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Abstract

The semiconductor industry’s roadmap identifies a “red brick wall” beyond which it is 

unknown how to extend the historical trend of ever-decreasing CMOS device size. While 

architectural innovations can provide short-term relief, there is a need to explore long-term 

alternatives to CMOS devices and fabrication techniques. A revolutionary technology 

change, such as replacing CMOS, is a potentially disruptive event in the design of comput-

ing systems. Emerging technologies for further miniaturization have capabilities and limi-

tations that can significantly influence computer architecture and require re-examining or 

rebuilding abstractions originally tailored for CMOS.

DNA-based self-assembly of nanoscale components is a promising alternative to 

CMOS that holds the potential to usher in an era of tera- to peta-scale integration. Although 

much of this technology is in its infancy, by studying its potential uses for building com-

puting systems, architects can better understand its opportunities and limitations while pro-

viding feedback to scientists developing the technologies. This thesis explores the 

architectural challenges introduced by bottom-up fabrication of nanoelectronic circuits. 

The goal is to design high-performance defect-tolerant architectures within technological 

constraints. While our designs assume one specific technology, they are compatible with 

other technologies with similar characteristics.

We make four primary contributions in this thesis. First, we propose a circuit architec-

ture that enables the construction of circuits that balance three conflicting goals: 1) regular-

ity for the DNA lattice, 2) complexity for the circuit, and 3) defect tolerance. This enables 

the creation of a large number of circuit elements (nodes) with basic compute and commu-

nication capabilities, connected in a random network. Second, we adapt an existing algo-

rithm to isolate defective nodes and provide logical structure to the random network. Third, 

we design a general purpose architecture (Nanoscale Active Network Architecture or 

NANA) that exploits this logical structure to create execution and memory networks that 

can execute programs. Fourth, we design a data parallel architecture (Self-Organizing 
iv



SIMD Architecture or SOSA) that exploits hardware parallelism in the network to create a 

high-performance defect tolerant architecture. SOSA achieves the primary goal of this 

thesis by attaining performance equivalent to modern processors, while operating at a lower 

speed and consuming lesser power.
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1   Introduction

The development and continued scaling of CMOS technology has enabled the tremen-

dous growth of the computer and electronics industry over the past three decades. The 

semiconductor industry continues to meet and even exceed the pace dictated by Moore’s 

law [95], which states that the number of transistors that can be packed on a chip doubles 

every 18 months. The decrease in device size has enabled a reduction in the size and power 

consumption of microprocessors, while providing designers with the flexibility to imple-

ment greater functionality to match the needs of a wide range of target applications. The 

increase in computational capabilities of microprocessors has also been matched by a cor-

responding increase in the computational demands of application software that runs on 

them. This has been complemented by the development of software applications that 

depend on the new features implemented in microprocessors, resulting in a positive feed-

back loop between hardware functionality and software requirements. The demand for 

increasing computational power in microprocessors is unlikely to diminish in the near 

future as we rely on computers to develop new drugs [30,118], understand and process 

genomes [146], predict the weather [32], study natural phenomena like earthquakes [79], 

create highly realistic virtual environments [25,96,132] and to design and test computers 

[154].

However, CMOS scaling is soon expected to reach physical limits that will make it dif-

ficult, if not impossible, to build smaller transistors with the required electronic properties 

[66,67,68]. Researchers have developed several new devices that could replace CMOS 

based transistors, including carbon nanotube transistors [10,138], silicon nanorod based 

transistors [26,63,93], single electron transistors [8] and even transistors made using 

organic molecules [22,24,141]. Preliminary studies have shown that these devices could be 

used in building circuits that can operate at higher speeds and consume lesser power, while 
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being packed at higher densities than CMOS based devices. This would allow us to main-

tain Moore’s law beyond CMOS.

Also, as CMOS technology is scaled into the nanometer range, some assumptions about 

circuit properties that were true for larger device sizes are invalidated. For example, until 

recently, it was safe to assume that dynamic (switching) power was the only significant 

source of power consumption and it was safe to neglect static or leakage power. It has also 

been safe to assume that the circuits will largely function reliably, without frequent faults 

or defects. The scaling of CMOS and the use of emerging technologies to build circuits 

could invalidate some of these assumptions. For example, leakage power is now a signifi-

cant fraction of the power being dissipated in modern CMOS circuits and can no longer be 

neglected. As circuits get smaller, reliable operation is no longer guaranteed due to manu-

facturing defects or faults during operation. The invalidation of these fundamental assump-

tions necessitates a re-examination of the process of circuit and architecture design when 

using emerging technologies.

The challenge to scaling CMOS extends to the top-down manufacturing process of pho-

tolithography used to build CMOS integrated circuits (ICs). Photolithography uses a com-

bination of light sensitive chemicals and special ‘masks’ that define circuit patterns, to etch 

the circuits on a silicon wafer. This process is extremely sensitive to impurities, and needs 

a clean environment to manufacture reliable devices. As the size of devices reduces, the 

sensitivity to impurities increases and the tolerance to variations in manufacturing steps 

reduces. This has led to rising manufacturing costs [3] and increasing difficulty in achiev-

ing a high level of device reliability [15].

The increasing cost of optical lithography has led to an increased interest in bottom-up 

manufacturing techniques like self-assembly, that require less control during manufactur-

ing. DNA-based self-assembly [126], one specific type of self-assembly, uses the well-

known assembly properties of DNA to build a scaffold-like framework in which electronic 

devices can be assembled. The ability to control the placement of electronic devices at spe-

cific points on the DNA scaffold is a critical requirement for the development of DNA-

based self-assembly as a viable manufacturing technique. Researchers have recently made 
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significant progress in achieving this goal by demonstrating the placement of aperiodic pat-

terns on a DNA lattice [37,116,123,104] and the DNA-based self-assembly of nanowire 

transistors [129]. DNA-based self-assembly has the potential to significantly reduce man-

ufacturing costs and opens up possibilities of constructing large scale systems with more 

than 1012 active elements. This scale is three orders of magnitude greater than the near term 

projections for CMOS and is made possible by the parallel nature of self-assembly.

In this thesis, we explore the effect of one emerging manufacturing and device technol-

ogy on computer architecture. We assume the use of DNA-based self-assembly of carbon 

nanotube based devices as the underlying manufacturing technology. Despite this assump-

tion, the design and analysis of the architectures presented in this thesis is applicable to 

other technologies with similar characteristics. The rest of this chapter is organized as fol-

lows. We start with the main statement and primary contributions of this thesis 

(Section 1.1). Next, we briefly describe the challenges faced due to the use of DNA-based 

self-assembly of carbon nanotube based devices (Section 1.2), and present a short descrip-

tion of a defect tolerance mechanism (Section 1.3). We then present brief descriptions of 

two architecture designs (Section 1.4). Next, we describe our analysis of the trade-off 

between node complexity and control over self-assembly to improve system connectivity 

(Section 1.5). We conclude this chapter with an outline of the structure of the thesis 

(Section 1.6).

1.1 Thesis Statement and Contributions

The main goal of this thesis is to establish the validity of the following hypothesis: “It is 

possible to design a high-performance defect-tolerant architecture that can match or even 

outperform existing architectures while operating at a lower speed, consuming less power 

and using at most the same area, despite the assumed limitations of DNA-based self-assem-

bly of nanoelectronic components.”

This thesis makes four primary contributions:
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1. We develop a circuit architecture for DNA-based self-assembly of nanoelectronic 

devices that requires system designers to balance the use of simple, regular building 

blocks to build complex circuits, while tolerating defects,

2. we adapt an existing mechanism to provide logical structure and tolerate defects in a 

random network of computing blocks,

3. we design and evaluate NANA, a proof-of-concept general purpose architecture built 

on top of a random network of heterogeneous self-assembled nodes, and 

4. we use the insight gained from NANA to design and evaluate SOSA, a SIMD architec-

ture built on a random network of identical self-assembled nodes. The power and area 

estimates for SOSA obtained through circuit design, combined with its performance 

evaluation through simulation help establish the validity of the primary hypothesis.

1.2 Impact of DNA-based Self-Assembly of 
Nanoelectronic Components on Architecture Design

DNA-based self-assembly of nanoelectronic devices is a promising technology that may be 

used in constructing circuits by placing aperiodic patterns on a DNA scaffold structure, and 

assembling electronic devices at certain locations on the scaffold [109]. However, the 

assumed capabilities of self-assembly impose certain constraints on the size and complex-

ity of the circuits that can be self-assembled. This limitation in size is unlikely to change 

without significant yield improvements in building DNA scaffolds. Another limitation of 

self-assembly is the limited or lack of control over the placement and orientation of these 

self-assembled circuit blocks (“nodes”). However, one of the primary advantages of self-

assembly is the ability to manufacture a large number of these computational blocks in par-

allel. However, a lack of control over this parallel self-assembly can result in a random net-

work of computational blocks once they have been connected through a second self-

assembly step. 

To design a computer system using these random networks of self-assembled nodes, 

computer architects must: 
4



(i) understand the characteristics of the random networks, 

(ii) devise a technique to impose logical structure on the random network, 

(iii) implement a mechanism to achieve defect tolerance, 

(iv) design an architecture that can exploit the large number of nodes, including develop-

ing an instruction set and execution model and,

(v) determine the functionality that must be implemented in the limited sized nodes. 

At minimum, these nodes must have the ability to communicate with each other, per-

form some computation, and store some state. Step (v) is critical since the capabilities of 

the nodes determine the capability of any computer system built using them, and an effi-

cient node design can help maximize this capability. This thesis explores each of these steps 

and presents the design and evaluation of two different architectures built on a random net-

work of self-assembled nodes.

1.3 Defect Tolerance

As discussed in the previous section, defect tolerance is one of the primary requirements of 

any architecture built using emerging nanotechnologies. We design a mechanism for 

achieving defect tolerance by modifying an existing broadcast algorithm to isolate defec-

tive nodes and to impose a logical structure on the random network of nodes [110]. This 

allows us to connect all functional nodes that can be reached from the node where the 

broadcast is initiated. The defect tolerance mechanism requires very simple hardware in 

each node and is able to tolerate a large node defect rate (up to 30% defective nodes). Both 

the architectures developed in this thesis use this defect tolerance mechanism to isolate 

defective nodes as well as to impart logical structure on the random network of nodes. In 

the next section, we present a brief overview of both architectures.
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1.4 Architectures for Self-Assembled Nanoscale Devices

The first architecture (Nanoscale Active Network Architecture [111] or “NANA”) targets 

general purpose workloads and supports the traditional Von-Neumann programming 

model and a memory system. This proof-of-concept architecture divides a heterogeneous 

random network of nodes into smaller groups of nodes called “cells” and constructs logi-

cally disjoint execution and memory networks within the cells. The isolation of the two net-

works reduces the physical resources required in each node in the system. Once the two 

logical networks are constructed, execution packets consisting of instructions and data 

operands in a specific order are routed in the execution network searching for appropriate 

resources to perform the operations specified in the instructions. A thorough evaluation of 

NANA using simulation and modeling reveals that it is unable to achieve good perfor-

mance because of two primary reasons: 1) low node utilization and 2) bottlenecks in the 

memory system. The evaluation of NANA provides insight into performance problems that 

arise due to the execution model and highlights the limitations of the node interconnection 

network. Thus, while NANA fails to prove the thesis statement, it provides valuable insight 

into possible strategies that will or will not work in building a high performance architec-

ture. It also demonstrates that it is possible to build a functional architecture that can toler-

ate high node defect rates.

The second architecture (Self-Organizing SIMD Architecture [112] or “SOSA”) aims 

to achieve high node utilization by targeting data parallel workloads and supports the data 

parallel programming model. The architecture divides a homogenous random network of 

nodes into “cells”, but each cell is further divided into computational blocks called “pro-

cessing elements” or PEs. All PEs execute the same instructions, but operate on different 

data and are connected in a logical ring. This simplifies the programmer’s view of the set 

of PEs and allows simple communication between PEs. Since all PEs execute the same 

instruction, a large fraction of nodes are active at the same time, allowing SOSA to better 

exploit the large number of nodes available. We perform a thorough evaluation of SOSA 

using a detailed simulator and circuit models of the node. We use a variety of circuit design 

tools - off the shelf (VHDL, HSPICE), as well as custom layout tools developed specifi-
6



cally for the underlying technology [41] to build a circuit model of the node, and to estimate 

its size and power consumption. We demonstrate that SOSA can tolerate node defects with 

the RPF algorithm by implementing fail-stop behavior for critical logic blocks within each 

node [107]. By simulating the execution of various programs on SOSA, we demonstrate 

that SOSA supports the primary statement of this thesis by exceeding the performance of 

existing architectures while operating at a lower speed and consuming lesser power.

1.5 Improving Network Connectivity

The process of self-assembly can be modified to provide control over node placement, 

orientation and creation of inter-node links. This adds additional complexity to the manu-

facturing process, but can result in simpler and more structured networks. Alternatively, the 

communication logic within each node can be augmented to support more complex proto-

cols over inter-node links, thus improving system connectivity. We explore the trade-off 

between control over self-assembly and the added complexity required within each node to 

achieve good system connectivity [108]. We find that control over node placement and ori-

entation results in better connected networks. However, by allowing each node to treat an 

inter-node link as a shared medium (i.e., a bus), we can achieve nearly the same degree of 

connectivity in an unstructured network.

1.6 Thesis Outline

This thesis is organized as follows. Chapter 2 provides background on DNA-based self-

assembly, as well as carbon nanotube and other emerging device technologies. Chapter 3

studies the impact of DNA-based self-assembly of nanoelectronic components on architec-

tural design, and describes the self-assembled circuit architecture that is used in the rest of 

this thesis. Chapter 4 describes a mechanism for tolerating defects in a random network of 

self-assembled computing blocks. In Chapter 5, we present the design and evaluation of 

NANA, a general purpose architecture built using random networks of heterogeneous self-

assembled nodes. We present the design and evaluation of SOSA, a SIMD architecture 
7



built using random networks of homogenous self-assembled nodes in Chapter 6. We 

describe a modular design for fail-stop SOSA nodes and explore how such nodes enable 

the system to tolerate increased device failure probabilities in Chapter 7. In Chapter 8, we 

explore the trade-off between control over self-assembly and node complexity to maximize 

network connectivity. Chapter 9 discusses other research related to this thesis and 

Chapter 10 concludes this thesis.
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2  DNA-Based Self-Assembly of 
Nanoelectronic Devices

Photolithography has been the primary manufacturing technique used to build micro-

processors and other integrated circuits for the last three decades. The semiconductor 

industry has been able to improve performance of circuits by reducing the size of devices 

manufactured. However, as CMOS devices shrink into nanometer scales, further scaling is 

difficult and is approaching hard physical limits. This has led to a search for alternative 

nano-scale technologies that might replace CMOS based devices. In this chapter, we pro-

vide background information about DNA-based self-assembly and some promising nano-

electronic devices that have the potential to replace CMOS as the dominant technology for 

manufacturing microprocessors in the future. There are several promising candidates, 

including carbon nanotube based devices, single electron transistors, silicon nanowire tran-

sistors and organic molecules. Each of these devices have their advantages and disadvan-

tages and are the subject of much research to improve their properties and make them 

suitable for use with manufacturing technologies of the future. 

Improvements in the top-down manufacturing process of photolithography have 

allowed CMOS devices to be scaled into the nanometer range. However, as device sizes 

shrink, the costs associated with photolithography have been increasing rapidly. DNA-

based self-assembly is a bottom-up manufacturing technique that has the potential to 

replace photolithography. Self-assembly techniques have the advantage of requiring low 

control over the manufacturing process and potentially enable the parallel assembly of a 

large number of devices at once resulting in lower manufacturing costs. For any combina-

tion of device and manufacturing technologies that are picked to replace CMOS, it is criti-

cal that they be compatible with each other. This makes the combination of DNA-based 

self-assembly and carbon nanotube based devices promising, since researchers have 

already demonstrated the ability to link DNA and carbon nanotubes [36].
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We break our discussion of the underlying technologies into four parts, starting by dis-

cussing the reasons why alternatives to CMOS technology are required in the coming 

decades (Section 2.1). Next, we describe DNA-based Self-Assembly (Section 2.2), and 

various nano-electronic devices that could be viable candidates to be used with DNA-based 

self-assembly (Section 2.3). Finally, we describe the use of DNA-based self-assembly and 

carbon nanotubes (Section 2.4) to build circuits.

2.1 End of Silicon Based CMOS

Silicon based CMOS devices have provided a stable platform for manufacturing com-

plex microprocessors for over two decades. This has been achieved through advances in 

lithography, solid-state physics, and chemistry that have enabled a steady scaling down of 

device sizes. The semiconductor industry continues to meet and even exceed the pace dic-

tated by Moore’s law [95], which states that the number of transistors that can be packed 

on a chip doubles every 18 months. However, CMOS is nearing a point where further scal-

ing is difficult if not impossible because of physical limits to building smaller transistors 

[66,67,68]. CMOS scaling faces additional hurdles due to the top-down manufacturing pro-

cess of photolithography used to build CMOS integrated circuits (ICs). Photolithography 

uses a series of special ‘masks’ that define the patterns of circuits at various levels on the 

silicon wafer. ICs are manufactured using a combination of light sensitive chemicals, spe-

cific frequencies of light, metal interconnect and the masks. This process requires a very 

clean environment (typically less than 100 impurity particles per cubic meter of air). As the 

size of devices reduces, the sensitivity to impurities increases and the tolerance to varia-

tions in manufacturing steps reduces. As we progress further down on the nanometer scale, 

it is very hard to maintain the precision required during lithography. At nanometer scales, 

there is also increased vulnerability to electron tunneling, stray inductances and capaci-

tances, transient faults caused by radiation, and defects. Setting up a manufacturing utility 

for 300mm wafers using 90nm technology costs more than one billion dollars [3]. This 

price will increase rapidly as the precision required during manufacturing increases. In 

addition, each chip requires many masks during the manufacturing process. As we shrink 
10



device sizes, the masks need to be manufactured with greater precision. These mask sets 

already cost over one million dollars each to manufacture [3] and as device size shrink, 

these costs will increase.

The combination of exponentially increasing costs, reduced reliability, decreasing tol-

erance to manufacturing variations, and the rapidly approaching physical limits of scaling 

have led researchers to identify technologies that could replace photolithography and 

CMOS in the future. In the next section, we describe one bottom-up manufacturing tech-

nology (DNA-based self-assembly) that has the potential to replace photolithography and 

reduce costs.

2.2 DNA-based Self-Assembly

DNA-based self-assembly is a bottom-up manu-

facturing process that uses the well-known assem-

bly properties of DNA to build a lattice-like 

scaffold. Deoxyribonucleic acid or DNA is the pri-

mary carrier of genetic information in biological 

organisms. DNA consists of a chemically linked 

chain of molecules known as nucleotides, each of 

which consists of a sugar, a phosphate and one of 

four ‘bases’: adenine (A), thymine (T), cytosine 

(C) and guanine (G). A single nucleotide chain is 

also known as single-stranded DNA or ssDNA and 

can be defined by the sequences of bases present 

along the chain. The most stable form of DNA is a 

pair of nucleotide chains that link to form the well 

known double helix structure shown in Figure 2-1. The nucleotide chains pair through 

hydrogen bonding of the bases, where adenine pairs with thymine and cytosine pairs with 

guanine. While other base pairings are possible, they are not as stable as the A-T and C-G 

pairings.

Figure 2-1. DNA double helix
11



The precise binding rules of DNA make this a promising technique to use with nanos-

cale devices. By specifying a particular sequence of base pairs on a single strand of DNA, 

we can exploit the base-pair rules as organizational instructions [120,126]. A region of 

ssDNA and its complement can act as ‘tags’ (T and T’) for orienting objects in 3-space. The 

sequence of bases on the ssDNA must be carefully designed to minimize the probability of 

‘partial matches’ where some non-complementary bases are forced to match due to the 

structure of other proximal base pairs [39]. Such carefully designed DNA tags can be used 

to create 2D patterned nanostructures [149] by combining the right fractions of synthetic 

ssDNA tags and annealing them by heating beyond their melting point and cooling slowly. 

