Before Class:
- Journal Up

1. Binomial Trees
 - The binomial tree of height h is a tree obtained from two binomial trees of height $h - 1$ by linking the root of one to the root of the other.
 - Order matters
 - Diagrams
 - How many binomial trees of height h are there?
 - Number of nodes on each level
 - Fill in table
 - How to implement this?

2. Binomial Heaps
 - Can we use a single binomial tree as a heap? What if n is not a power of 2?
 - A binomial heap is a collection of binomial trees that each obey the min-heap property. For any non-negative integer k, there is at most one binomial tree with a height of k (B_k).
 - Is each one a heap?
 - What is the maximum number of trees?
 - What is the height of the maximum tree?
 - Examples
 - Which trees are present? (n base 2)
 - Minimum Operation
 - Merge Operation (destroys old ones)
 - Insert Operation
 - What does this give us over a regular heap?
 - What part of this is worse than a regular heap?

3. Fibonacci Heaps
 - Collection of heap-ordered trees. Ideally, we’d like binomial trees, but that will decrease our efficiency.
 - Discuss times given in table.
 - Show implementation
 - Simple ops: makeHeap, minimum, merge
 - Insert operation
 - DeleteMin operation

Next Class:
- Randomized Algorithms - finally getting into it
- Hand Back Midterms
- Evaluations!