playing situations one searches down the tree of alternative moves while accounting for the opponent’s actions
- Problem is more difficult because the opponent will try to choose paths that avoid a win for the machine

Two-player games

- The object of a search is to find a path from the starting state to a goal state
- In one-player games such as puzzle and logic problems you get to choose every move
 - e.g. solving a maze
- In two-player games you alternate moves with another player
 - competitive games
 - each player has their own goal
 - search technique must be different

Game trees

- A game tree is like a search tree in many ways …
 - nodes are search states, with full details about a position
 - characterize the arrangement of game pieces on the game board
 - edges between nodes correspond to moves
 - leaf nodes correspond to a set of goals
 - (win, lose, draw)
 - usually determined by a score for or against player
 - at each node it is one or other player’s turn to move
- A game tree is not like a search tree because you have an opponent!

Tic-Tac-Toe

- The first player is X and the second is O
- Object of game: get three of your symbol in a horizontal, vertical or diagonal row on a 3x3 game board
- X always goes first
- Players alternate placing Xs and Os on the game board
- Game ends when a player has three in a row (a wins) or all nine squares are filled (a draw)

Partial game tree for Tic-Tac-Toe
Perfect information

- In a game with perfect information, both players know everything there is to know about the game position
 - no hidden information
 - opponents hand in card games
 - no random events
 - two players need not have same set of moves available
- Examples
 - Chess, Go, Checkers, Tic-Tac-Toe

Payoffs

- Each game outcome has a payoff, which we can represent as a number
- In some games, the outcome is either a win or loss
 - we could use payoff values +1, -1
- In some games, you might also tie or draw
 - payoff 0
- In other games, outcomes may be other numbers
 - e.g. the amount of money you win at poker

Problems with game trees

- Game trees are huge
 - Tic-Tac-Toe is 9! = 362,880
 - Checkers about 10^{40}
 - Chess about 10^{120}
 - Go is $361! \approx 10^{750}$
- It is not good enough to find a route to a win
 - have to find a winning strategy
 - usually many different leaf nodes represent a win
 - much more of the tree needs to be explored

Heuristics

- In a large game, you don’t really know the payoffs
- A heuristic computes your best guess as to what the payoff will be for a given node
- Heuristics can incorporate whatever knowledge you can build into your program
- Make two key assumptions:
 - your opponent uses the same heuristic function
 - the more moves ahead you look, the better your heuristic function will work

Evaluation functions

- It is usually impossible to solve games completely
 - Connect 4 has been solved
 - Checkers has not
- This means we cannot search entire game tree
 - we have to cut off search at a certain depth
 - like depth bounded depth first, lose completeness
- Instead we have to estimate cost of internal nodes
- We do this using a evaluation function
 - evaluation functions are heuristics
- Explore game tree using combination of evaluation function and search

Tic-Tac-Toe revisited

- a partial game tree for Tic-Tac-Toe
Evaluation function for Tic-Tac-Toe

- A simple evaluation function for Tic-Tac-Toe
 - count number of rows where X can win
 - subtract number of rows where O can win
- Value of evaluation function at start of game is zero
 - on an empty game board there are 8 possible winning rows for both X and O

\[
\text{eval}_X = (\text{number of rows where X can win}) - (\text{number of rows where O can win})
\]

- After X moves in center, score for X is +4
- After O moves, score for X is +2
- After X’s next move, score for X is +3

\[
\begin{align*}
8 - 8 &= 0 \\
6 - 4 &= 2 \\
8 - 4 &= 4 \\
6 - 3 &= 3
\end{align*}
\]

Evaluating Tic-Tac-Toe

\[
\text{eval}_O = (\text{number of rows where O can win}) - (\text{number of rows where X can win})
\]

- After X moves in center, score for O is -4
- After O moves, score for O is +2
- After X’s next move, score for O is -3

\[
\begin{align*}
8 - 8 &= 0 \\
4 - 6 &= -2 \\
4 - 8 &= -4 \\
3 - 6 &= -3
\end{align*}
\]

Search depth cutoff

- Assume that both players play perfectly
 - do not assume player will miss good moves or make mistakes
- Consider MIN’s strategy
 - wants lowest possible score
 - must account for MAX
- MIN’s best strategy:
 - choose the move that minimizes the score that will result when MAX chooses the maximizing move
- MAX does the opposite
Minimaxing

- Your opponent will choose smaller numbers
- If you move left, your opponent will choose 3
- If you move right, your opponent will choose -8
- Thus your choices are only 3 or -8
- You should move left

Minimax procedure

- Evaluate positions at cutoff search depth and propagate information upwards in the tree
 - score of MAX nodes is the maximum of child nodes
 - score of MIN nodes is the minimum of child nodes
- Bottom-up propagation of scores eventually gives score for all possible moves from root node
- This gives us the best move to make

Minimax

- The problem with minimax is that it is inefficient
 - search to depth \(d \) in the game tree
 - suppose each node has at most \(b \) children
 - calculate the exact score at every node
 - in worst case we search \(b^d \) nodes – exponential!
- However, many nodes are useless
 - there are some nodes where we don’t need to know exact score because we will never take that path in the future

Is there a good minimax?

- Yes! We just need to prune branches we do not to search from the tree
- Idea:
 - start propagating scores as soon as leaf nodes are generated
 - do not explore nodes which cannot affect the choice of move
 - that is, do not explore nodes that we can know are no better than the best found so far
- The method for pruning the search tree generated by minimax is called Alpha-beta

Alpha-beta values

- At MAX node we store an alpha (\(\alpha \)) value
 - \(\alpha \) is lower bound on the exact minimax score
 - with best play MAX can score at least \(\alpha \)
 - the true value might be > \(\alpha \)
 - if MIN can choose nodes with score < \(\alpha \), then MIN’s choice will never allow MAX to choose nodes with score > \(\alpha \)
- Similarly, at MIN nodes we store a beta (\(\beta \)) value
 - \(\beta \) is upper bound on the exact minimax score
 - with best play MIN can score no more than \(\beta \)
 - the true value might be < \(\beta \)
<table>
<thead>
<tr>
<th>Alpha-beta pruning</th>
<th>The importance of cutoffs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Two key points:</td>
<td>• If you can search to the end of the game, you know exactly the path to follow to win</td>
</tr>
<tr>
<td>– alpha values can never decrease</td>
<td>– thus the further ahead you can search, the better</td>
</tr>
<tr>
<td>– beta values can never increase</td>
<td>• If you can ignore large parts of the tree, you can search deeper on the other parts</td>
</tr>
<tr>
<td>• Search can be discontinued at a node if:</td>
<td>– the number of nodes at each turn grows exponentially</td>
</tr>
<tr>
<td>– It is a Max node and</td>
<td>– you want to prune branches as high in the tree as possible</td>
</tr>
<tr>
<td>• the alpha value is ≥ the beta of any Min ancestor</td>
<td>• Exponential time savings possible</td>
</tr>
<tr>
<td>• this is beta cutoff</td>
<td></td>
</tr>
</tbody>
</table>