Although the resulting structure can be used to perform computation [6, 119], we are inter-

ested in DNA’s ability to self-assemble into large-scale nanostructures. Of particular inter-

est to this thesis, is a structure that creates a ‘waffle’-like lattice with repeating cavities 

[81,151,152] (see Figure 2-2). This type of lattice has been experimentally demonstrated 

and can achieve sizes that extend beyond 3 microns on each side (i.e., > 150 cavities on a 

side). This scaffold can be used to place and interconnect devices by forming tags at spe-

cific lattice points [150] and using a technique for attaching the appropriate complementary 

ssDNA tags [36]. The DNA self-assembly technique is independent of the specific nano-

electronic device used, however the limited size of each lattice (node) presents challenges 

for creating large sophisticated circuitry. Before we describe methods for building circuits, 

Figure 2-2. DNA lattice with repeating cavities [105]

100 nm
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we discuss some promising emerging devices. We focus our discussion on one specific 

device technology that is used in the rest of this thesis.

2.3 Emerging Nanoelectronic Devices

As the scaling of CMOS devices faces technological hurdles, researchers have been 

searching for new nano-scale devices that could potentially replace CMOS in the long term. 

There are a number of choices for building nanoelectronic devices and wires 

[10,26,63,93,138,141]. These include nanocells [141], silicon nano-rods [93], carbon nan-

otubes [10,138], and silicon nanowires [26,63], most of which have the potential for build-

ing transistors that are smaller than conventional CMOS transistors. Carbon nanotubes 

(CNTs) [64,87] are cylindrical molecules of carbon that resemble rolled sheets of graphite, 

and can be single-walled (SWNT) or multi-walled (MWNT). Single-walled nanotubes can 

be metallic or semiconducting depending on a property known as their ‘chirality’, which 

describes the atomic structure of the CNT.

One promising device is a field effect transistor constructed using carbon nanotubes 

(CNFET) [70,75,138] in which application of a gate voltage [49, 138, 148] modulates the 

conductivity of a semiconducting nanotube. Recent advances enable separating metallic 

nanotubes from semiconducting nanotubes, precisely controlling the length of individual 

nanotubes [89,135,155] and self-assembly of carbon nanotube based electronic devices 

[57]. Therefore, we could use both types of carbon nanotubes to construct logic gates, 

memory (e.g., with cross-coupled NOR gates), and circuit interconnect. The fact that 

CNFETs are amenable to self-assembly makes this an attractive alternative, or supplement, 

to silicon device technology. CNFETs are naturally p-type, but research has demonstrated 

the ability to electrostatically dope them to be n-type [10].

It is useful to compare the estimated latency of CMOS devices and CNFET based 

devices. We compare the delay of NAND gates in CMOS against CNFET NAND gates. 

The data for the CNFET NAND gates are based on empirical SPICE simulations [40,17, 

94]. The CMOS data is obtained from the ITRS roadmap [14] and from standard industry 

processes [4,1,2]. The ITRS data represents target delays for specific CMOS technology 
13



sizes and is not measured data from devices. In fact, there are no know solutions for man-

ufacturing CMOS devices smaller than 65nm in bulk (Intel is currently developing a 45 nm 

technology, details of which are not publicly available). Figure 2-3 compares the estimated 

latency of CMOS NAND gates against the latency of CNFET based NAND gates. The 

solid line represents CMOS delay estimates that have demonstrated solutions. The dashed 

line represents ‘desired’ CMOS delay estimates that are part of the ‘red brick wall’ (no 

known solution exists). The dotted line at the bottom represents the CNFET delay. We can 

see that even with current CNFET based devices, the delay is lower than most CMOS tech-

nology nodes. This demonstrates the potential of CNFET devices to provide an alternative 

to CMOS based transistors in the future.

For CNFETs to replace CMOS based transistors, they must be able to achieve compa-

rable or higher switching speeds. One important property that determines maximum 

switching speed in a particular technology is the charge carrier mobility. Silicon and ger-

manium based semiconductors have mobilities that are less than 2000 cm2/V-s [88]. Recent 

work in measuring the mobility of charge carriers in carbon nanotubes [33] indicates that 

the mobility is likely to be over 100,000 cm2/V-s. Thus, the delay estimate obtained from 

the SPICE model is probably pessimistic. It is likely that CNFET based devices will operate 

at frequencies as high as 1 THz [18], and have already been tested at frequencies of over 
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10 GHz [121]. Next, we describe how DNA-based self-assembly could be used to manu-

facture CNFET based devices and build circuits.

2.4 DNA-based Self-Assembly of Carbon Nanotube 
Electronics

Researchers have demonstrated the ability to connect DNA to carbon nanotubes [36], 

enabling an assembly process that allows the placement of carbon nanotube based elec-

tronic circuits on a DNA lattice. Other potential materials (e.g., nanorods, silicon nanow-

ires) could be substituted for the carbon nanotubes without loss of generality. A key 

requirement of this self-assembly process is the ability to control the placement of the elec-

tronic devices at specific points on the DNA scaffold to form a circuit. Researchers have 

recently taken two significant steps towards this by demonstrating the placement of aperi-

odic patterns on a DNA lattice [104,116,123] and the DNA-based self-assembly of nanow-

ire transistors [129]. Figure 2-4 shows an atomic force microscope image of a DNA lattice 

with the letter “A” patterned on it. This is a critical step towards building DNA scaffolded 

electronic circuits (nodes). Current limitations of the self-assembly process place restric-

tions on the size of the DNA lattice that can be constructed, which in turn limits circuit size. 

While the size of individual nodes is small, the parallel nature of self-assembly enables the 

construction of a large number (~109-1012) of nodes. These characteristics impose signifi-

cant implications on any circuit architecture that is built using this assembly process. In the 

Figure 2-4. A DNA scaffold for nano-electronic 
circuits with patterned letter A (from [104])
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next chapter, we discuss the implications of DNA-based self-assembly of carbon nanotube 

electronic devices on circuit architecture and develop a nanoelectronic circuit architecture.
16



3  Implications for Architecture 
Design

The previous chapter provided background on DNA-based self-assembly, emerging 

nanoelectronic devices and how the two techniques could potentially be combined to build 

circuits. Before we build circuits, it is critical that we gain a thorough understanding of the 

capabilities and limitations of self-assembly due to its fundamentally different nature (as 

compared to photolithography). We expect that limitations of self-assembly in the near 

future will restrict our ability to place and route logic devices and interconnect on a DNA 

lattice, resulting in space overhead that is not typically found in CMOS based devices. For 

example, while modern CMOS processes rely on more than ten layers of metal intercon-

nect, DNA-based self-assembly is likely to be restricted to two layers in the near future. 

Any circuit design methodology must account for the routing overheads imposed by the 

limited metal layers. In this chapter, we present the implications of DNA-based self-assem-

bly of carbon nanotube devices on circuit and systems architecture and develop a nanoelec-

tronic circuit architecture that could be used to build computational circuit blocks. The 

circuit architecture uses aperiodic patterns on a DNA lattice to place nanoelectronic 

devices. This enables the construction of small circuits (nodes) that can perform computa-

tion or communicate with other nodes. We can then interconnect these nodes using wires. 

We propose the use of metallized DNA links, grown between nodes to create an intercon-

nection network. 

We analyze the implications of this circuit architecture on the design of system archic-

tures. While our analysis assumes the use of DNA-based self-assembly of carbon nanotube 

based devices, it is applicable to other technologies with high defect rates and a loss of pre-

cise control over parts of the fabrication process (e.g., process variability and defects in 

scaled-CMOS). By using small, replicated building blocks to create larger systems, scaled-
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CMOS based designs can mitigate the effect of increasing defect rates and process variabil-

ity. We make the following contributions in this chapter:

1. We propose a method for building circuits by placing carbon-nanotube based elec-

tronic devices in the cavities of DNA-lattices based on an analysis of the implications 

of DNA-based self-assembly on circuit architectures, and

2. We determine that the assumed characteristics of DNA-based self-assembly limit us 

building small computational nodes with ~10,000 transistors, which is significantly 

smaller than conventional CMOS designs. The design of each node must balance com-

munication, computation and defect tolerance capabilities within technological limits.

The rest of this chapter is organized as follows. We start with the implications of using 

DNA-based self-assembly of carbon nanotube electronics on circuit architecture design 

(Section 3.1). We then describe the basic circuit building blocks assumed in the rest of the 

thesis (Section 3.2). Next, we describe the architectural implications of using these self-

assembled circuit building blocks (Section 3.3) and follow that with a list of challenges that 

must be overcome in the design of an architecture using this technology (Section 3.4). We 

conclude the chapter with a summary of the key concepts presented (Section 3.5).

3.1 Implications for Nanoelectronic Circuit Architecture

To use DNA-based self-assembly of carbon nanotube electronics as the manufacturing 

and device technology, a nanoelectronic circuit architecture must strike a balance between 

1) the regularity of DNA self-assembly patterning capabilities, 2) the complexity required 

for sophisticated system designs and 3) tolerance to the inevitable defects present in nanos-

cale systems. The remainder of this section elaborates on each of these issues, focusing on 

the fundamental differences between this nanoarchitecture and current CMOS based archi-

tectures.
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3.1.1 Regularity

While the design of CMOS based circuits can be simplified by the use of regularity (e.g., 

standard cell VLSI), regularity is not a fundamental requirement. However, only periodic 

arrays of identical unit cells have been demonstrated on a large scale using DNA self-

assembly technology. DNA self-assembly has a potential limitation in that the probability 

of incorrect tag matches increases as the number of unique tags increases. For each type of 

connection, we need a unique pair of complementary ssDNA tags. With more types of con-

nections and a fixed number of base-pairs per tag, the tags become more similar (i.e., differ 

in fewer base-pairs) and partial matches become more likely. For example, if a functional-

ized nanotube binds to a partially matched tag, then it is in the wrong position. This situa-

tion is analogous to the Hamming distance [54] between encodings of symbols; if we need 

to encode more symbols with the same number of bits, then the Hamming distance is 

smaller and the probability of an error is greater. Minimizing the number of tags reduces 

the chances of partial matches, which could cause positional defects, during annealing. 

Therefore, repetitive structures are desirable, and circuit and system designers should strive 

to use them as much as possible.

3.1.2 Complexity

Design complexity is a function of the number of different component types and the place-

ment of these components. Current CMOS based circuits can arbitrarily place hundreds of 

millions of devices (both nFET and pFET) and wires with precision on the order of 0.10µm. 

This precision is achieved by using photolithography to specify exactly where each indi-

vidual component belongs. With the combination of carbon nanotube devices and DNA 

self-assemblies, we are trying to develop circuits that can perform useful computation. The 

components required to build circuits can be limited to CNFETs (as active devices), nano-

tube wires and metal plating for connecting wires. However, with DNA self-assemblies, we 

cannot specify component placement at the micro-scale with nearly the same degree of 

accuracy as CMOS. Complexity must be introduced without requiring a large number of 
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tags. This mirrors the desire to use regular structures that minimize the number of tags. 

However, regular structures typically limit complexity.

Thus, the utility of self-assembled DNA arrays depends on the amount of complexity 

that we can introduce at various abstraction levels without causing an intractable number 

of partial matches. Consider a graph generated from the netlist of a transistor-level design 

of a combinational circuit (Figure 3-1). The vertices are transistor terminals and the edges 

are wires connecting the device terminals. A two-input CMOS NAND gate has eight ver-

tices, and most combinational circuits require multiple NAND gates. Clearly, the naive 

approach of assuming a unique tag for each vertex in the graph requires a large number of 

unique tags (even ignoring fan-out issues). This will cause too many partial matches that 

create bridging faults (shorts), rendering the circuit mostly useless.

3.1.3 Defect Tolerance

A defect is a permanent physical fault introduced during fabrication. We consider two 

types of defects: functional and positional. A functional defect corresponds to a component 

that does not perform its specified function (e.g., a transistor that does not conduct when it 

should). A positional defect corresponds to a (functionally correct) component that is 
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placed incorrectly. Both CMOS and DNA self-assembled nanoelectronics can incur func-

tional defects, but only self-assembly is likely to incur positional defects. Positional defects 

can be both defects of omission and commission. An omissive positional defect occurs 

when a component is not placed where it belongs. A commissive positional defect occurs 

when a component is placed where it does not belong (i.e., the partial match described 

above). Omissive defects behave similar to functional defects. Commissive defects are 

more dangerous, since they can behave like bridging faults. For example, a misplaced 

nanowire could cause a short between power and ground or it could change circuit func-

tionality in unpredictable ways (e.g., by erroneously connecting the output of a gate to its 

input).

In CMOS based circuits, there is limited support for defect tolerance. Photolithographic 

placement of components is a mature technology that incurs few defects. However, in 

architectures with hundreds of millions of devices and wires, defects will still occur with 

some probability (i.e., yield is less than 100%). CMOS microchips are thus tested for 

defects. If a defect is uncovered and it cannot be tolerated, the chip is discarded. However, 

some limited number of defects can be tolerated. For example, a defect in a cache or 

memory cell can be tolerated by systems that provide redundant cells and allow for re-map-

ping. Tests on the self-assembled circuits must be simple to allow the testing of a very large 

number of components. Ideally, each circuit must include basic self-test circuitry that can 

be triggered by external inputs.

Functional defect rates for carbon nanotube devices and positional defect rates for DNA 

assembled nanoelectronics are currently unknown due to the relative immaturity of the 

technologies. Functional defect tolerance could be achieved with the same techniques used 

in CMOS, since the problem is not fundamentally different. Tolerance of commissive posi-

tional defects, however, is a new challenge. Because of the unknown positional defect rates, 

the assembly approach used in this thesis is to first strive to minimize positional defects by 

exploiting regularity in DNA self-assemblies. However, as complexity increases and regu-

larity decreases, the probability of positional defects increases, thus more sophisticated cir-

cuitry will require more defect tolerance. 
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Any circuit architecture that uses DNA-based self-assembly of nanoelectronic devices 

as the manufacturing process must strike a balance between the three conflicting goals of 

regularity, complexity and defect tolerance, as described in this section. Next, we develop 

one such nanoelectronic circuit architecture that could be used to build the computing 

blocks assumed in the rest of the thesis.

3.2 Nanoelectronic Circuit Building Blocks

This section describes a nanoelectronic circuit architecture (shown in Figure 3-2) with 

structures based on a grid of CNFETs interconnected with conducting carbon nanotubes. 

At a high level, our proposed design addresses the conflicting goals of regularity and com-

plexity by placing identical unit cells in the cavities of an aperiodic patterned DNA lattice. 

The lattice is regular in structure, but it has aperiodic binding points which can be used to 

connect the unit cells in complex patterns. This highlights a key difference between the pro-

posed assembly process and existing approaches. Current nanoelectronic architectural 

approaches assume regularity in both the structure and the interconnect. We first present 

our initial proposed unit cell and then the proposed lattice. We then discuss how multiple 

building blocks could be self-assembled into a larger system. Finally, we describe how this 

system could interface with external circuitry.

Figure 3-2. DNA Scaffold for Nanoelectronics
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3.2.1 Exploiting Regularity: A Replicated Unit Cell

The proposed unit cell in our design is a three terminal CNFET sitting in the cavity of 

a DNA lattice. To place the CNFET in the cavity, we need to functionalize one semicon-

ducting and one conducting nanotube such that they bind to the complementary ssDNA 

tags on the cavity edges and form a cross. We assume one of the nanotubes is wrapped in 

a thin insulating layer, such as SiO2 [48]. The conducting nanotube functions as the gate of 

the CNFET.

Using carbon nanotubes of a short length (~16nm) precludes commissive positional 

defects in which a carbon nanotube binds in two different cavities. By using two sets of tags 

in alternating cavities in each dimension (see Figure 3-2) and by using carbon nanotubes of 

a precise length, a nanotube cannot span across the DNA lattice to another cavity with the 

same tags. The distance between adjacent cavities is only 4nm, so if the same tag is used in 

adjacent cavities, then a nanotube may bind across the lattice arm rather than within a cav-

ity. Using a checkerboard pattern of alternating tags with sufficient Hamming distance 

eliminates positional commissive defects. This approach requires carbon nanotubes of a 

precise length, which may be possible using a sonochemical method [87] to cut the origi-

nally long nanotubes into short segments and then using size-exclusion chromatography to 

separate the nanotubes by their length. This technique must be applied to both the semicon-

ducting and conducting nanotubes.

We can augment this unit cell with short conducting carbon nanotubes that lie adjacent 

to the cavity on both the top and bottom of the DNA lattice. The short nanotubes are far 

enough apart to avoid cross-talk and may also be wrapped with an insulating polymer if 

necessary. The nanotubes initially would not intersect to form complete circuits. Instead, 

an electrical connection between nanotubes must be explicitly created by specifying an 

appropriate tag on the DNA lattice to which a gold nanosphere could bind. The nanosphere 

nucleates metal ions to form the connection with the help of an electroless plating process 

[16, 74]. Similarly, connecting transistors may require specifying whether the device con-

nects to the top or bottom conducting nanotube. Forming these connections is where we add 
23



complexity to our design, and we explain how to introduce this non-regular patterning in 

Section 3.2.2. 

The unit cell design fosters regular, repetitive structures. All nanotubes are the same 

length (16nm) and we require five sets of nanotubes that are functionalized with different 

tags. Four sets of nanotubes are used for the CNFETs; two semiconducting sets and two 

conducting sets. This corresponds to the two tag sets of the checkerboard pattern of cavity 

tags. A nanotube from one set can bind to any cavity with a complementary tag. Similarly, 

the interconnect nanotubes (the fifth set) can bind adjacent to any cavity directly on either 

the top or bottom of the DNA lattice in either the vertical or horizontal direction. This 

approach enables the use of a regular pattern for the base DNA lattice scaffolding.

3.2.2 Introducing Complexity: An Aperiodic Pattern for Interconnecting 
Unit Cells

Our building block, while regular in structure, has aperiodic binding points for connect-

ing together the nanowires of the unit cell. This aperiodic pattern could be achieved through 

either sequential assembly of tiles, extending recent work on one-dimensional aperiodicity 

[150] to two dimensions or through careful design of the DNA strands that comprise the 

unit cell to minimize assembly steps [104].

We could now potentially construct complex circuits by specifying the electroless plat-

ing points in the DNA lattice. For each of the top and bottom of the lattice, the plating point 

options include: the three transistor terminals to nanowire, interconnect nanowire in the 

vertical directions North and South, and interconnect nanowire in the horizontal directions 

East and West. We assume that to create a straight-through connection in the vertical direc-

tion requires both the North and South connections; similarly, both the East and West con-

nections are required for a straight connection in the horizontal direction. We could build 

pass-throughs from the top-level interconnect to the bottom-level by connecting a transistor 

terminal to both interconnects. 

Only a single tag on the DNA lattice is required to specify the plating points where the 

gold nanospheres can bind on the lattice. It is this tag that has the aperiodic pattern, and gold 
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will bind only where the tag appears. We note that this approach minimizes positional 

defects since the nanotubes are of specific lengths that can only bind in the appropriate 

positions of the lattice. In contrast, if we used long nanowires to connect distant points, then 

the number of tags to which they could potentially incorrectly bind is the number of tags 

on the circumference of a circle with radius equal to the nanowire’s length.

3.2.3 Large-scale Interconnection of Circuit Nodes

The computational capabilities of the proposed building block (node) is limited by the size 

of the DNA lattice. Increasing the computing capacity requires interconnecting multiple 

building blocks. Using inexpensive laboratory equipment we could simultaneously self-

assemble as many as 1012 identical, but small, nodes. This number of nodes would cover 

an area larger than two hundred 300 mm wafers. Although the size of an individual node is 

well above the minimum feature size of photolithography, the number of nodes fabricated 

through self-assembly limits how heavily the overall process can rely on silicon fabrication 

processes. Self-assembling nodes onto a substrate at well-defined places is also difficult 

without “naming” each placement site (pick and place methods would be difficult to scale 

to this number of components). Even with DNA tags on the substrate, the nodes are not 

guaranteed to fall into place precisely.

