20 - Spanning Trees

Trees
Undirected Graphs
Rooted Tree vs.
Free Tree

MST - Spanning Tree with least weight
To find a minimum spanning tree:
Start with an empty set of edges - S
While size of $S < |V| - 1$ {
 add an edge from the MST
}

Cut of a graph is a partition of the vertices

$S =$ set of purple edges
Kruskal's Algorithm

\[E = O(v^2) \]
\[O(E \log E) \]
\[= O(E \log V^2) = O(2E \log V) \]
\[O(E \log V) \]

1. Sort edges \(O(E \log E) \)
2. While size \(S < |V| - 1 \)
 1. Add edge to set
 2. Merge 2 sets
 3. Check to see if cycle is created
\[O((V+E) \log^* V) \]

\(S = \emptyset \ \ O(1) \)
Prim's Algorithm

$S = \emptyset \quad O(1)$

Start with a vertex $O(1)$

While size $S < |V| - 1$ and add lightest edge that doesn't create a cycle that's connect.

to your current tree

Priority Queue
- Add all edges to PQ \(O(E) \)
 - Those not connecting to start have \(\infty \) weight

Inside
- Extract-Min \(O(\lg E) \) \(\quad \text{V-1} \)
- For every edge leaving new node \(E \)
 - Decrease-Key \(O(\lg E) \)
 - For every edge leaving new node that makes cycle \(\text{Delete} \quad O(\lg E) \)

\[\text{WC: } O(E \lg E + V \lg E) = O(E \lg V) \]
\[\text{AM: } O(E + V \lg E) \text{ w/ Fb Heap} \]