Most conventional architectures require precise placement and interconnection 

between circuits. Therefore, even if we could use a conventional photolithographically pat-

terned network to interconnect nodes, the result would be a random interconnection due to 

the random placement of nodes on the substrate. This is the sacrifice a self-assembly pro-

cess imposes: precision and control exist only at small length scales (e.g., < 3 micron, for 

now). One solution to this problem involves a large scale self-assembling process that can 

potentially interconnect nodes on a substrate using another form of DNA-based self-assem-

bly. Individual DNA strands self-assemble between node edges, providing a scaffold for 

metal that forms an electrical connection. Researchers have previously demonstrated 

highly conducting wires made by coating DNA with metal [85,86,152]. This larger scale 

process is not expected to deliver the precise control found in the earlier process used to 
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assemble the nodes, but it has the potential to fabricate single wire interconnections 

between the edges of the nodes, as illustrated in Figure 3-3. The lack of precise control 

during this process results in the formation of a random network of nodes that contains 

defective nodes and links. Next, we describe how this random network of nodes can be 

interfaced with external circuitry.

3.2.4 External Interface

The random network of nodes requires an interface with the external world in order to con-

nect to an external power supply (Vdd and Gnd), as well as for communication with external 

circuitry. To simplify power and ground connections and to reduce routing overhead, we 

propose the use of two conducting planes that are parallel to the DNA-lattices. These planes 

provide power and ground, and are electrically insulated from the conducting wires around 

the DNA-lattice by a plane of insulating material (see Figure 3-4). The existence of the 

power and ground plane reduces routing overhead by allowing circuits to connect to power 

and ground using a vertical conductor that breaks through the insulating plane. To create 

these external connections, first the vertical conductors would be attached at appropriate 

places on the node using self-assembly. Next, we can cover each node with a thin insulating 

layer, either by self-assembling the layer, or by depositing it. Finally, the metal layer can 

Figure 3-3. Schematic of self-assembled network of nodes
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be deposited to complete the power (or ground) plane. The insulating layer must be thin 

enough for the vertical conductor to pass through and make contact with the metal layer.

Communication with external circuitry (CMOS or other) occurs through a metal junc-

tion (“via”) that overlaps several nodes but interfaces with the network of nodes through a 

single “anchor node”. There may be several via/anchor node pairs in large networks. 

Figure 3-3 shows a diagram of a small network of nodes, including regions with defective 

links, and a via/anchor. In the rest of the thesis we use the term “anchor” to refer to an 

anchor node and its corresponding via.

3.2.5 Summary

In this section, we have proposed a circuit architecture that could be used with DNA-based 

self-assembly of carbon nanotube electronics. This architecture relies on a simple repli-

cated unit cell that consists of a pair of nanotubes placed in the cavity of a DNA-lattice. We 

then use aperiodic patterns to introduce the complexity required to build larger circuit 

blocks (nodes). Finally, we propose the use of self-assembly at a larger scale to connect 

nodes, resulting in the formation of a random network of nodes. Next, we explore the 

impact of our proposed circuit architecture on the design of system architectures.

3.3 Architectural Implications

The process of using DNA-based self-assembly to create nanoelectronic circuits presents 

several challenges that must be addressed when designing a system. The three primary 

aspects of the process are 1) small-scale control of placement and connectivity within a 
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single node, 2) large-scale randomness in node placement and interconnection, and 3) high 

defect rate. These three aspects significantly impact architectural decisions, particularly 

since conventional architectures assume precise control at both the small and large-scale.

3.3.1 Small-scale Control

The ability of DNA-based self-assembly to achieve only small-scale control impacts archi-

tectural decisions in several ways. Three of the most significant are: limited space, limited 

coordination, and limited communication.

Limited space.  Each limited sized node can fit about 22,500 CNFETs (~3µmX3µm), 

however, on-node interconnect will reduce efficiency (since routing is limited to two lay-

ers) and it is unlikely that the usable number will reach even 50% of this. Furthermore, a 

portion of each node must be allocated as a “pad” for the DNA interconnect to other nodes. 

These two factors can dramatically reduce the usable area on a node. This limited node size 

presents a trade-off in node design. At one extreme, we could design just a single node type 

that contains both computation and storage capabilities. However, since the storage and 

computation circuits must share the node, each may be severely limited in capability. Alter-

natively, we could design a few specialized node types, some devoted to computation and 

others devoted to storage. Even when designing a specialized node, the limited space 

impacts architectural decisions. For example, large state machines are not an option since 

there is insufficient space for state storage. Similarly, the number of bits available in a stor-

age node may be limited, thus affecting an architecture’s word size.

Limited communication. Without large-scale control, there is limited communication 

among nodes. Each node has four neighbors and there is no long haul communication. Fur-

thermore, the connections from a node to each of its neighbors is limited to a single wire. 

Although the degree of each node or the number of connections between neighbors could 

be increased, each connection occupies precious edge space. Conventional designs exploit 

multiple metal layers for long-haul communication and large-scale control to create multi-

wire connections between components. Therefore, the architecture must avoid relying on 

sophisticated communication hardware. 
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Limited coordination. Conventional CMOS designs rely on precise control during fabri-

cation to create sophisticated circuits (e.g., a 64-bit adder with carry lookahead). For our 

technology, if the most sophisticated node is a full-adder, then it is unlikely that 64 such 

nodes can be coordinated during self-assembly to implement a 64-bit carry lookahead 

adder. Coordination among nodes is very limited and it is difficult to apriori configure a 

group of nodes to operate in a coordinated manner. Each node can perform only limited 

coordination with its immediate neighbors. Thus, the architecture cannot rely on static con-

figuration of the nodes into complex structures.

3.3.2 Large-Scale Randomness

Our proposed self-assembly process provides excellent control at the small-scale, however 

it cannot easily achieve such control at large scales, resulting in an unstructured network of 

nodes described in the previous section. The architecture and machine organization must 

accommodate arbitrary placement of nodes, and cannot make a priori assumptions about 

their location, orientation or connectivity.

3.3.3 High Defect Rates

An inherent aspect of any self-assembly process is defects. These fabrication defects can 

influence node functionality and connectivity. Some of the interconnect defects cause the 

above problems with connectivity. While some aspects of fabrication could reduce the like-

lihood of defects (e.g., purification steps or over design of DNA tags), there will always be 

a significant number of defects and any architecture using these technologies must tolerate 

these defects.

3.4 Architectural Challenges

The above discussion exposes several aspects of this fabrication technique for nano-scale 

circuits that must be addressed by any architecture and its corresponding implementations. 

In this section, we enumerate several challenges that must be overcome to build a comput-

ing system using the random network of nodes. A computing system built using this 
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random network must: a) tolerate node and interconnect defects, b) not rely on underlying 

network structure, c) balance node size limitations and functionality, d) compose more 

powerful computational blocks from simple nodes, e) minimize communication overheads, 

and f) achieve performance that is at least comparable to future CMOS based systems. Sev-

eral research projects examined building computing systems with a subset of these goals, 

including self configuration [5,125], routing and resiliency in the face of defects 

[1,19,71,65] and the ability to compose complex computational units from simpler blocks 

[92], but we face added challenges because of the extremely limited computational capa-

bilities available in nodes. We now elaborate on some of the challenges faced during 

system design.

Node Design. We must decide what additional functionality to place in each node. How 

does node design affect connectivity/communication within a node and with other nodes, 

and what primitives should be provided?

Utilizing Multiple Nodes. Since individual nodes do not contain sufficient computation 

and storage to perform much useful work in isolation, we must determine how to exploit 

multiple nodes. This must be achieved given the above limitations on coordination, com-

munication, placement, orientation, and connectivity. 

Routing with Limited Connectivity. Traditional routing techniques may not apply since 

there is limited space for the complexity of dynamic routing and there are insufficient guar-

antees on node placement and connectivity to use conventional static routing. 

Developing an Execution Model. The execution model embodies the software visible 

aspects of the architecture and can be influenced by implementation constraints or instruc-

tion set requirements. For the envisioned fabrication technique, the execution model must 

overcome the severe implementation constraints outlined above while enabling a reason-

able instruction set.

Developing an Instruction Set. Programmable systems require an interface that enables 

software to specify operations. Typically this is achieved by the instruction set architecture 

(ISA). The ISA may be influenced by the underlying capabilities of the technology. Given 
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our fabrication technique, the architect must design an appropriate ISA that supports the 

above execution model.

Providing a Memory System. Storage is a crucial component of most computing systems 

regardless of the execution model. The ability to store values for future use and to name 

and find particular values is a necessary aspect of most computing paradigms.

Interfacing to the Micro-scale. An important aspect of any nano-scale system is the inter-

connection to larger-scale components (e.g., micro-scale). This connection is necessary for 

at least providing an I/O interface for communication with the outside world. It may be pos-

sible for the architecture to exploit this interface in other ways.

In designing a high-performance system architecture, we must address these challenges 

within the constraints of the underlying technology.

3.5 Summary

In this chapter, we have presented the implications of DNA-based self-assembly of 

carbon nanotube electronics on circuit architecture, and used them to develop a design that 

could be used to build circuits. The proposed circuit architecture uses the regular structure 

of a DNA-lattice and introduces complexity through aperiodic patterning. The unit cell and 

the carbon nanotubes to be placed within each cell are given unique DNA tags in order to 

minimize positional defects. Self-assembly enables the construction of up to 1012 circuit 

blocks in parallel, but does not provide an easy mechanism to control the placement and 

orientation of those blocks. These blocks can then be connected using metallized DNA to 

form a large random network. Finally, we presented an analysis of the implications of the 

underlying circuit architecture and random node topology on architecture design and enu-

merated some of the challenges that must be faced in the design of a system. While we 

assume DNA-based self-assembly of nanoelectronic components as the underlying manu-

facturing technology, the challenges we describe are likely to arise with other technologies 

with high defect rates and a lower degree of control over the fabrication process. In the next 
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chapter, we describe our solution for tolerating defective nodes in the network, which is one 

of the primary challenges that we face.
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4  Logical Structure and Defect 
Isolation in Random 
Networks of Nodes

In the previous chapter, we described the challenges that must be overcome in design-

ing an architecture using random networks of self-assembled computing nodes. One of the 

critical challenges is to organize the nodes in some logical structure. This is especially 

important with self-assembly, since we have lesser control over each step of the manufac-

turing process than with CMOS. In this chapter, we describe and evaluate a mechanism for 

organizing nodes and isolating regions of defective nodes in a random network of self-

assembled nodes. This approach does not require an external defect map, nor does it require 

redundancy of complex computational circuits, either of which would limit the scalability 

of the system. We use the reverse path forwarding (RPF) broadcast routing [28] algorithm, 

commonly used in wide-area networks, to map out defective nodes at startup. The algo-

rithm guarantees two things: (a) the broadcast eventually terminates and (b) all functional 

nodes that have a path to the broadcast source will receive it. Thus, all functional and reach-

able nodes are organized in a broadcast tree, resulting in defect isolation. Simulations show 

that, for a fail-stop model of node failure, the broadcast connects all nodes that are reach-

able from the source. If the fraction of defective nodes is less than 10%, the broadcast 

reaches more than 97% of non-defective nodes. This chapter makes the following contri-

butions:

1. We adapt RPF to impart logical structure to a random network of nodes, while isolat-

ing defective nodes and,

2. We evaluate the efficiency of the broadcast mechanism by computing the latency and 

“coverage” (the fraction of the non-defective nodes that the broadcast reaches) of the 

broadcast for different network sizes.
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The rest of this chapter is organized as follows. We start with a brief description of the 

functionality required in each node and the node defect model (Section 4.1). We then 

describe (Section 4.2) and evaluate (Section 4.3) our defect isolation mechanism. Next, we 

discuss the weaknesses of the defect isolation mechanism and ways in which it could be 

improved (Section 4.4) and conclude the chapter with a short summary (Section 4.5).

4.1 Node Functionality and Defect Model

At minimum, each node must have the ability to store some configuration state and 

communicate with its neighbors. To build a useful computing system, a node should also 

have some compute logic. Each node is equipped with four transceivers that control com-

munication with other nodes. Each transceiver controls data transfer on one link between 

the node and some neighbor. The assumed limitations of self-assembly restrict us to a 

single-wire link between two nodes, and all communication must occur on that wire. Each 

node has some storage space for global and local state and circuitry to control the flow of 

data. This includes control over the routing and actual decisions about performing opera-

tions in the ALU. As mentioned in Chapter 3, we assume the existence of anchors scattered 

across the random network of nodes. We assume a simple fail-stop defect model for the 

node - if a node is defective, it is completely isolated from its neighbors, i.e, it cannot per-

form any processing or communication. Fail-stop behavior can be achieved by augmenting 

node logic with simple test circuitry. We describe the design of a modular, fail-stop node 

in detail in Chapter 7. The defect tolerance mechanism does not require the extraction of a 

defect map from the random network, nor do we assume any knowledge of the location or 

nature of defects within the random network. Requiring the extraction of a defect map from 

the random network would not scale easily to networks with 109 or more nodes.

4.2 Reverse Path Forwarding

The RPF algorithm [28] forms the basis of our defect isolation mechanism. The key 

idea is to connect all operational nodes into a logical tree structure, while isolating all 
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defective nodes. Chapter 3 introduced our concept of an anchor which is an interface 

between the system and the micro-scale world. We use an anchor to insert a special broad-

cast packet into the network. Each node then forwards the packet using the RPF algorithm, 

which specifies that a node receiving this packet (called a gradient packet) broadcasts it on 

all its links, except the link that it received the packet on. Each gradient packet can be aug-

mented with a simple test vector that tests basic functionality of the node. If the execution 

of the test vector results in invalid output, the node shuts down, otherwise it forwards the 

packet. Before forwarding the packet, the node stores the id of the link it received the packet 

on. Once a node processes a gradient packet, it does not forward any other gradient broad-

cast packets it receives. This ensures that the broadcast eventually terminates. Once all 

broadcast activity stops, we have effectively established a “gradient” [71,65] broadcast tree 

rooted at the via where we inserted the broadcast packet. Each node that received a gradient 

packet knows how to get a packet to this anchor.

We can use anchors located at four ends of the system to broadcast four “gradients” 

across the system. The idea is to set up a general routing framework with the ability to route 

in four directions (corresponding to each of the gradients). This routing framework can be 

used by a higher level architecture to route instructions and data across the system. To 

allow multiple gradient broadcasts in the network, we add a gradient ID (GID) field to each 

packet, such that each node runs the RPF algorithm once per gradient. By examining the 

GID in the packets, the nodes can decide whether to propagate the broadcast (in case of a 

GID not seen before), or to squash the broadcast (in case of a repeated GID).

The gradient broadcast mechanism achieves defect isolation. Since defective nodes 

cannot participate in the gradient forwarding process, no node ever receives a gradient 

packet from a defective node or link. This implies that we can never route data into a defec-

tive node, thus achieving defect isolation. The gradient broadcast mechanism is robust as 

the fraction of defective nodes increases. As long as there are large connected components 

in the random network, the gradient mechanism will connect all nodes within that region if 

the gradient source is also included in that region.
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We illustrate gradients in a network in Figure 4-1. The figure shows a small network, 

with each node having an arrow pointing in the direction that it received the gradient from 

(the gradient that originated from anchor 1). The absence of nodes (i.e., white spaces in 

place of nodes) corresponds to defects. The network in the figure has five anchors, one in 

each corner four anchors and one in the center (anchor 5). The figure illustrates how the 

gradient broadcast covers a large part of the network. It also shows how defects can cause 

regions of non-defective nodes to get isolated (region 1 and 2). In the next section, we eval-

Figure 4-1. Gradient directions in a small network of nodes

100 nm
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uate the connectivity of our network of nodes equipped with the defect isolation mecha-

nism.

4.3 Evaluation

We begin with a brief description of our experimental setup (Section 4.3.1). Through 

our evaluation, we seek to answer the following questions.

1. What is the coverage of the broadcast? 

Ideally, the broadcast should reach all non-defective nodes. However, there could be cases 

where some nodes are cut-off due to the presence of surrounding defects. (Section 4.3.2)

2. What is the latency of a gradient broadcast as a function of network size? 

The best case latency in a network with NxN nodes would be O(N). This would be obtained 

in the absence of all defects. In the worst case, the gradient needs to traverse the entire net-

work linearly, giving a worst case latency of O(N2). (Section 4.3.3)

3. What is the effect of changing the location of the gradient insertion point in the net-

work? 

The location of the source of the gradients should make a difference in the coverage and 

latency of the broadcast mechanism. Conceptually, the source should be placed in a region 

that minimizes the chances of it being cut-off from a majority of the network. 

(Section 4.3.4)

4. What are the properties of the broadcast trees? 

Ideally, we want to minimize the distance between the source and leaves of the tree. This 

will minimize the time spent in moving the data around the network. The minimum dis-

tance can be achieved if the broadcast follows the shortest path from the source to any other 

node. (Section 4.3.5)
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4.3.1 Experimental Setup

We use a custom event driven simulator to evaluate the defect isolation mechanism. We 

only consider networks of nodes that form a mesh since we are concerned with the coverage 

of the broadcast and not actual physical connectivity (if a node is not physically connected 

to the rest of the network, the broadcast cannot reach it). The simulator accepts various 

system parameters including the fraction of defective nodes as inputs. It uses a random 

number generator to mark certain nodes defective. Once a node has been marked defective, 

it ceases to be part of the network.

In our experiments, we vary the fraction of defective nodes from 0% to 50%. We vary 

network size from 30x30 nodes to 100x100 nodes. For each configuration, we present the 

average of 50 runs with random seeds used to generate distinct node topologies. All exper-

iments use a single gradient source on the side of a square grid (except in Section 4.3.4).

4.3.2 Broadcast Coverage

The broadcast mechanism can get packets to all nodes that are “connected” to the gra-

dient source. This means that any functional node that has a path to the gradient source, will 

receive a gradient packet. However, as the fraction of defective nodes increases, there is an 

increasing probability that regions of non-defective nodes will be cut-off from the gradient 

source because of a wall of defective nodes (see Figure 4-1). Figure 4-2 plots the percent-

age of non-defective nodes receiving the broadcast as we increase the fraction of defective 

Figure 4-2. Broadcast Coverage
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nodes. Each line corresponds to a different network size. Data for limited (10) runs each for 

networks of 400x400, 500x500 and 800x800 nodes show trends similar to those observed 

for smaller networks.

As expected, we see that as the fraction of defective nodes increases, the percentage of 

nodes receiving the broadcast drops because of regions of non-defective nodes being cut-

off. In addition, we see that for up to 20% defective nodes, the broadcast mechanism typi-

cally reaches 90% of the non-defective nodes in the network. This shows that for small frac-

tions of defective nodes ( 20%), the gradient broadcast is a good mechanism for isolating 

defective nodes and connecting non-defective nodes.

4.3.3 Broadcast Latency

One of the reasons we choose to use a self-configuring system is to eliminate the time 

overhead of obtaining an external defect map of the system. However, the gradient broad-

cast itself takes a non-zero time to complete. If a node can process and forward a gradient 

packet in unit time, we would expect that it would take at most 2N time units to finish 

broadcasting in an NxN system (corresponding to the manhattan distance between the 

nodes in opposite corners). In Figure 4-3 we plot the time taken to broadcast the gradients 

as a function of the square root of the number of nodes in the system, for different fractions 

of defective nodes. For a system with no defects, we see that the time taken to complete a 

gradient broadcast is a linear function of the square root of the number of nodes in the 

system (it is proportional to the maximum distance the broadcast packet has to cover, which 

≤

Figure 4-3. Broadcast latency as a function of                   
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for a square network of NxN nodes is N). We see similar trends for larger networks (up to 

800x800). As the fraction of defective nodes increases, we see that the time taken to com-

plete the gradient broadcast decreases. This happens due to the fact that as defect probabil-

ities increase, the probability of isolating a region of non-defective nodes increases. Thus, 

there are fewer “reachable” nodes in the system, reducing the time taken to complete the 

broadcast. Indeed, for a system with 50% defects, the time taken to complete the broadcast 

is almost independent of the number of nodes. This is because, as we see in Figure 4-2, the 

broadcast reaches very few nodes.

Our analysis shows that, in general, the latency of the broadcast is directly proportional 

to the maximum distance a broadcast packet has to cover in the network. This allows us to 

scale to very large systems and still have a broadcast latency low enough for practical use. 

In addition, we could divide large systems into logical regions by broadcasting multiple 

gradients.

4.3.4 Changing Broadcast Source

Intuitively, the placement of the gradient source vias in the random network will have 

an effect on how many non-defective nodes successfully receive a gradient. We run two 

configurations, one with gradients injected from the corner, and another configuration with 

the gradient injected from one of the sides of the network grid as shown schematically in 

Figure 4-4. The result of this analysis helps in choosing between the corners and the side 

midpoints as the source of the four planar gradients.

Figure 4-4. Two possible options for gradient sources
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Figure 4-5 shows a graph where we compare the two schemes in terms of the time taken 

to complete a broadcast for a network with 10,000 nodes. From the figure we see that if we 

have less than 35% defective nodes, having a source in the corner takes longer to complete 

a gradient broadcast than having a source at the midpoint of a side of the grid. This is 

expected since a broadcast from a corner needs to travel a longer distance to get to all parts 

of the grid. However, once we have more than 35% defects, the probability of a corner 

source being cut off is higher than a source on the side being cut off. If a source is cut off 

from a large part of the network, it will “complete” the broadcast faster. In Figure 4-6 we 

compare the two schemes in terms of the number of non-defective nodes reached by a gra-

dient. If the system has less than 10% defective nodes, the two schemes perform equally 

well, reaching most non-defective nodes. However, as we increase the fraction of defective 

nodes beyond 10%, the corner source reaches fewer nodes on average, since it has a higher 

Figure 4-5. Broadcast latency as a function of the fraction of defective nodes and 
broadcast source
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probability of being cut off due to defects. Our analysis shows that, as expected, the mid-

point of a side of the grid is a better choice for the gradient source. A broadcast originating 

at this source is able to reach a larger fraction of nodes, with lower latency than one origi-

nating at a corner.

4.3.5 Broadcast Tree Properties

The gradient broadcast builds a spanning tree over the graph of all non-defective nodes 

that are reachable from the source. In most cases, there exist several spanning trees that can 

be built using the gradient source as a root. In the ideal case, we want a balanced 3-ary tree. 

However, given our grid-like topology, it is not possible to build a perfectly balanced 3-ary 

tree. An alternative to a balanced tree would be a tree that minimizes the number of hops 

between the source of the gradient and any other node in the network (i.e., minimizes the 

manhattan distance).

We analyze the broadcast trees generated by the gradient broadcast to determine their 

characteristics. Table 4-1 shows the results from this analysis on a network with 10,000 

nodes. The source of the gradient is the midpoint of a side of the 100x100 square. The aver-

age manhattan distance from the source to any other point in the network is 74.5 hops, while 

the maximum distance is 149 hops. For the case with no defects, we see that the maximum 

and average height of the tree correspond exactly to the maximum and average manhattan 

distance between the gradient source and other nodes in the network. This implies that in 

Fraction of 
Defective Nodes (%)

# of 
Nodes

Number of Children Tree Height

0 1 2 3 Max Avg

0 10000 2430 5192 2329 49 149 75

10 8822 1872 5167 1696 87 146 74

20 7186 1708 3926 1397 155 135 70

30 5203 1409 2553 1075 166 123 65

40 1382 394 641 301 46 93.6 50

50 23.22 6.22 11.8 4.6 0.6 9.2 4.8

Table 4-1. Properties of Broadcast Trees (100x100 network)
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case of a defect free system, the broadcast finds a minimum-manhattan distance path 

between the gradient source and any other node. As we increase the fraction of defective 

nodes, the efficiency of a path from the gradient source to another node decreases. For 

example, in a network with 20% defects, there are 7,186 nodes in the broadcast tree with 

an average manhattan distance of 70 hops between the gradient source and other nodes. If 

we had a square grid with 7,186 nodes (~85x85), the average manhattan distance between 

the gradient source and other nodes would be 63 hops. This shows that the broadcast can 

no longer pick the ideal path because of defects, but picks the shortest path that avoids 

defects.

Another interesting property of the broadcast tree is the branching factor of nodes in the 

broadcast tree. It is preferable to have nodes with three children as that reduces the distance 

between the root and the leaves. If we have a large number of nodes with only one child, a 

failure in the link connecting this node to its child could potentially cut off a large section 

of nodes. From the table we see that as the fraction of defective nodes increases, the number 

of nodes with three children actually increases, which is desirable. At first, this seems 

counter-intuitive, but is the result of a peculiarity of the broadcast mechanism. As a broad-

cast packet spreads through the network, it often follows a “preferred” path. We illustrate 

this phenomenon in Figure 4-7. As the packet reaches node 1, it is sent to nodes 2 and 3. 

Now, nodes 2 and 3 both try to send the packet to node 4, however, only one of them (node 

2) succeeds in this. All the crossed arrows show broadcasts that are not accepted. This 

“selection” of one direction over the other has a cascading effect and most nodes end up 

receiving a particular gradient from the same general direction. However, the gradient 

Figure 4-7. Gradient Broadcast: Cause of low branching factor
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broadcast always follows the fastest path, which is useful. In case some nodes are slower 

than others, the path of the gradient is more likely to go through the faster nodes (since they 

will broadcast faster). In addition, in the presence of defects, this phenomenon (linear 

paths) gets disrupted, creating more opportunities for the broadcast tree to branch out. This 

is also sensitive to the timing of the communication between nodes. If two nodes are not 

identical, one node will broadcast faster, reducing this problem in systems with low defects.

From our analysis of the properties of broadcast trees presented in this subsection, we 

conclude the following: a) the broadcast mechanism picks the shortest path consisting of 

non-defective nodes, but defects often cause the length of this path to deviate from the man-

hattan distance in a grid, b) defects in the network could improve the average out-degree of 

nodes in the broadcast tree.

4.4 Extending Gradient Broadcast

Our evaluation shows that gradient broadcast using the RPF algorithm should be an 

efficient way of achieving defect isolation in large scale systems of self-assembled nodes. 

Even with a large fraction of defective nodes, the gradient broadcast scheme can still be 

used on smaller scales using vias distributed across the network of nodes. By broadcasting 

a gradient per via, we can establish small “cells” of connected nodes.

The gradient broadcast mechanism presented here has no provision for handling tran-

sient faults or permanent faults that occur during system operation. One simple extension 

to the current system to handle runtime faults would be to maintain redundant path infor-

mation at each node. Nodes often get the same broadcast packet on multiple links. The orig-

inal scheme discards all but the first packet. If we use information from subsequent gradient 

packets to maintain multiple paths, the system could possibly handle transient faults. In 

addition, this redundant path information could also be used by higher level protocols for 

load-balanced routing. There is a trade-off to be made in maintaining multiple paths. Each 

additional path that needs to be stored requires extra storage at each node. There is also no 

guarantee that a node will actually receive multiple paths. In addition, path information will 

need to be periodically refreshed to keep it up to date. This will add to the overhead of gra-
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dient broadcast. Permanent faults that occur during system operation can also be handled 

by running the configuration algorithm again.

The use of the RPF algorithm for defect isolation requires fail-stop nodes. This requires 

the ability to test the functionality of each node using built-in-self-test (BIST) or external 

test circuitry. A variation of the BIST would be the ability to inject a test vector packet into 

the network and have it propagate. Each node would execute the packet and get disabled if 

it fails the test. This extra functionality in the node must fit within manufacturing con-

straints. We describe one system specific implementation of fail-stop nodes in Chapter 7. 

So far, we have assumed a node to be fully operational or defective. In a real system, it is 

far more likely that only a part of a node is defective. However, except in the case of byz-

antine failures, partially defective nodes will not reduce the effectiveness of gradient broad-

casts.

4.5 Conclusion

In this chapter, we presented one mechanism to impose logical structure on a network 

of self-assembled nodes while isolating regions of defective nodes. We adapt the reverse 

path forwarding broadcast routing algorithm to create a broadcast that connects all func-

tional nodes that are reachable from the source of the broadcast. We have also presented an 

analysis of the connectivity of such a network of self-assembled nodes. This mechanism 

could potentially be extended to include multiple paths, thus providing robustness in the 

face of runtime faults. This extension involves a trade-off in terms of the storage required 

at each node, and the desired path redundancy. In the next chapter, we use multiple gradient 

broadcasts to organize a network of nodes in the design of a proof-of-concept architecture 

that addresses the challenges presented in Chapter 3.
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5 Nano-Scale Active Network 
Architecture

In this chapter, we develop a proof-of-concept general purpose architecture built using a 

random network of self-assembled nodes. This architecture, called the Nano-scale Active 

Network Architecture or “NANA”, supports the Von-Neumann programming model and a 

fully addressable memory system. The goal is to create a high-performance defect tolerant 

within the assumed constraints of the manufacturing technology. NANA uses the adapted 

RPF algorithm described in the previous chapter to isolate defective nodes and impart log-

ical structure to the random network of heterogeneous nodes. It reduces routing resource 

requirements in each node by dividing the node network into distinct execution and 

memory networks. Since NANA represents our first attempt at designing a system archi-

tecture using DNA-based self-assembly of nanoelectronic devices, the guiding principle is 

to first design a working system before applying optimizations to improve performance.

NANA is similar to an active network [139] in that it uses “packets” that consist of 

instructions and data that are routed in the network in search of appropriate execution 

resources. When a node receives a packet with an instruction that can be executed at the 

node, it extracts data operands from the packet and performs the specified operation. 

NANA allows the execution of instructions to overlap by interleaving data operands and 

exploiting bit-level parallelism. The NANA memory system supports direct and indirect 

addressing, as well as the ability to fetch instructions and execute code from a specified 

address. The design and evaluation of the architecture provides insight into various design 

and performance trade-offs and highlights aspects of the design that prevent the system 

from achieving peak performance. The lessons learned from NANA are invaluable in the 

design of the data parallel architecture presented in Chapter 6. We make the following con-

tributions in this chapter:
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1. We develop NANA, a first attempt at designing a general purpose architecture using a 

random network of self-assembled heterogeneous nodes,

2. We develop an execution model to exploit bit-level parallelism for a stream of instruc-

tions, and

3. We use modeling and simulation to evaluate NANA and gain insights into its strengths 

and weaknesses, which can help guide future designs.

The rest of this chapter is organized as follows: Section 5.1 presents a brief overview 

of NANA. Section 5.2 describes the execution model and instruction set. Section 5.3 pre-

sents the configuration and operation of the memory system. The architectures of the dif-

ferent node types are described in Section 5.4. We describe program execution in 

Section 5.5, and evaluate the performance of NANA in Section 5.6. Section 5.7 contains a 

discussion of the strengths and weaknesses of the design, and Section 5.8 enumerates the 

lessons learned through the design and evaluation of NANA. Finally, Section 5.9 con-

cludes the chapter with a summary.

5.1 NANA Overview

NANA is similar to an active network [139] in that execution packets that contain 

instructions and operands search through a logical network of processing and memory 

nodes for the functionality that they need at each step of execution. This architecture 

matches the underlying technology characteristics since it 1) supports a random intercon-

nection of nodes, and 2) tolerates node and interconnect fabrication defects.

The system model is a random interconnection of various node types, in which all nodes 

contain circuitry for communication and each node has some specialized circuitry (e.g., 

processing, memory, etc.). A node communicates with a neighboring node via a single link 

that is asynchronous and bidirectional (time-multiplexed on a single physical wire). Groups 

of nodes are organized into cells. Each cell has an anchor that acts as its connection to the 

micro-scale. Inter-cell communication can be achieved through a micro-scale interconnec-

tion network. The memory nodes in each cell comprise a portion of the global memory 
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space. Some fraction of nodes are configured as memory ports to provide an interface 

between execution packets and memory storage. Figure 5-1 illustrates our system model. 

To impose structure on the interconnection network and the memory system, there is a con-

figuration phase that occurs before any execution. Reconfigurable architectures [27, 31, 53, 

59] have demonstrated that this approach is important to achieve high performance in the 

context of highly focused (i.e., aggressive) or highly defective technologies, including nan-

otechnology.

While node functionality is heterogeneous, all nodes have some common responsibili-

ties. Each node generates its own local clock (we choose a clock frequency of 10 GHz, 

which is likely to be a pessimistic value for carbon nanotube based devices [18,121]) and 

communicates asynchronously with its neighboring nodes using signaling techniques sim-

ilar to push-style pipeline systems. High level communication between two devices over a 

single wire can be managed using four-phase single wire techniques [144]. Each node must 

also contain routing functionality for determining the outgoing link for an incoming packet 

(or the result of an operation). This circuitry maintains node state (e.g., currently processing 

a packet) and handles link contention. In the next four sections, we describe the execution 

model, the memory system, node architectures and program execution in more detail.

Figure 5-1. a) System Model. b) Processing nodes (P), memory nodes (M), 
memory port nodes (M*), anchor node (A), and via (V). This schematic is not to 

scale (w.r.t. nodes per cell).

a) 2D mesh of cells b) Nodes within a cell
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5.2 Execution Model and Instruction Set

This section provides a detailed description of the execution subsystem in NANA. We start 

with a description of the execution model (Section 5.2.1). We then describe the format of 

an execution packet (Section 5.2.2), and the instruction set used by NANA (Section 5.2.3). 

Finally, we discuss execution network specific configuration and routing (Section 5.2.4).

5.2.1 Execution Model

The execution model relies on an accumulator-based ISA. Conceptually, the accumulator 

is initialized and then a sequence of operations are performed on the corresponding series 

of operands. The accumulator-based ISA reduces the need for widespread a priori coordi-

nation and communication among many components (e.g., associative lookup in issue 

queues), since instructions are processed in order [76] and the only data dependence 

involves the accumulator. We support accumulator-based execution by forming an execu-

tion packet that contains the operations, the accumulator, and all operands in appropriate 

order (see Figure 5-2). Instructions are executed in the order specified in the packet, as they 

are routed through the network and find the requisite functional units (or memory ports). 

Logically, each functional unit performs its specified operation, removes the input oper-

and(s) and forwards the new accumulator and the remaining operands to the subsequent 

functional units. Each subsequent functional unit performs a similar sequence until all oper-

ations in the packet are completed. Memory operations generate memory packets that are 

handled by the memory ports, as discussed in Section 5.3.2. Packet sequencing is achieved 

using a process called chaining, discussed in Section 5.5.

The system and execution model enable significant parallelism by allowing the instan-

tiation of multiple execution packets within a cell and in multiple cells. While this parallel-

ism is important to fully exploit the capabilities of the underlying technology, this thesis 

focuses on the operation of a single cell and sequentially instantiating execution packets.
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5.2.2 Execution Packet

The format of an execution packet is: header, instructions, operands, tail. The header is a 

fixed length field that includes packet type and routing information. The instructions field 

is a variable length list of opcodes in program order. The operands field is a variable length 

list of operand values. Specific bit patterns delineate field boundaries.

To accommodate the limited node size, we use a bit-serial implementation. The active 

network architecture and accumulator ISA are independent of this choice and provide an 

architecture that can scale with improvements in node capabilities (i.e., multi-bit opera-

tions). Figure 5-2 shows the execution packet format for our bit-serial implementation. The 

operands field is divided into bit-slices from least significant bit to most significant bit 

(from packet head to tail). Each bit slice starts with a bit from the accumulator and is fol-

lowed by each bit (for the particular bit- slice) of the operands. Each logical bit is encoded 

as two physical bits (0=00, 1=01). A ‘11’ in the operand field indicates a separator between 

operand bit-slices. The final field in the packet is the tail, which indicates the end of the 

execution packet, and also includes a flag bit used by conditional instructions.

5.2.3 Instruction Set

The instructions that this architecture supports is bit-serial in nature and requires little 

communication between bit slices. Many instructions are simple to implement with limited 

circuitry (e.g., ADD, SUB, OR, AND, XOR, NOR, NAND, compare, move) and require 

only small additions to a bit-serial full adder circuit. Each operation requires only a small 

Figure 5-2. Execution Packet Format.
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amount of information (e.g., carry-out bit) to be communicated to subsequent bit slices. 

This simplifies the implementation details of the circuits so that they will fit within the node 

size limits of the underlying technology. Although each instruction is bit-serial, the bit 

interleaving enables parallel execution of consecutive operations in a pipelined manner. 

Instructions supported by NANA can be divided into nine categories and are listed in 

Table 5-1 (Appendix A describes the NANA instruction set in detail).

The serial nature of this architecture and the limited node complexity of the technology 

makes certain operations difficult. Table 5-2 lists several instructions specially designed to 

help overcome these difficulties. For example, right shifts (moving bits from the tail toward 

the head) are difficult because they require bits to be forwarded ahead of other bits unless 

entire operands are stored at the functional node. Since we assume that both operand stor-

age and ALU-type functionality in a single node requires too much area for our limited 

node size, we exploit the stack-like nature of the operand stream to support right shifts. 

When a right shift is executed, it also places the result at the end of the operand stream. 

Thus, to execute a right shift, we buffer the field separator between bit slices and emit the 

next observed data bit before re-inserting the field separator into the packet bit stream.

Instruction Type Instructions
Arithmetic ADD, INC, SUB, DEC, SHL, SHR
Comparison COMPEQ, COMPGT, COMPLT, SETEQ, SETGT, 

SETLT, SETZ
Operand Stream Control LDCONST0, LDCONST1, CPACC, MOV, DELOP, 

OPFLUSH, SWAP
Logical AND, NAND, NOR, NOT, OR, XOR, XNOR, NOP
Load LD [Mem], LDI [Mem]
Store ST [Mem], STI [Mem]
Conditional Store CST [Mem], CST_RST [Mem], CRST [Mem], CSTI 

[Mem], CSTI_RST [Mem], CRSTI [Mem]
Unconditional Control 
Transfer

JMP [Mem], CALL [Mem],JMPI [Mem],CALLI [Mem]

Conditional Control 
Transfer

CALLNZ [Mem], CALLZ [Mem], CALLNZI [Mem], 
CALLZI [Mem]

Table 5-1. NANA Instruction Set
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The bit-slice packet encoding also complicates memory operations. For example, a load 

(or a store) requires all of its address bits to generate a request. If the address is in the oper-

and stream, then it is impossible for the load to interleave the resulting data in the same 

operand stream since all the low order bits are ahead in the packet flow before the entire 

address is obtained. Therefore a packet cannot both calculate an address and use it in the 

same packet. To address these limitations, we provide three specific types of memory 

addressing: immediate, constant address and indirect address. Constant addressing requires 

the address to appear in the instruction field of the packet. Indirect addressing supports indi-

Instruction Operation

MOV Move accumulator to end of operand stream

SWAP Swap first and second operand

SHR Shift accumulator right by 1 bit, move accumulator to 
end of operand stream

DELOP/OPFLUSH Remove one/all operands from operand stream

CPACC Create copy of accumulator at end of operand stream

SET (EQ/GT/LT/Z) Set flag bit in tail if condition satisfied, consume accu-
mulator

COMP (EQ/GT/LT) Set flag bit in tail if condition satisfied, consume first 
two operands

LDI [Mem]/ STI [Mem] Load/store indirect through constant address [Mem]

CST [Mem]/CSTI [Mem] Conditional store direct (CST) or indirect (CSTI) to 
[Mem] (status bit in tail must be set)

CST_RST [Mem] Conditional store to [Mem], reset status bit after per-
forming store

JMP [Mem]/JMPI [Mem] Fetch instructions into existing packet from direct 
(JMP) or indirect (JMPI) address [Mem]

CALL [Mem]/CALLI [Mem] Create new packet using instructions from direct 
(CALL) or indirect (CALLI) address [Mem]

CALLNZ [Mem]/CALLNZI 
[Mem]

Fetch instructions into new packet if status bit is set 
(not zero) (direct/indirect)

CALLZ [Mem]/CALLZI 
[Mem]

Fetch instructions into new packet if status bit is not 
set (zero) (direct/indirect)

Table 5-2. Definitions of a selected subset of instructions
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rection through a memory location that is specified as a constant in the instruction field of 

the packet. We also provide special load instructions (JMP & CALL) for instruction 

sequencing (discussed in Section 5.5). Conditional execution is supported through status 

bits (e.g., condition codes) in the packet tail. Currently we support conditional store and 

CALL instructions that must wait to execute until the packet tail arrives so that they can 

examine the appropriate status bit.

Programming NANA is similar to programming other accumulator based ISAs 

[20,76,77,82], however, care must be taken to account for system capabilities and con-

straints. For example, the ‘shift right’ instruction (SHR) is constrained by node resources 

to shift the accumulator and move it to the end of the operand stream, while the ‘shift left’ 

instruction (SHL) operates as expected (i.e., it shifts the accumulator left by one bit). 

Another constraint arises from the structure of the memory system - all loads must precede 

stores in a packet. Consider a simple code fragment (x=x+ *(y+a)) that computes a memory 

address (y+a) and then adds the contents of that location to another variable stored in mem-

ory. Due to the load-store ordering constraint, instructions must be divided into two pack-

ets. Table 5-3 shows the two packets needed to implement the code segment, and how their 

fragments are arranged in memory. The first packet, starting at address 0x10, performs an 

address calculation (y+a) and stores the result in a third location, z. The last instruction, at 

address 0x20, chains this packet to the next packet, which starts at address 0x40. The 

second packet performs the addition of x with the value stored at the memory location 

pointed to by z, and stores the result into x (i.e., x=x+*z). This packet executes by first load-

ing the value of x, then performing an indirect load on z (instruction at 0x44). Next, it exe-

Address Instruction NextPC Address Instruction NextPC

0x10 LD y 0x14 0x40 LD x 0x44

0x14 LD a 0x18 0x44 LDI z 0x48

0x18 ADD 0x1A 0x48 ADD 0x4A

0x1A ST z 0x1E 0x4A ST x 0x0

0x1E CALL (0x40) 0x0

Table 5-3. Memory layout for two packets that compute x=x+ *(y+a)
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cutes the add and stores the result into x. This example illustrates some constraints that 

must be faced in programming NANA. We expect that, as the underlying technology 

matures, a richer ISA with more complex instructions will become possible, including effi-

cient variable bit shifts, bit-serial multiplication and division. Until then, we compose these 

more sophisticated operations in software using simpler primitives. Next, we look at how 

the network of nodes is configured to support instruction routing and execution.

5.2.4 Configuration and Routing

NANA must enable execution packets to find what they need without deadlocking or 

livelocking, despite high defect rates and traveling through a random network of nodes. To 

avoid request/response deadlock (i.e., fetch deadlock), the minimum requirement is three 

logical networks: one for execution packets, one for memory request packets and one for 

memory response packets. Each of these logical networks is irregular and must provide 

deadlock- and livelock-free routing. While we could implement these three networks using 

three virtual channels [29] per unidirectional link, this increases the amount of buffering 

required on a single node. We reduce the requirement to two virtual channels per unidirec-

tional link by creating distinct physical networks for execution and memory; we explain 

how this is implemented in Section 5.3.1. We also use wormhole routing [98] since it 

requires the least buffering on each node (1 bit per channel).

Virtual networks avoid fetch deadlock, yet each network must still provide deadlock- 

and livelock-free routing. Given our irregular networks, we exploit the spanning tree cre-

ated by our configuration algorithm and then employ a variant of up*/down* routing [125], 

a degenerate case of turn-model routing [52], and back pressure flow control. The challenge 

is implementing these techniques with limited node functionality.

To meet this challenge, each node must support two forms of communication: 1) broad-

cast and 2) routing along a gradient (see Chapter 4). Packet headers include information on 

the type of communication to use. Broadcast requires minimal state per node and is used 

during configuration only. Gradients reduce per-node resources while still enabling dead-

lock- and livelock-free routing. 
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We use five gradients: one for each planar direction (north, south, east, and west) and 

an additional gradient that establishes cell boundaries and the direction toward the via in 

each cell (called the cell gradient). The planar gradients are established by starting the 

broadcast at the north, south, east, and west edges (or corners) of the system, respectively. 

Figure 5-3 illustrates a gradient established from the upper left corner (north) in a 32x32 

grid with a 30% defect rate. Defective nodes, not drawn in this figure, can cause islands of 

disconnected nodes such as the region near the via. Due to defects, some vias may not have 

a path to any of the four planar gradient destinations. This can be detected by monitoring 

Figure 5-3. A 32x32 grid of memory and processing nodes with one established 
gradient (North)
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the via at the micro-scale during the broadcast of each of the planar gradients. If the via fails 

to receive any of the gradient broadcast packets, it should be marked as defective and not 

participate in cell configuration.

Cell configuration is initiated at each via in parallel by broadcasting a cell ownership 

packet that includes a cell identifier. The cell gradient broadcast stops when its wave front 

collides with the wave front from an adjacent via. Nodes that receive two (or more) distinct 

cell identifiers mark themselves as boundary nodes, creating a boundary layer between 

cells. Next, we describe how execution packets can be routed on the execution network.

5.2.4.1 Routing Execution Packets

The spanning tree structure imposed by gradients provides the framework for packet 

routing. Execution packets and memory packets never share physical links and thus cannot 

block each other. Up*/down* routing on the spanning trees prevents routing deadlock and 

livelock. However, execution packets must be able to find the necessary resources for exe-

cution, and memory packets must successfully find the appropriate memory location, 

which responds if necessary. To avoid deadlocking execution packets, we simply follow a 

single gradient (up* on one spanning tree) on one virtual channel until we reach a cell 

boundary, then reflect the packet back into the cell on the opposite planar gradient but on 

the other virtual channel. Reflection only occurs if there are remaining instructions in the 

packet, otherwise a special packet is sent to the anchor node to indicate completion. We 

note that the header can run ahead of the operand stream allocating nodes for instructions 

(due to execution delay in a node). This approach can indefinitely bounce a packet between 

cell edges. The only constraint is that packet length be less than the total number of nodes 

in the round trip traversal. Since execution packets only traverse in the up* direction of the 

spanning tree, each node must only store a single pointer per spanning tree (the gradient 

direction). An execution packet’s ability to find the appropriate resources depends on sev-

eral fabrication variables, including defect rates and the distribution of node types. An 

exploration of this space is beyond the scope of this thesis. 
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5.2.4.2 Improving Node Utilization

While the four planar gradients allow us to route execution packets in the cell, we find that 

only a small fraction of all execution resources in a cell are used. This is because the route 

taken by the execution packet depends on its insertion point in the cell, and the gradient that 

is being used to route. The execution network within the cell does not have a well defined 

structure if we use planar gradients for routing. To improve the number of nodes reachable 

by execution packets, we need to modify the structure of the execution network within a 

cell.

We add a second via and anchor node (“execution anchor”) to the cell. This via is used 

only by the execution network. Once the memory system has been created, we broadcast 

an “execution” gradient in the cell. This gradient reaches nodes that have not been included 

in the memory network and any ports on the memory network. This allows us to create a 

single execution network by performing a depth-first traversal on the spanning tree created 

during the broadcast of the execution gradient. All execution packets follow this depth-first 

order ensuring high execution node utilization. The memory and execution networks now 

include most of the nodes in the cell, potentially allowing the use of about 97% of the cell 

(some nodes can become isolated during the creation of the memory network). However, 

as we discuss in Section 5.6, there are other aspects of NANA that limit node utilization. 

Next, we describe how we can exploit the packet routing infrastructure to configure a fully 

addressable memory system in each cell.

5.3 Memory System

Each cell represents a local namespace for memory and includes both data and instruc-

tions. The memory system must be able to (a) allocate (number or name) its locations, (b) 

provide an interface to execution packets, and (c) route memory packets (both requests to 

specified locations and responses back to requestors).
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5.3.1 Memory Allocation

The memory network is a spanning tree rooted at an anchor. To configure memory, 

allocation packets are injected through the anchor node, initially routed on virtual channel 

zero using any planar gradient. When an unallocated memory node receives an allocation 

packet, it records the address in the packet, marks itself as allocated, and sinks the packet. 

The second allocation packet received by this node is forwarded along the specified gradi-

ent, forming a branch in the network. For the third allocation packet, the node modifies the 

header to route the packet on virtual channel one along a planar gradient that creates a 

second branch in the network. Three fourths of the subsequent allocation packets arriving 

on virtual channel zero are forwarded along the first branch while the remaining packets 

use the other branch and switch to virtual channel one. Packets on virtual channel one are 

never modified. Cycles in the memory network are prevented by having an allocated node 

only accept configuration packets on the same physical link as its original allocation pack-

ets1.

Memory ports are allocated after memory nodes and must have three good links 

(excluding the link used by the incoming packet) with three distinct planar gradients. Ports, 

which are unnamed, never change an allocation packet gradient, thus keeping the remain-

ing two links free for the execution network. Non-memory nodes between memory nodes 

route allocation packets according to the specified gradient and reserve the corresponding 

links only for memory operations. A second planar gradient configuration creates new 

spanning trees that do not include any of the memory network links, thus creating two sep-

arate networks. Figure 5-4 illustrates the allocation of 64 memory locations and 64 ports on 

a 32 x 32 grid with a 3% defect rate. For illustration only, we include only the West planar 

gradient on the execution network and use a low defect rate on a small grid. Clearly, in this 

memory system the anchor could be a bottleneck. 

Now that the memory network has been created, the execution network can be created. 

Depending on the routing scheme being used, we initiate a broadcast of the planar gradients 

1.  This is implemented by signaling the appropriate neighbors to not forward along the specified physical 
link.
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(scheme 1), or the broadcast from the second anchor in the cell (scheme 2). In either case, 

nodes on the memory network do not propagate the broadcast, except for memory ports. 

This ensures that the two networks do not share physical links. We discuss the execution-

memory interface formed by memory ports in the next subsection.

5.3.2 Interfacing Execution and Memory

The interface between the execution network and the memory network is controlled by 

memory ports that assume responsibility for handling all memory operations, including the 

JMP/CALL instructions for packet instantiation (see Section 5.5). When an execution 

Figure 5-4. Memory Network. 32x32 grid with a fully configured memory network, 
showing one gradient (west)
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packet needs to perform a memory operation, it must encounter a memory port to execute 

the operation. A memory port servicing an execution packet stalls the execution packet, but 

at different points for loads and stores. Since load addresses are contained in the opcode 

field, the load can immediately issue and only stall the packet when the first bit of the oper-

and stream arrives. Thus, the header continues searching for resources for subsequent 

instructions. When the memory port that initiated the load receives the response, it inter-

leaves the memory contents into the execution packet’s operand stream, enabling the oper-

and stream to continue forward. A store must see the entire operand stream to extract the 

data, and after issuing stalls the packet until the store is acknowledged. This acknowledg-

ment ensures intra-packet memory disambiguation. Memory ports also support indirect 

memory operations which require back-to-back memory operations: one to load the address 

and the other to access the contents at that address. We implement this by first issuing a 

constant load, to obtain the address, then using the result to generate another address for the 

load or store.

5.3.3 Routing Memory Packets

Memory packets are routed on either a request or response virtual network (two virtual 

channels per unidirectional link) that each obey up*/down* routing. Routing in the up 

direction follows the cell gradient up the spanning tree to the anchor node where the packet 

is broadcast in the down direction. Broadcasting is necessary since the destination memory 

node or port could be anywhere in the memory network. Loads require two full traversals 

of the memory network. However, since the anchor node is a serialization point for memory 

operations, it can acknowledge a store by broadcasting down the response network. 

Memory operations for addresses outside the originating cell are passed by the anchor onto 

the microscale network.

Once the memory and execution networks have been created, program execution can 

begin. Before we describe program execution, we present a detailed description of the dif-

ferent node types in NANA.
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5.4 Node Architecture

There are three different node types in NANA: a) processing/ALU, b) memory and c) 

memory port. While all node types share some common functionality, the operational logic 

within each type differs. In this section, we describe the internal logic within each node 

type, starting with a description of the functionality common to all node types.

5.4.1 Common Functionality

As mentioned before, all three node types share some common functionality. This is pri-

marily communication and routing logic. Each node type has four transceivers that support 

two virtual channels and asynchronous communication on single-bit links. The virtual 

channels are supported by single-bit buffers at the input and output for each transceiver. 

Data arriving at a transceiver from outside a node can be routed to one of the other three 

transceivers or to the internal logic of the node. Each virtual channel is handled indepen-

dently, and a packet can switch virtual channels only in the internal logic of the node. Each 

transceiver has a dedicated point-to-point link per virtual channel to all possible destina-

tions (3 other transceivers and the internal logic). In addition to the communication logic, 

the nodes also share test and configuration logic, which includes gradient configuration, as 

well as logic for configuring the execution and memory networks.

The node defect model assumes that the communication logic is either fully functional 

or not operational at all (the Byzantine defect model, in which defective nodes can produce 

arbitrary behavior, has been considered in the internet literature, but tolerating such defects 

requires a great deal of complexity at each node [21]). We can tolerate shorts in the node 

interconnect, and we call such defects broadcast defects because they represent the unin-

tentional broadcast (to more than one link) of packet bits. Such defects are difficult to avoid 

during fabrication without control over self-assembly and require an arbitration scheme to 

control access to the link. The asynchronous link controllers in each node can be designed 

to assert a link-good signal after a random interval of time after power up. The randomness 

can be introduced during the self-assembling process [35]. Every node monitors its links 
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for the link-good signal and marks any link that has received more than one signal as defec-

tive. When the node’s internal random interval has elapsed, if the link is not already marked 

defective it asserts its own link-good signal on all links. This arbitration scheme identifies 

both shorts and opens on links between nodes. The nodes connected to the via essentially 

share a single link (the via) that appears as a broadcast defect. The result of this arbitration 

scheme is for a single node to remain actively connected to the via, thus acting as the cell 

anchor.

5.4.2 Processing/ALU Node

Each processing node is equipped with a bit-serial ALU that can perform several simple 

arithmetic and logic operations. Each processing node can extract the first instruction in the 

execution packet and decode it. If the instruction cannot be executed by the processing node 

(for example, a memory operation), the instruction is treated as a NOP. If the instruction 

can be executed by the node, it pulls it out of the execution packet, and then bypasses all 

remaining instructions. Once the operand stream reaches the node, it extracts the first two 

operands per bit-slice and performs the decoded operation on that pair of operands. The 

result of the operation is then re-inserted in place of the two operands. Exceptions to this 

are shift and move instructions, which are explained in detail in Appendix A. 

The processing node also carries single-bit state through the execution of an instruction 

(for example, a carry or borrow). This state is used by certain instructions to set the condi-

tion flag in the tail. Processing nodes that lie on the memory network do not need their inter-

nal logic block. The only requirement of these nodes is to route packets along the memory 

tree, which can be handled by the transceivers.

5.4.3 Memory Node

Memory nodes do not participate in instruction execution, and treat all instructions as 

NOPs. On the memory network, memory nodes have an associated address, and are used 

to store a 16-bit word. Memory nodes must be able to decode memory requests (load/store), 

decode the address in a memory request, compare it with their internal address, and take 
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action based on a match/mismatch. If the address from the incoming packet matches the 

address of the memory node, the memory node must take the appropriate action. 

In case of a load request, the memory node creates a response packet consisting of its 

data contents and inserts it into the memory response network. In case of a store request, 

the memory node must replace its contents with data from the packet. In case of a mis-

match, the memory node simply passes the request down the request network. The memory 

node is also required to forward requests moving up along the memory response network. 

This is handled by the routing logic.

5.4.4 Memory Port Node

A memory port node, or port forms the interface between execution and memory networks. 

Ports are responsible for executing all memory operations by creating requests for the 

memory network based on load and store instructions and inserting memory responses into 

execution packets. Ports are “active” only if they lie on both networks. If a port is only on 

the execution network, or only on the memory network, it acts as a null node and treats all 

instructions as NOPs.

When a port executes one of the special load instructions to fetch a packet, it must 

examine each word returned to determine the action to be taken. The port inserts the first 

half of the response into the execution network and this forms part of the execution packet. 

The second half of the response is the address of the next segment to be fetched. If this 

value is zero, the load terminates, if not, the port must generate a new load request with the 

new address. 

The port must have enough storage space to hold the address of a load or store instruc-

tion that is executing. When it gets a load response or a store acknowledgement, it must 

compare the address received in the packet with the address from the executing instruction. 

In addition to being able to store the address, the store must be able to stall execution pack-

ets and move data between the two logical networks.

In the next section, we describe how programs can be loaded from memory, executed, 

and used to initiate execution of other programs.
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5.5 Executing Programs

Execution packets (from header through tail) can be stored in memory by fragmenting 

them across memory locations. Each fragment contains a portion of the execution packet 

and the memory address of the next sequential fragment (zero indicates termination). The 

fragments are written into memory by using the micro-scale interface to inject store 

requests into the memory network. Packets are reassembled and instantiated on the execu-

tion network at a memory port using special sequencing instructions. Initial execution starts 

by using the micro-scale interface to inject one of these instructions on the memory 

response network for the named memory port. Once the JMP/CALL instruction is inserted, 

it executes at a port, and assembles the execution packet. Execution can begin as soon as 

the first fragment of the packet has been retrieved from memory. This allows us to overlap 

execution of the packet with packet reassembly. 

The load instruction that reassembles execution packets can also be embedded in an 

assembled execution packet. This allows us to create an execution packet during the exe-

cution of another packet. This process of sequencing instructions or packets under software 

control by including a special load as the last operation is called “chaining”. We implement 

two forms of the sequencing instruction: 1) CALL creates an entirely new packet, but stalls 

until all previous instructions are complete (i.e., it sees the packet tail), and 2) JMP injects 

new operations into the existing packet by stalling the operand stream, thus enabling accu-

mulator forwarding. Conditional CALL is easily supported since the instruction waits for 

the packet tail. Execution of one packet can overlap with its dependent packet’s search for 

functional and memory nodes. The ability to chain allows us to support different types of 

loops and conditional execution. It also enables the execution of one packet while the 

micro-scale circuitry stores another packet into the memory system.

Figure 5-5 illustrates a snapshot of the execution of the packet from Table 5-3 that starts 

at address 0x10 taken before the first load operation completes. In the figure we highlight 

the relevant nodes that correspond to each operation in the packet. On a 32x32 cell, the 
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system takes about 70,000 simulated “time units” to configure gradients and memory and 

only around 10,000 are spent in gradient broadcast. We provide more information about the 

time units used to measure running time in the next section, where we evaluate NANA 

using simple programs to determine its peak performance, and to determine how much of 

this performance can be achieved in practice.

5.6 Evaluation

In this section, we evaluate the performance of NANA using simulation and modeling. We 

begin with a brief description of our evaluation framework in Section 5.6.1. In 

Section 5.6.2, we measure NANA’s peak arithmetic performance, and explore the relation-

ship between performance, instruction execution latency and execution packet length in 

Section 5.6.3. Next, we evaluate NANA’s performance on two simple programs: 1) 

fibonacci in Section 5.6.4, and 2) string search in Section 5.6.5. This is followed by an anal-

ysis of memory system bottlenecks using a simple analytical model in Section 5.6.6. We 

Figure 5-5. The path of a simple code fragment. 1: load Y, 2: load A, 3: Add, 4: store Z. 
Note that the Add instruction after second load hops through 5 nodes before finding an 

execution unit. The solid black line traces the path of the packet.
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conclude this section with a discussion of two system optimizations and their effect on per-

formance in Section 5.6.7.

5.6.1 Evaluation Framework

We evaluate NANA using a detailed custom event driven simulator written in C++. The 

simulator models the system at all stages, including gradient broadcast, memory configu-

ration, execution configuration and run-time and also activity within all node types down 

to bit exchanges between components. It allows the user to vary a number of system param-

eters including the size of the network, node type distribution, event latencies, defect rate, 

and number of cells being simulated. Each cell holds a different part of the global address 

space and can execute different programs that are provided as input to the simulator. All 

events in the simulator are assumed to be a multiple of the clock cycle time (0.1 ns). The 

simulator accepts user-defined network topologies, or it can generate regular grid based 

topologies. For simplicity, we use a grid-based topology with a single 1024 node cell and 

a 3% node defect rate in our evaluation. As long as the defect rate is low (about 15% or 

lower), the network topology has little effect on performance.

5.6.2 Peak Performance

To measure the theoretical peak performance of NANA, we first compute the maximum 

performance that could be achieved by a single node. To execute an arithmetic operation 

like an ADD, a node must first receive the instruction (8 bits), then await the operands. If 

we assume 32-bit operands, the node must receive and send two 32-bit operands, and the 

bit-slice separators, which is a total of 128 bits. Thus, the execution time is dominated by 

the time to receive the data. To execute a 32-bit ADD, the node must receive 144 bits, and 

if we assume a latency of 1 ns to receive a bit (0.4 ns at the transceiver, 0.6 ns through rest 

of node), this translates to a node being able to execute 6.94 million ADD instructions per 

second. Now, if we have 109 nodes, and each node executes instructions all the time, we 

get a theoretical peak of 6.94x1015 instructions per second.
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It is unlikely that all nodes will execute an instruction every cycle, so next we examine 

the effective latency per ADD instruction if we have an execution packet with a variable 

number of instructions. An execution packet with multiple instructions allows us to overlap 

the execution over multiple nodes, thus amortizing some of the communication overhead. 

The effective execution latency reduces from about 150 ns to around 100 ns if only execu-

tion/processing nodes are encountered during execution. If we take on average 10 ns to find 

a processing node, it would take about 110 ns per 32-bit ADD. It is useful to compare the 

execution time per instruction with the execution time of a similar instruction on an existing 

architecture. A 32-bit add takes half a cycle to execute on a Pentium 4, running at 3.2GHz 

[60] which is far faster than NANA. However, this comparison is biased in favor of the Pen-

tium 4 since the execution time on the Pentium 4 does not include time to send data to reg-

isters, while the execution time on NANA includes creating the new accumulator. Despite 

this, NANA makes up for the lost speed by executing a large number of instructions on 

multiple cells, at the same time. If we make an equal-area comparison, we can fit ~3600 

(60x60) cells in the 144 mm2 area of a Pentium 4 (Northwood core). We could then poten-

tially achieve a throughput of about 32 ADDs/ns. This gives NANA better throughput than 

the Pentium 4, which can issue at the most six instructions per cycle (~18 ADD/ns). These 

numbers would correspond to the peak performance of both machines.

5.6.3 Estimating Instruction Execution Time

To get an estimate of instruction execution time, including the effect of the bit level par-

allelism, we simulate arithmetic instructions in detail. We do not model memory instruc-

tions here, since they are covered by the queuing network and simulations in Section 5.6.6. 

The aim is to get a quick estimate of how long arithmetic instructions take to execute, and 

see the effect of overlapping instruction execution at the bit level (to exploit parallelism). 

As we add instructions to a packet, its length increases but the average time to complete an 

instruction in the packet decreases. Each packet has extra bits that provide control informa-

tion and help in fault tolerance. The cost of this overhead is amortized over the number of 

instructions in the packet.
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We use two steps to calculate the time an instruction takes to execute. First, we calcu-

late the decode time for each instruction. On the execution network, each instruction can 

be decoded as soon as the entire opcode has been received by an appropriate processing ele-

ment. Next, we update the execution time of each instruction with the time taken to operate 

on all operand bits, taking into account the time taken by prior instructions to execute and 

send the result bits over the execution network. We use this simple model of instruction 

execution to calculate the time it would take to execute multiple consecutive add instruc-

tions. In Figure 5-6, we plot the average time taken to execute an instruction as a function 

of the number of instructions executed. The graph shows the effects of the bit-level paral-

lelism. In case of a completely sequential execution, the cycles per instruction would 

remain constant. Here, the effect of the overlapped execution is the reduction of the per-

instruction execution time which is observed in packets with ten instructions or less. 

Beyond ten instructions, each new instruction adds enough data overhead to counter the 

effect of overhead amortization and execution time per instruction remains almost constant. 

Next, we evaluate NANA’s performance on a simple program that includes both arithmetic 

and memory operations.
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5.6.4 Fibonacci

In this section we consider the simple code that computes the Nth Fibonacci number. 

Table 5-4 shows the packet needed to implement Fibonacci for N >= 1 (N is stored at 

address 0x02), and how the fragments are arranged in memory. For simplicity, each 

instruction is a separate fragment. The first packet, starting at address 0x10, loads the value 

N (counter), which specifies which Fibonacci number to compute, and the constants 1 and 

0 (pre-loaded into 0x04 and 0x06 to begin with). The fourth instruction decrements the 

counter and sets the condition bit in the tail if the counter is zero. The counter is then stored 

back at address 0x02. The seventh instruction swaps the first two operands in the operand 

stream. The eighth instruction creates a copy of the accumulator at the end of the operand 

stream. The ninth instruction (ADD) computes the next Fibonacci number. If the condition 

flag in the tail is set, this new computed value is stored at address 0x08. The two remaining 

operands are then stored at locations 0x06 and 0x04. Finally, if the condition flag is not set, 

we loop back to the beginning using a CALLZ instruction, creating a new packet. If the 

condition flag is set, the instruction is not executed, terminating the program. Figure 5-7

illustrates the creation of this packet with a bootstrapping JMP. In Figure 5-7a, we show 

the bootstrapping packet inserted at the via in the execution network. This packet is routed 

along the execution network until it finds a memory port. The JMP instruction in the packet 

executes at the port and starts fetching data from location 0x10 (where the Fibonacci code 

is stored). The data returned from location 0x10 (Figure 5-7b) is divided into two parts: 1) 

Address Op Next Address Op Next

0x10 LD (0x02) 0x14 0x26 CPACC 0x28

0x14 LD (0x04) 0x18 0x28 ADD 0x2A

0x18 LD (0x06) 0x1A 0x2A CST (0x08) 0x2E

0x1A DEC 0x1C 0x2E ST (0x06) 0x32

0x1C CMPZ 0x20 0x32 ST (0x04) 0x36

0x20 ST (0x02) 0x24 0x36 CALLZ (0x10) 0x0

0x24 SWAP 0x26

Table 5-4. Packet Layout
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data for packet and 2) next address. The data for the packet (in this case, a LD opcode) is 

inserted into the packet and sent out on the execution network. The next address is used to 

fetch the next fragment of code (in this case, from address 0x12). The data returned from 

location 0x12 (Figure 5-7c) provides the address for the LD instruction and the address of 

the next fragment of code. This process is repeated until we get a data fragment back with 

0x00 as the next address (Figure 5-7d). This indicates that we have finished executing the 

JMP instruction. The final packet before execution begins is shown in Figure 5-7e. It is 

important to note that execution can begin while the JMP instruction is still executing.

To demonstrate our system operation, we simulate its behavior at the bit serial link level 

executing the above packets. We model a single 32x32 cell with 25% ALU nodes and four 

corner vias for planar gradients. We assume a random distribution of defective nodes, with 

3% of all nodes being defective. The memory system in the cell includes 64 16-bit memory 

nodes and 80 ports. A system using a depth-first execution network would achieve similar 

performance (depth-first execution only increases the number of nodes reachable on the 

execution network). The average time per loop iteration (0x10 to 0x36) is 22,300 cycles 

and it might be possible to reduce this through loop unrolling. However, only 2,000 of the 

Header TailData Separators0x10JMP Header TailData Separators

0x12LD

address
Next 

0x10

Header TailData Separators

0x14

LD

address
Next 

0x300x12

(c) Second packet fragment  (from 0x12)

0x000x10
Next 
address (Stop
fetching)

Header LD0x30 TailData SeparatorsCALLZ

(d) Last packet fragment returned to memory port

Data Separators

Tail

Header LD 0x30 LD 0x32 LD 0x34 DEC SETZ ST 0x30 SWAP CPACC ADD CST 0x36 ST 0x34 ST 0x32 CALLZ 0x10

(a) Bootstrap packet injected at via (b) First packet fragment returned to memory port
executing bootstrap JMP

(e) Fully assembled packet with empty operand stream

Figure 5-7. Bootstrapping the fibonacci execution packet with a JMP
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22,300 cycles are spent in performing the actual computation. More than 20,000 cycles are 

spent in accessing the memory system. Figure 5-8 illustrates the execution of the program. 

We take a snapshot of execution before the first load operation completes. While the abso-

lute performance of this example does not surpass even current CMOS, it serves to demon-

strate the operation of a single cell. The greatest advantage of this technology arises from 

the scale of the system.

5.6.5 String Match

String searching is a common operation in many applications (e.g., searching for par-

ticular DNA sequences within a genome). Our string match program loads a 16-bit key and 

compares it to all data elements within the cell, and a conditional store indicates if a match 

was found. This implementation requires 48 memory locations for instructions and 16 for 

data. Therefore, we can search a 32GB database by using all 109 cells. The execution time 

within one cell is 35 ns per comparison, for a total of 28.5x106 comparisons/sec. The poten-

tial for massive parallelism would be exposed by having each of the 109 cells perform a 

unique comparison, yielding an overall rate of 2.85x1016 comparisons/sec.

While string matching helps us demonstrate the high performance that could be 

achieved with NANA, it serves to illustrate one potential problem: as the size of programs 

being executed increases, the size of the local memory system within the cell must be made 

larger. In addition, there is contention for memory locations between instructions and data.

5.6.6 Memory System: Queuing Network Model

As we saw with Fibonacci, the memory system in NANA lowers the potential perfor-

mance that could be achieved. In this section, we use a simple queueing network model 

with mean value analysis (MVA) to estimate the throughput of the memory system, and 

identify potential bottlenecks. Model input parameters and outputs are listed in Table 5-5.

We build a queuing network to model the memory system. It consists of three servers, 

the anchor point, memory and the “gap” server. The anchor point is a queuing server that 

queues up memory requests (it acts as a serialization point in the real system). The other 
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Figure 5-8. The path of Fibonacci code in one direction through configured network 
with 1024 nodes. Unused nodes in the execution network appear faded. 1: Bootstrap 

packet injected at via, 2: JMP executes at port, 3: LD 0x02 executes at port, 4: LD 0x04 
executes at port, 5: LD 0x06 executes at port, 6: DEC at processing node, 7: CMPZ 

executes at processing node, 8: ST 0x02 executes at port, 9: SWAP executes at 
processing node, 10: ADD executes at processing node. 
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servers simply delay packets by a fixed amount. The gap server corresponds to the gap 

between consecutive memory requests. Figure 5-9a shows a block diagram of this model. 

For each experiment, we vary the service time per request at the anchor point, from 32 to 

256 cycles. For all the results presented here, we use a gap time of 128 cycles, and a 

memory service time of 64 cycles (time taken by a memory node to decode the address and 

respond with data). Each experiment measures the throughput and response time for one to 

twenty memory requests.

Figure 5-10 shows a plot of the latency vs. the throughput of the system. There are two 

types of curves in the graph, one corresponds to different anchor point latencies, and the 

other corresponds to a particular number of memory requests in the system. The anchor 

point latency curves show that as we increase the anchor point latency, the maximum 

throughput of the memory network is lower. This could mean that the anchor point is a 

potential bottleneck. The utilization at the anchor point as obtained from the model also 

Input Description Output Description

Sk Service time at server k U System utilization

N # requests in the system R System Response Time

Rk Response time at server k

X System throughput

Table 5-5. Model Parameters

AP

Gap

(a) Single Anchor
       Point

(b) Distributed
       Anchor
       Point

Gap

AP Mem

AP Mem

Figure 5-9. Memory Queuing Model
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seems to indicate the potential for a bottleneck. It is important to see if the anchor point 

would indeed be a bottleneck when the system is handling a typical number of memory 

requests. We estimate the number of requests in the memory network to be between five 

and ten (for example, 1-2 packets per cell, 4 loads, 1 store per packet). From Figure 5-10, 

we can see that for all anchor point latency values in the operating range, the latency of the 

system is increasing without any corresponding increase in the throughput. Utilization of 

the anchor point in the operating range is 100% for five or more active memory requests. 

Even with a single packet, executing three memory operations (for example, two loads, one 

store), utilization is 100%. This indicates that the anchor point will be a bottleneck.

If we model a system with replicated anchor points, where each anchor point can handle 

requests independently, we would expect an improvement in system throughput. Figure 5-

9b shows a block diagram of such a system. Figure 5-11 plots the latency vs. throughput 

for a system with one to five anchor points. As before, there are two types of curves. The 

first type of curve represents the memory latency for a varying number of anchor points. 

The second type of curve represents the memory latency for a given number of memory 

requests in the network. We keep the latency of the anchor point fixed at 64 cycles. From 

the curve it is clear that having a set of replicated anchor points improves system through-

put and postpones system saturation. The region bounded by the two curves representing 

five and ten active memory requests represents the expected operating region for the sys-

tem.

Figure 5-10. Latency vs. Throughput (varying AP latency)
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Our analysis of the memory system using the analytical model shows that the anchor 

node is likely to be a bottleneck. This bottleneck could be reduced by creating replicas of 

the memory anchor, or by having a distributed root for the memory. However, both these 

schemes require an increase in the functionality implemented in memory and port nodes. 

This is expected to be infeasible given the functionality already required in these node types 

and the limitations imposed by self-assembly. Thus, it is not currently possible to mitigate 

the anchor point bottleneck in the memory system. Future improvements in the fabrication 

technology might enable such improvements.

5.6.7 Effect of System Optimizations

There are numerous optimizations that can be implemented to improve system perfor-

mance. However, most of these optimizations do little to affect the primary system bottle-

necks. We briefly discuss two optimizations that show promise, but have little effect on 

system performance.

5.6.7.1 Routing in the Execution Network

There are two options for routing execution packets within a cell: 1) using planar gradients 

and 2) using a local execution gradient. The two schemes differ in the number of nodes on 

the execution network they provide access to. Using depth first routing on a local execution 

gradient within the cell makes more nodes available for use during execution. However, 
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this does not directly affect program performance since it does not increase the number of 

nodes that can be utilized at a time.

5.6.7.2 Memory System Optimizations

In the default system, memory operations (load/store) do not issue into the memory net-

work until they have their address (for loads), or address and data (for stores). However, 

we can overlap some data movement latency by issuing the load/store requests early. For 

example, load requests can be inserted into the memory system as soon as the load instruc-

tion is decoded, since the address is guaranteed to follow. Similarly, for a store, the store 

request can be inserted as soon as the store instruction is decoded. While such early issue 

of requests can improve performance by overlapping data movement, it has little effect on 

system performance due to other system bottlenecks. In the next section, we explore the 

bottlenecks that prevent NANA from achieving peak performance in practice.

5.7 Performance Discussion

NANA can theoretically achieve a peak performance of 4.12x1021 bitops/sec (assum-

ing 50% of nodes compute), which is significantly larger than today’s supercomputers (the 

IBM Blue Gene can achieve a peak of 4.6x1016 bitops/sec, and the NEC Earth Simulator 

can achieve a peak of 5.2x1015 bitops/sec). However, it will be a challenge to realize this 

performance in practice. The two test programs expose two key limitations of this architec-

ture: 1) under-utilization of nodes and network connectivity, and 2) the memory system is 

a bottleneck.

5.7.1 Under-utilization of Nodes

One of the key limiting factors to achieving good performance is the fact that nodes 

spend only a small fraction of their time doing useful work. For example, if we are execut-

ing 10 arithmetic instructions, the node that executes the first instruction is doing useful 

work only when a) it is receiving the first instruction and b) it is receiving its operands for 

execution. Since there are 10 instructions being executed, which will require 11 operands 
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(assuming data is pre-loaded), the packet will contain 868 bits (including header, instruc-

tions, operands, field separators and tail). Out of these, only 220 bits (header, instruction to 

be executed, separators, two operands, the operand separators and tail) are relevant to the 

execution of the instruction. Thus, the node is doing “useful” work only when it is dealing 

with ~25% of the bits in the packet. No useful computation is performed by the node in the 

remaining time.

The depth first execution network increases the number of nodes usable during execu-

tion, but does not reduce node idle time. The execution network can be thought of as a pipe-

line of nodes. The pipeline is most efficient only when it is full. Similarly, the execution 

network is fully utilized only when all nodes are actively executing instructions. This 

would require the creation of extremely long packets. However, the longer the packet, the 

longer it takes for a node to execute instructions because longer packets typically have 

longer instruction and data fields and the a node needs to forward the entire packet before 

it can handle the next packet. This limits the peak performance of NANA.

5.7.2 Memory System Bottleneck

The memory system in NANA has multiple bottlenecks. For example, to limit design 

complexity, it is not possible to execute ST instructions from a packet before any LD 

instructions. This limits the size and content of execution packets that can be created. In 

addition, all memory requests are serialized through the anchor node. This creates a sub-

stantial bottleneck at the anchor node. There is no easy way of alleviating this bottleneck, 

without significantly adding to the complexity of the system. Finally, our limited routing 

capability in the random network limits our ability to build a balanced memory network. 

This often results in unbalanced networks with long latencies.

5.8 Insights and Lessons

While NANA is unable to achieve high performance, we discuss some of the lessons and 

insights it provides that help us make informed decisions with future designs.
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5.8.1 Configuration, Logical Structure and Defect Isolation

Our evaluation of the configuration mechanism shows that it is very effective in dealing 

with a large fraction of defective nodes (up to 30%). However, the planar gradients are not 

as useful in providing a general routing framework. Depth first routing on the local cell gra-

dient provides a more effective mechanism for accessing all the nodes in a cell. In addition, 

the broadcast tree effectively connects nodes in a logical ring created by performing a depth 

first traversal of the tree. This opens up the possibility of organizing nodes into logical 

groups to achieve coordinated actions.

5.8.2 Heterogeneous Nodes

Heterogeneous nodes were needed in NANA to keep node complexity within technological 

constraints, while implementing all the required functionality in the system. However, a 

system that relies on heterogeneous nodes is likely to be highly dependent on the distribu-

tion of the different node types (we observe this during the configuration of the memory 

system in NANA). We thus would like to minimize the number of different node types in 

the system, ideally having homogenous nodes.

5.8.3 Bit-level parallelism

NANA is able to do a good job exploiting bit-level parallelism in the program. Since each 

node is likely to implement a small bit-slice of the total data word, exploiting bit-level par-

allelism can help overcome some of the performance penalty associated with small ALUs.

5.8.4 Exploiting Node Parallelism

NANA does a poor job of exploiting the massive computational parallelism that exists in a 

system with 109-1012 nodes. Any architecture built using such a large number of nodes 

must make efficient use of this parallelism.

The design and evaluation of NANA provided valuable insights for the design of the 

data parallel architecture that we present in the next chapter.
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5.9 Conclusions

In this chapter, we presented an architecture that addresses the challenges posed by 

DNA-based self-assembly of carbon nanotubes and other nanotechnologies with similar 

characteristics (possibly even scaled CMOS). We developed an active-network architec-

ture with an accumulator-based ISA to overcome (1) limited node size, (2) random inter-

connection of nodes, and (3) a high defect rate. This architecture enables execution packets 

to search through a sea of heterogeneous nodes for the functionality they need, while avoid-

ing defective nodes. We use an initial configuration phase to impose some limited structure 

on the computing substrate, particularly for routing and memory allocation. We simulate 

this architecture running simple programs to demonstrate its viability, and provide prelim-

inary performance numbers. While this architecture is only a relatively unoptimized first 

step, it addresses some of the key challenges in this class of nanotechnology and it high-

lights the technology’s architectural implications. Despite its limitations, NANA demon-

strates that it is possible to build a computing system within the severe technological 

constraints. In the next chapter, we present a different design that incorporates the lessons 

learned during the design of NANA to build a high performance data parallel architecture.
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6  A Self-Organizing SIMD 
Architecture

In this chapter, we describe the design of a data parallel architecture called the “Self-

Organizing SIMD Architecture”, or “SOSA”. The goal is to design a high-performance 

defect tolerant architecture within the assumed constraints of DNA-based self-assembly of 

carbon nanotube electronic devices. To achieve this goal, SOSA builds on the lessons and 

experiences gained from NANA. The architecture is designed to exploit a large number of 

identical nodes, each with limited compute power, by allowing groups of nodes to self-

organize to create more powerful computational entities. The fundamental building block 

in SOSA is a relatively small node (e.g., 1-bit ALU, 32 bits of storage, and communication 

support for four neighbors) that operates asynchronously. The design of the node is aimed 

at maximizing the implemented functionality, while meeting the assumed constraints (e.g., 

limited size, etc.) of the underlying manufacturing technology. While the small node size 

leads to increased overhead per bit of data processed, some of this overhead can be miti-

gated by exploiting bit-level parallelism as demonstrated by NANA. We adapt the config-

uration mechanism used in NANA to group nodes into larger SIMD style “processing 

elements” (PEs) that are connected in a logical ring and can perform computation on multi-

byte data words in parallel. The architecture simplifies the programmer’s view of the 

system by supporting the data parallel programming model that enables the orchestration 

of data and computation on the ring of PEs.

SOSA overcomes two key problems that are encountered in NANA: 1) low node utili-

zation and 2) the need for heterogeneous nodes. Nodes automatically synchronize with 

each other through program execution, without the need for explicit synchronization. Since 

SOSA composes PEs using several identical nodes, the performance of the architecture is 

no longer dependent on the distribution of different node types. In addition, we can focus 

on optimizing the design of a single node, rather than having to design multiple node types. 
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We make conservative assumptions about node size and operating speeds to avoid over-

estimating the performance of our design due to aggressive technological parameters.

SOSA can utilize the higher device densities and parallelism enabled by a large number of 

nodes better than NANA, allowing it to achieve good performance while keeping operating 

speeds and power density low. While the design presented here assumes DNA-based self-

assembly of carbon nanotube electronics as the underlying technology, it is applicable to 

other technologies with high defect rates and a loss of precise control over parts of the fab-

rication process. Further improvements are possible as the technology scales to permit 

more complex nodes, better inter-node connectivity, and faster devices.

We make the following contributions in this chapter:

1. We design a data parallel architecture (“SOSA”) that requires only a single node type, 

and makes efficient use of the nodes, thus solving two critical problems encountered 

with NANA,

2. We develop a mechanism to allow a large number of nodes connected in a random net-

work to self-organize to create SIMD style processing elements connected in a logical 

ring, and

3. We demonstrate through our evaluation that SOSA matches or exceeds the perfor-

mance of existing architectures on data parallel workloads, while consuming less 

power and operating at a lower speed.

In Section 6.1, we present an overview of SOSA. In section Section 6.2, we describe 

the microarchitecture of a node used in SOSA. While our overall configuration approach 

has been described in Chapter 4, we describe the SOSA specific steps in Section 6.3. In 

Section 6.4, we present the system-level operation of SOSA. We evaluate the performance 

of SOSA in Section 6.5, and describe its limitations in Section 6.6. We discuss extensions 

to the architecture that could be made possible by technological advances in Section 6.7

and conclude the chapter with a summary in Section 6.8.
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6.1 System Overview

The goal of SOSA is to build a high-performance, defect tolerant, data parallel comput-

ing system. SOSA must efficiently use the large number (~109-1012) of nodes connected 

with a random interconnect. SOSA supports a three operand register-based ISA with pred-

icated execution and explicit PE-Shift instructions to move data between PEs and commu-

nicate with an external controller. We assume that the external controller has access to a 

conventional memory system and orchestrates the flow of instructions and data into SOSA.

Each self-assembled node is a fully asynchronous circuit and there is no global clock to 

synchronize data transfers between or within nodes. Each node has a 1-bit ALU with a 

small register file, and nodes are connected to each other by single wire links. Each link 
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Figure 6-1.  Random Node Network (a) before configuration (node A is the anchor), 
(b) nodes after gradient broadcast with their depth first order specified (dotted lines are 

links that are not part of depth first traversal), (c) broadcast tree and depth first node 
order and (d) nodes grouped into three 8-bit PEs (each PE has 8 data nodes and two 

control nodes).
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supports very low bandwidth asynchronous communication that transfers 1 bit of data per 

handshake. To support deadlock-free routing, we add support for three virtual channels (1 

bit each). Unlike NANA, we cannot reduce the number of virtual channels required since 

the virtual networks cannot be made disjoint. The random network of nodes is organized at 

two levels during a configuration phase. First, since a node is too small to hold a PE, we 

group sets of nodes to form a PE. Second, PEs are linked in a logical ring providing pro-

grammers a simplified system view to reason about inter-PE communication. Figure 6-1

shows a small random network of nodes as it is configured to create three 8-bit processing 

elements.

The configuration phase maps out defective nodes and connects functional nodes in a 

broadcast tree. The system can be configured in two ways: 1) as a monolithic system, all 

nodes on a single logical ring (one “cell”), or 2) as multiple, independent logical rings (mul-

tiple “cells”). For a monolithic system, anchors can be used to speed up PE configuration 

and data input/output by serving as “taps” into the logical ring. The only constraint 

enforced during configuration is that an anchor cannot partition a PE. In case of multiple 

cells, we achieve space partitioning by running the configuration algorithm from multiple 

anchors to create independent cells. Space partitioning is a common technique used in 

highly parallel systems to increase resource utilization by enabling the execution of multi-

ple instances of one workload, or running multiple workloads.

6.2 Node Microarchitecture

Careful node design is critical in maximizing system performance. Due to limited node 

size, designing the node architecture involves a trade-off between maximizing functional-

ity (compute, communicate, and self-organize) and performance while minimizing circuit 

size. To avoid the area and power overhead of routing clock signals and to mitigate the 

effects of device parameter variation, instruction execution and sequencing within a node 

are asynchronous. The rest of this section describes the node microarchitecture and circuit 

design. We split the discussion of the microarchitecture into the data path (Section 6.2.1), 

control (Section 6.2.2), and inter-node communication (Section 6.2.3), highlighting the 
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trade-offs between functionality, performance and circuit size. We then estimate the size 

and power consumption of a node and the entire system based on the node design 

(Section 6.2.4). We conclude this section with a summary of the node microarchitecture 

(Section 6.2.5).

6.2.1 Data Path

Each node has a simple data path that consists of a 1-bit ALU, a 32-bit register file, and 

a data buffer that stores incoming and outgoing data. The register file and data buffer can 

act as sources and/or sinks for the ALU. The data buffer cannot be written to unless the cur-

rent instruction is waiting for data, and once written, cannot be overwritten until the data is 

used by the ALU. All internal node communication occurs on dedicated point to point 

links. Where possible, we overlap the latency of moving a bit between two parts of the node 

with other operations.

Nodes can be designed to partition the 32-bit register file into N-bit wide registers that 

require an N-bit ALU or repeated use of a single-bit ALU. For example, a 32-bit PE could 

be created with 32 one-bit registers, requiring 32 nodes for the PE, or with 16 two-bit reg-

isters, requiring 16 nodes to form the PE. Increasing register width increases the work done 

per instruction in a node, reduces the number of nodes required to form a PE, and reduces 

inter-PE communication overheads (since PE length reduces). However, for a fixed sized 

node, wider registers reduce the number of registers available to a programmer. Simula-

tions reveal that 2-bit wide registers achieve the best trade-off in terms of maximizing the 

benefit of wider registers and the number of registers available to programmers (we evalu-

ate this in detail in Section 6.5). We also find that program performance is not sensitive to 

ALU execution latencies shorter than the time taken to send/receive a bit between nodes.

6.2.2 Control

The control logic in the node can be divided into two parts. The first part (configuration 

logic) is used only during configuration and has two control registers used for defect testing 

and isolation, and PE configuration.
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The second part is the run-time control logic used to decode and execute instructions. 

Figure 6-2 shows a floorplan of the node with the configuration logic enclosed in a dashed-

rectangle within the data and control logic block and the expanded view of one transceiver 

at the bottom. To reduce design complexity we sacrifice latency and use microcoded con-

trol logic with each instruction divided into multiple microinstructions. The run-time con-

trol logic has three control registers (buffers) to hold each of three micro-instructions that 

comprise an instruction: 1) opcode, 2) register specifier and 3) synchronization (synch). 

The synch microinstruction holds an optional counter value (“repeat counter”) to enable the 

repeated execution of one instruction and avoid broadcasting the same instruction consec-

utively. The register specifier also includes fields that allow simple increment or decrement 

operations on source and destination registers in conjunction with their reuse (for striding 

Figure 6-2. Node Floorplan, showing one transceiver, compute and 
configuration logic
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through registers). We add a shared circuit that is used to increment/decrement register 

specifiers and the repeat counter. Because of high instruction execution latencies, the incre-

ment/decrement operations can be overlapped with other operations, effectively hiding 

their latency.

All arriving microinstructions are first sent to an instruction buffer before they are 

moved to the control registers, creating a simple two-stage pipeline (buffer, execute). Each 

entry in the instruction buffer can hold all three micro-instructions that form a full instruc-

tion. The instruction opcode is fully decoded and copying the instruction into the control 

registers enables all control signals required to execute the instruction and detect its com-

pletion so that the next instruction can begin to execute. Increasing the instruction buffer 

size can improve performance by overlapping instruction broadcast with execution, but can 

also lead to greater contention (and reduced performance) on the network since instructions 

and data must share link bandwidth. Simulations reveal that having a single-entry instruc-

tion buffer offers the best trade-off between improving performance and minimizing design 

complexity.

6.2.3 Inter-Node Communication

Nodes communicate with each other on single-bit asynchronous links. Each end of a 

link terminates in a transceiver that can handle three virtual channels (using 1-bit buffers 

per virtual channel). The transceiver can route each virtual channel (VC) independently and 

requires three bits of state per VC to store the destination address. To support self-organi-

zation, nodes include logic to configure static routes (see Section 6.3.1). Virtual channel 0 

(VC0) is used to broadcast instructions. Virtual channel 1 (VC1) and virtual channel 2 

(VC2) are used to route data in opposite directions on the logical ring. Each asynchronous 

transaction on a link is controlled through a four-phase handshake. The links support bidi-

rectional full-duplex transfers. To simplify transceiver circuit size and complexity we 

transfer 1 bit per handshake (which severely limits link bandwidth). Next, we use our node 

design to estimate the expected size of the node and its power consumption.
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6.2.4 Circuit Size and Power Estimates

To estimate the size of a node and its power consumption, we have implemented the 

different components of a node in VHDL (node design is discussed in detail in Chapter 7). 

Our simulator (discussed in Section 6.5) models the system in sufficient detail to make it 

relatively easy to extract a circuit model for most components. Figure 6-2 shows a floorplan 

of a node, showing the approximate position (not to scale) of the datapath, control and 

transceivers. Based on our implementation in VHDL, we estimate that the entire node will 

require about 11,000 transistors. Since the proposed fabrication technology currently 

imposes limitations on the number of metal layers, we estimate the final area of the node 

to be the equivalent of 23,000 transistors (based on our experience in laying out circuits) 

which translates to a 3µm x 3µm node. Recent work [58,106,152] has shown that it should 

be possible to manufacture DNA grids of this size.

To estimate system power consumption, we use the energy*delay product for carbon 

nanotube field effect transistor (CNFET) circuits [40]. Based on a conservative switching 

speed of 1 ns (carbon nanotube based devices are expected to operate at significantly higher 

switching speeds [18]) and estimated node gate and latch counts, we calculate an upper 

bound on the per node power consumption. During execution, the configuration logic and 

a large part of the register file are inactive (at most 3 registers can be active). Accounting 

for these inactive elements yields a node activity factor of 0.88, which corresponds to a 

power consumption of 0.775µW per node. To obtain an upper bound on the power density 

of this system, we assume that nodes are packed with no space between them. Using our 

estimated node area (9µm2) and power (0.775µW), we get a maximum power density of 

6.5W/cm2, with a node activity factor of 0.88. This is much less than the power densities 

of current processors, which are greater than 75 W/cm2. This estimate is pessimistic since 

the activity factor is a conservative estimate, we cannot pack nodes perfectly, and defective 

nodes will further reduce power density.
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6.2.5 Summary

Each node in SOSA is a small device with the ability to communicate with up to four 

neighbors, store small amounts of state and perform simple computation. To minimize area 

and power overheads the nodes use asynchronous logic. We can exploit the high device 

density and the parallelism enabled by the large number of nodes to achieve good perfor-

mance without operating at high speeds, thus reducing system power density. Similar 

approaches have been used to reduce power consumption [44]. In the next section, we 

describe how we coordinate the operation of these nodes connected through an unstruc-

tured network to execute programs.

6.3 System Configuration

To use the random network of nodes to perform useful computation we impose a logical 

structure on the network and isolate defective nodes from the rest of the system. The ability 

to isolate defective nodes avoids the need for an external defect map, which would be 

impractical to obtain given the size and bandwidth limitations of the system. Once defec-

tive nodes are isolated, the functional nodes are grouped to form PEs. In the rest of this sec-

tion, we describe the mechanism that configures nodes into PEs (Section 6.3.1) and 

optimizations to this configuration mechanism (Section 6.3.2).

6.3.1 Configuring Processing Elements

We use the configuration algorithm described in Chapter 4 to impose logical structure 

on the random network and isolate defective nodes. Once the configuration algorithm ter-

minates, all reachable functional nodes are connected on a broadcast tree. The configura-

tion algorithm also helps in setting up depth first routing on the broadcast tree. For forward 

depth first traversals of the tree (which use VC1), each node picks outgoing links in a pre-

defined order relative to the gradient link. This order is reversed for reverse depth first tra-

versals of the tree (which use VC2). If we use a single anchor to initiate the configuration 

algorithm, all the nodes in the random network are on the same broadcast tree. Alterna-
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tively, we can use regularly placed anchors to broadcast multiple gradients and create inde-

pendent broadcast trees. The only requirement for configuring a system in such a way is the 

presence of vias distributed through the random network. For example, we could self-

assemble the random network of nodes on a silicon wafer with a grid of vias.

A node is too small to hold an entire PE, so we logically group a set of nodes to form a 

PE. To create PEs with N bits (we assume N=32), we traverse the broadcast tree in depth-

first order (on VC1) and group together (N/b)+2 consecutive unconfigured nodes, where N 

is the data word width, and ‘b’ is the register width per node. We use one configuration 

packet per PE. An unconfigured node receiving a configuration packet examines it to deter-

mine what node in the PE is to be configured next. The first node holds auxiliary control 

bits for the PE and is called the “head” node. The next N nodes serve as compute nodes that 

form the N-bit PE. The last node (“tail”) serves as the terminating point of the PE and is 

used to store the status bits (carry/borrow) resulting from an arithmetic operation. A newly 

configured tail node sinks the configuration packet. If the broadcast tree does not have suf-

ficient nodes to form an integral number of PEs, the “incomplete” PE is deconfigured 

before execution begins by performing a reverse depth first traversal on VC2. PE deconfig-

uration uses a simple packet and starts with the last configured node of the partial PE, and 

deconfigures all intermediate nodes until it reaches (and terminates at) the head node. 

Figure 6-3 shows a network in a “configured” state with three 8-bit PEs ordered by the 

depth first traversal of the network. The links shown with solid lines correspond to edges 

on the broadcast tree. Links shown with dashed lines do not lie on the broadcast tree and 

are not used. The unlabeled nodes outside the via are part of an “incomplete” PE that has 

been deconfigured. The numbers within each node identify the PE that the node belongs to 

(first label) and the position of that node within the PE (second label). For example, the 

node marked ‘2.H’ is the head node of the second PE. Figure 6-4 shows the logical order 

of nodes within a PE.
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6.3.2 Optimizing PE Configuration

The configuration process creates PEs in a greedy manner. However, this can lead to 

very long PEs (in the number of hops taken to traverse the PE in depth first order), which 

in turn increases execution latencies of instructions by increasing the time taken to 

exchange data between nodes of a PE. For example, PE 3 in Figure 6-3 is 20 hops long, 

because it is allocated using a greedy strategy. For very large broadcast trees with many 

defective nodes, this length can be excessive and reduce performance. To improve perfor-

mance, we modify the configuration process to reject any PE that is longer than a certain 

threshold. Since the post-configuration step deconfigures any partial PE (i.e., PEs with no 

tail), to reject a PE that crosses the length threshold, we simply start a new PE without cre-

ating a tail node. We experiment with different PE length thresholds (see Section 6.5) and 

find that a threshold of 4 times the minimum PE length achieves a good balance between 

extra nodes required in the system and the performance gained by limiting PE length. A 

configuration packet can be augmented to keep track of the number of hops within the PE 

using a unary encoding. If the maximum length threshold is exceeded, the packet is dis-

carded. We further reduce the number of hops in a depth first traversal of the broadcast tree 

Figure 6-3. System Overview: configured system with 3 8-bit processing elements (PEs)
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by pruning a branch of the tree if there are no configured children on that branch. These 

optimizations reduce the runtime of our matrix multiply benchmark by 10-15%.

Once PEs are configured, all nodes set a “run” mode bit and each PE remains idle wait-

ing for instructions to execute. Packets are no longer routed to the configuration control 

registers, until the node receives a global reset instruction. In the next section, we describe 

how SOSA uses the configured PEs to execute instructions.

6.4 System Architecture

In this section, we describe the architecture of our proposed system in detail. We begin 

by describing our instruction set (Section 6.4.1) and execution model (Section 6.4.2). Next, 

we present an example illustrating the execution of an instruction in the system 

(Section 6.4.3). We then describe techniques to reduce the number of instruction bits 

broadcast (Section 6.4.4). We conclude with a summary of the key ideas presented in this 

section (Section 6.4.5).

6.4.1 Instruction Set Architecture

SOSA uses a three register operand ISA, with microcoded instructions. Table 6-1

shows a subset of the instruction set supported by SOSA (Appendix B describes the instruc-

tion set in detail). A full instruction has between 39 and 44 bits and contains: a) a 16-bit 

fully-decoded opcode microinstruction, b) a 20-bit register specifier microinstruction (4 

bits per register specifier for a 16-entry register file, and 2 extra bits per register specifier 

to allow increment/decrement/no change operations), and c) a 3-bit “synch” microinstruc-

tion with an optional 5-bit synch repeat counter. Each microinstruction type can be inde-

pendently broadcast and includes 2 bits of control overhead to select a control register as a 

destination. Since opcodes are fully decoded, it is relatively straightforward to support 

fused instructions that include combinations of operations to increase the amount of work 

done per instruction. For example, a Copy-Shift first copies the source register to the des-

tination register, and then performs a shift operation on the destination register. SOSA also 
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supports predicated instruction execution (all instructions can be predicated) and has three 

types of instructions that can modify predicate bits: 1) conditional instructions, 2) uncon-

ditional predicate modifying instructions and 3) predicate-shift instructions.

Data exchange with the external controller and between PEs is handled through PE-

Shift instructions. When PEs in a cell execute a PE-Shift instruction, each PE sends the con-

tents of the specified register to one neighbor (left or right), and receives a new value for 

the register from the other neighbor (right or left). By controlling the internal routing con-

figuration of the anchor node, the external controller can be made part of the logical ring of 

PEs, allowing the use of PE-shift instructions to insert and extract data from PEs. Since 

these instructions are critical for data communication, it is important to minimize their 

latency. We optimize PE-Shifts using the following observation: for a B-bit PE, every bit 

moves exactly (B+2) positions to the left or right, and a node only needs to store the (B+2)th

bit in its register file and can “forward” the remaining bits without register access. We use 

the synch repeat counter to keep track of the number of bits being forwarded by the node. 

The node stops forwarding when it receives the (B+2)th bit. When a node is “forwarding” 

data, it copies the data bit directly from its input buffer to its output buffer. This reduces the 

critical path of a bit through the node.

Instruction Type Opcodes Description

Arithmetic
ADD, SUB, INC, DEC, 

SETGT, SETLT, SETEQ, 
SETNEQ

Various arithmetic and conditional instructions
“Set” instructions set the specified predicate register if 

the condition is satisfied

Logical AND, XOR, OR, NOT Various logical instructions

Shift
SHIFTML,SHIFTLM, 

PSHIFTML

Various SHIFT instructions. ML=>MSB to LSB, 
LM=>LSB to MSB. The prefix “p” indicates that the 

instruction modifies the specified predicate register (not 
a predicated instruction)

PE-Shift SHIFTMLPE, SHIFTLMPE PE-Shift instructions. Move register to adjacent PE

Register 
operations

CLEAR, CPREG, SWAP Clear, Copy or Swap registers

Predicated PR[OPCODE]
Any instruction with the prefix “Pr” is predicated. The 

predicate register corresponds to the first source register

Fused CPSHIFTLM, CPSHIFTML
Copies source into destination, and performs a shift on 

the destination

Signal SIG_CTRL Send signal to external controller

Table 6-1. Instruction Set
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6.4.2 Execution Model

Instructions are broadcast on VC0 to all nodes, thus PEs, in a cell. Nodes first place 

instructions in the instruction buffer and then forward them down the broadcast tree. The 

forwarding of instructions is synchronized with their placement in the instruction buffer. 

Instruction broadcast stalls when the instruction buffer is full. The arrival of the synchroni-

zation micro-instruction is a signal to the node that all parts of the instruction have been 

received. An instruction moves from the instruction buffer to the node’s internal control 

registers only when the previous instruction finishes execution. Since nodes are bandwidth 

limited, we allow the partial broadcast of instructions to reduce the number of bits broad-

cast. If a microinstruction (except synch) is not broadcast, we reuse the previously latched 

value from the corresponding control register. The synch repeat counter also helps reduce 

the number of bits broadcast.

Non-predicated instructions can be executed independently by nodes of a PE, if there 

are no inter-bit data dependencies. For example, an OR instruction can be executed inde-

pendently by each node, while an ADD instruction forces nodes to wait for a carry to ripple 

through the PE. The head and tail nodes act as PE delimiters, and ensure that intra-PE data 

packets do not cross PE boundaries. The tail node also stores the carry/borrow out from 

arithmetic operations. The head node stores predicate bits (one per physical register) that 

are used to conditionally execute predicated instructions. When executing a predicated 

instruction, the head of a PE reads the specified predicate bit and informs the remaining 

nodes in the PE whether the instruction is to be executed or squashed by sending a “syn-

chronization” micro-instruction on the forward data channel (VC1). Since each node in a 

PE must await the arrival of the extra synchronization micro-instruction (which is con-

sumed by the tail), execution of predicated instructions is serialized through a PE.

6.4.3 Instruction Execution Example

Figure 6-5 uses the small configured network with three 8-bit PEs from Figure 6-3 to 

illustrate the different steps involved in executing an ADD instruction. The anchor node 
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Figure 6-5. Instruction Execution
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broadcasts three micro-instructions that form the ADD on VC0 (step 1). As each node 

receives the micro-instructions it buffers them (step 2) and waits for the synchronization 

micro-instruction to arrive. Once this microinstruction arrives (step 3), the node can start 

execution. Since we are executing an ADD, the head node of each PE must insert a carry-

in for the first node (step 3). Each node then performs the ADD as it receives the carry-in 

(step 4, 5, 6), and sends the carry-out to the next neighbor. When a node finishes with the 

ADD, it clears any temporary internal state used by the instruction and goes back to waiting 

for instructions to arrive (step 7,8). 

One important aspect of the execution model is that different nodes and PEs can be in 

different stages of execution at the same time. In step 3, nodes 3.H and 3.3 are still idle, 

while other nodes in PE-3 are receiving data (3.0, 3.2), and some have received the full 

instruction and are stalled waiting for the propagated carry (3.1, 3.4-3.T). This asynchro-

nous execution within and between PEs allows them to make forward progress indepen-

dently (as long as data dependencies are satisfied) and helps SOSA tolerate large inter-node 

communication latencies and achieve good performance. Next, we look at a series of opti-

mizations implemented in each node to reduce instruction bandwidth by allowing reuse of 

microinstructions.

6.4.4 Microinstruction Reuse

Since our nodes are severely bandwidth limited, we try to minimize the number of 

instruction bits broadcast. We use the following mechanisms to reduce the number of bits 

broadcast: 1) allow the broadcast of partial instructions, 2) add an increment/decrement/

unchanged field to the register specifier, and 3) add a new type of synchronization instruc-

tion that includes a “count” field, to allow repetition of instructions. 

Figure 6-6 (a) and (b) show how we can reduce the number of micro-instructions 

through the broadcast of partial instructions. In part (a), we want to perform consecutive 

ADD instructions. Here, we take advantage of the fact that the two operations share a con-

trol word and broadcast only the register specifier and synchronization micro-instruction 

for the second instruction. In part (b), we need to shift R2 to the right by 3 bits. In this case, 
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we just broadcast the synchronization micro-instruction three times after broadcasting the 

control word and the register specifier. Figure 6-6 (c) shows an example of the register 

specifier extension, where we add two bits per register specifier (total of 6 bits). This allows 

us to specify whether the register specifier is to be incremented by one (01), decremented 

by one (11), or left unchanged (00 or 10). In the example, we want to perform two ADDs, 

and the registers accessed by the instructions change only by one. For this example, we only 

have to broadcast the second synch microinstruction (saving one microinstruction broad-

cast). Figure 6-6 (d) shows an example of the case where we add a counter to the synch 

microinstruction. We use the same code segment from Figure 6-6 (b), where we had to per-

form three right shifts on R2. We now encode the repeat count with the synch microinstruc-

tion and avoid having to broadcast it three times. Since the width of the synch 

Figure 6-6. Reducing Broadcast Bandwidth: Micro-instruction reuse

Instructions

ADD R3,R2,R1 ;R3=R2+R1

ADD R5,R4,R3 ;R5=R4+R3

Micro-Instruction Stream
ADD
R3, R2, R1
synch
R5, R4, R3
synch

(a) Partial Instruction Broadcast: Reusing Opcode

Instructions

SHIFTML R2,3; R2>>=3;

Micro-Instruction Stream
ADD
R3 (11), R3 (01), R1(01)
synch
synch

(b) Partial Instruction Broadcast: Reusing Opcode + Register Specifier

Instructions
ADD R3,R3,R1 ;R3=R3+R1
ADD R2,R4,R2 ;R2=R4+R2

Micro-Instruction Stream
ADD
R3 (11), R3 (01), R1(01)
synch
synch

(c) Register Increment/Decrement
Instructions
SHIFTML R2,3 ; R >>= 3;

Micro-Instruction Stream
SHIFTML
R2
synch, 3

(d) Synch With Counter
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microinstruction is 3 bits, if we repeat the instruction at least three times, we save on the 

number of bits broadcast (for a 5 bit synch counter).

6.4.5 Summary

We have presented a detailed description of our proposed architecture. SOSA is 

designed to achieve high-performance by exploiting data and bit parallelism in workloads. 

We organize a large number of simple nodes into SIMD style processing elements that are 

connected in a logical ring. The asynchronous design of the system enables nodes to over-

lap computation and communication and reduces synchronization overheads. It is impor-

tant to note that, while we assume DNA-based self-assembly as the underlying fabrication 

process, the architecture does not require self-assembly. It is equally applicable to any man-

ufacturing technique that results in high defect rates and a loss of precise control during 

parts of the fabrication process. Next, we evaluate the performance of SOSA using a variety 

of workloads to determine if it achieves its design goals.

6.5 Evaluation

In this section, we present a detailed evaluation of SOSA. We begin with a description 

of our simulation infrastructure, benchmarks and evaluation methodology (Section 6.5.1). 

We divide our performance evaluation of SOSA into four parts: a) peak arithmetic perfor-

mance (Section 6.5.2), b) peak performance on data parallel workloads (Section 6.5.3), c) 

effect of various performance optimizations and sensitivity to operational and design 

parameters (Section 6.5.4), and d) performance in the presence of defective nodes 

(Section 6.5.5). Next, we perform an equal area comparison of SOSA and the Pentium 4 

(Section 6.5.6). We conclude this section with a summary of our performance evaluation 

(Section 6.5.7).
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6.5.1 Experimental Methodology

We evaluate SOSA using a custom, event-driven simulator and use results from simu-

lating smaller systems to do an extrapolation to predict the behavior of larger systems. The 

simulator models the system in great detail, down to bit exchanges between nodes. An 

“event” in the simulator corresponds to data movement between components within a node 

(for example, transceiver to control register). Since the nodes do not use a clock, we define 

the time taken to perform one part of the inter-node asynchronous communication hand-

shake as one “time unit”. The latency of all activity in the node is a multiple of this time 

unit.

Experimental carbon nanotube based devices are expected to operate at frequencies 

exceeding 100 GHz [18] with demonstrated frequencies over 10GHz [121] (time unit of 0.1 

ns), and asynchronous handshakes at high speeds have been previously demonstrated for 

high bandwidth crossbar networks [84]. We expect SOSA’s performance to scale with 

increased device performance, but we assume a conservative value of 1 ns for the time unit 

Parameter Value Parameter Value

Register File 16 entry, 2-bits per node Synch Repeat Counter Width 5 bits

Time unit 1 ns PE Length Optimization Enabled

ALU Latency 1 time unit Register Increment/Decrement Enabled

Data Width 32 bits Instruction Buffer Size 1 entry

Link Type Full Duplex

Table 6-2. SOSA System Parameters

Parameter Value Parameter Value

Width
128 (Fetch/Decode/Issue/

Commit)
Frequency 10 GHz

ROB/LSQ 8192 entries, single cycle access
Functional 

Units

128 INT ADD, 128 INT 
MUL, 128 FP ADD 128, FP 

MUL

Instruction Fetch 
Queue

1024 Entries
Branch 

Prediction
Perfect

Memory Latency 1 cycle Memory Ports 128

Table 6-3. Ideal Superscalar Parameters
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to avoid over-estimating performance due to aggressive technological parameters. We use 

the system parameters listed in Table 6-2 for all simulations. We use the custom tool to gen-

erate random network topologies. All our experiments in this section use a generated topol-

ogy with no defective nodes unless explicitly stated otherwise. The running times of 

benchmarks do not include system configuration time (which is proportional to the number 

of nodes in the system).

We compare the performance of the benchmarks on SOSA with their performance on 

two uniprocessors (a Pentium 4 running at 3 GHz, 1MB L2 and 1 GB RAM and an ideal 

out-of-order superscalar), an ideal 16-way CMP (obtained by linearly scaling performance 

of the ideal superscalar processor) and an ideal implementation of SOSA (I-SOSA) that 

uses the same instruction set, but assumes unit execution latencies for all instructions and 

no communication overhead. The ideal superscalar (I-SS) and ideal CMP (16-CMP) 

models provide an upper bound on the performance that could be achieved by conventional 

architectures with aggressive technology scaling. I-SOSA provides an upper bound on how 

well SOSA would perform if all technological constraints were removed. Table 6-3 lists the 

microarchitectural parameters used for the I-SS, which we simulate using Simplescalar [9]. 

We use gcc to generate PISA binaries for use with Simplescalar. For the Pentium 4 (P4), 

we use optimized binaries generated by Intel’s C Compiler (icc, flags: -O3 -fast -tpp7) since 

they outperform binaries generated by gcc (flags: -O3 -march=pentium4 -msse -msse2 -

msse3 -mfpmath=sse -mmmx).

6.5.1.1 Benchmarks

Table 6-4 contains brief descriptions of the test programs, the broad application classes 

they fall under, and the number of PEs (as a function of N) required by SOSA to run one 

instance of the program. For all benchmarks other than the encryption algorithms, we con-

figure the system as a single cell with the required number of PEs. For the encryption algo-

rithms, we configure the system as a collection of cells, each of which operates as a 

pipelined encryption unit. We use C implementations of the best available algorithm for 

running on the I-SS and P4. For example, we use an implementation of quick sort, which 
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has an average case running time of O(Nlog(N)) on 1 processor, as opposed to the parallel 

sort which requires O(N2) comparisons and O(N) time on N processors to sort N numbers. 

Each program is also implemented in SOSA assembly and hand-optimized to minimize 

execution time. The optimizations include loop unrolling and code re-organization to min-

imize the number of instruction bits broadcast. The SOSA code for matrix multiplication 

and the image filters assumes data is in place before execution begins and does not account 

for data input overheads. However, this overhead forms only a small fraction of total exe-

cution time and could be reduced by exploiting multiple anchors in the system. The other 

workloads explicitly account for I/O overheads.

6.5.1.2 Extrapolation

Long simulation times make it impractical to simulate systems with more than 16K PEs. 

To estimate the performance of SOSA for configurations with more than 16K PEs, we use 

simple linear extrapolation. We use the performance data obtained from simulating smaller 

systems to construct an equation for linear extrapolation. We verify the validity of the 

extrapolation by comparing the performance predicted by the formula against the perfor-

Application Class PE Count Benchmark Description

Scientific N2 Matrix Multiplication Multiply two NxN matrices

Image Processing N2

Generic Filter - 3x3 mask
Apply a generic 3x3 mask on an NxN 

image

Separable Gaussian Filter
Apply a separable gaussian filter on 

an NxN image

3x3 Median Filter
Apply a median filter to an NxN 

image to reduce noise

General Purpose N Odd-Even Transposition Sort
Parallel sort with nearest neighbor 

communication

Cryptography 64

Tiny Encryption Algorithm (TEA)
Simple encryption algorithm used on 

the XBox

eXtended TEA(XTEA)
Extension to TEA, eliminates known 

vulnerabilities 

Throughput or 
Pipelined

N

Search
Search a database for a match with an 

input 32 bit string

Pipelined Binpacking
Pipelined version of bin packing with 

first-fit heuristic

Table 6-4. Benchmark Descriptions
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mance predicted by larger simulated systems. For example, matrix multiply simulations 

show a uniform scaling of running time for matrix sizes beyond 16x16. The scaling factor 

between an NxN matrix multiply and a 2Nx2N matrix multiply is about 3.6. We use a con-

servative scaling factor of 3.8 for the matrix multiply extrapolations to account for over-

heads that might be encountered for larger systems. The recurrence relation used to 

calculate the extrapolated runtime is: R(x)=3.8R(x/2). We compare extrapolated running 

times with simulated running times for two cases (128x128 and 256x256). In both cases, 

extrapolation always overestimates the run-time (due to the pessimistic scaling factor), 

making the extrapolated run-times conservative estimates.

6.5.2 Peak Performance

We measure the theoretical peak performance of SOSA by executing a series of integer 

‘ADD’ operations. We use a throughput measure (ADDs/second) as a measure of perfor-

mance, and compare the performance of SOSA with other high-performance architectures. 

We also measure the effective latency per ADD by dividing the total execution latency by 

the number of instructions executed (number of instructions times the number of PEs). As 

we increase the number of PEs, the effective latency per ADD decreases since we amortize 

the latency over a larger number of ADD instructions. Figure 6-6 shows the effective 

latency per ADD operation for SOSA for various network sizes. For a network with 29,411 

PEs (~106 nodes), the effective latency per ADD is about 2 ps. This translates to 3.5 trillion 

Figure 6-7. Effective Instruction Latency
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ADDs/second and this increases with the number of PEs in the system. Table 6-5 compares 

the peak theoretical performance of SOSA with other architectures. We see that the theo-

retical peak performance of SOSA is higher than all architectures except DAMP [35] and 

NANA. SOSA’s performance is within an order of magnitude of NANA, while operating 

at one-tenth the speed (SOSA does better than NANA if both operate at the same speed). 

SOSA supports a wider variety of workloads compared to the DAMP, which is restricted 

to embarrassingly parallel workloads due to its limited inter-node connectivity. The peak 

arithmetic performance of SOSA provides us with an upperbound on system performance. 

Next, we evaluate SOSA’s performance on nine benchmarks to determine its behavior on 

real applications.

6.5.3 Performance

SOSA provides users the flexibility to configure the system to minimize program running 

time (single cell, single program instance), or to maximize throughput (multiple cells, one 

program instance each). For many workloads (image filters, matrix multiplication, sorting), 

system performance is determined by program execution time since we are solving a single 

instance of each problem. To evaluate the performance of these programs on SOSA, we 

configure the system to create one cell with the required number of PEs. The latency of an 

individual instruction in SOSA is high due to the overheads caused by limited node capa-

bilities. However, SOSA can amortize this overhead by executing the same instruction in 

Architecture Peak Performance (32-bit Integer Ops/second)

SOSA (1012 nodes) 1.5x1018

IBM Blue Gene /L 2.88x1015

NEC Earth Simulator 3.28x1014

DAMP (1012 nodes) 2.53x1018

NANA (1012 nodes) 6.94x1018

SETI@Home 2.4x1014

Table 6-5. Peak Performance Comparison
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all PEs at the same time. Hence, we expect SOSA to perform poorly for small input sizes, 

where each instruction is executed in a small number of PEs. However, SOSA performance 

should improve as input size increases and eventually match (or exceed) the performance 

of the P4, I-SS and 16-CMP. The input size at which SOSA outperforms a particular archi-

tecture is application dependent. There are a large number of workloads where high system 

throughput is desirable. The parallel computational capabilities of SOSA can be used to 

achieve high system throughput by dividing the system into multiple cells, each having a 

set of PEs. While there are multiple ways to improve throughput, we focus on using multi-

ple instances of a single application (operating on different data) running on different cells.

We find that SOSA achieves good performance on all the benchmarks that have data 

parallelism (except our implementation of sort). For a configuration with more than 64K 

PEs, SOSA matches the performance of the 16-CMP (with the exception of sort). Thus, 

despite SOSA’s severe limits on node computational power, network bandwidth and con-

nectivity, and low control over the fabrication process, it matches the performance of ide-

alized conventional architectures, while running at a lower speed and with a lower power 

density. We now examine the performance of applications on SOSA in detail, starting with 

matrix multiplication.

6.5.3.1 Matrix Multiplication

Matrix multiplication is a common operation performed in scientific and other work-

loads. Our version of matrix multiply is a hand-optimized implementation of the N3 matrix 

multiply algorithm for two NxN integer matrices. The assembly code for matrix multiply 

is presented in Figure 6-8(unrolling is not shown here). We evaluate the benefits of various 

optimization in Appendix B. We tested multiple versions of the matrix multiply algorithm 

obtained from the performance database server [114] on the P4 and on the I-SS and found 

that the naïve version with three nested loops performs the best on the P4 (icc vectorizes 

loops for the SSE units in the P4), while loop unrolling provides the maximum benefit for 

the I-SS.
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We plot the running time of matrix multiplication in Figure 6-9, The simulator can 

handle matrix sizes up to 128x128 with reasonable simulation time1 and we use linear 

extrapolation to predict the performance for larger inputs. Because of the data communica-

tion and instruction broadcast overheads, we do not see good performance on SOSA for 

small data input sizes. However, as input sizes increase, the parallel processing capability 

of SOSA helps it amortize the cost of the various overheads, allowing SOSA to eventually 

catch up and do better than both uniprocessors. Matrix multiplication is able to match the 

16-CMP at N=8K. I-SS is unable to fully exploit the data parallelism in the program and 

achieves an IPC of 9, despite a theoretical peak of 128. Since the binary generated by icc 

1.  We have successfully simulated the multiplication of two 256x256 matrices. This simulation took about 50 days on a 
3 GHz P4 Xeon server with 32 GB RAM. While it is infeasible to run many simulations of this size, this result helps 
confirm the validity of our extrapolation.

; Initialize before Multiply
CPREG R4,R2        ; Copy R4->R2
CPREG R3,R1        ; Copy R3->R1
CLEAR R5           ; Clear R5
; Multiply (Loop Dw times) (Dw: Data Width)
SHIFTLM R1               ;  Shift LSB to MSB (multiply by 2)
PSHIFTML R2,R5        ;  Shift MSB to LSB, LSB to pred.reg R5
PRADD R5,R1,R5         ;   if predicate is set, R5=R5+R1
CLEAR R6                  ;   Clear R6
; Accumulate partial products
;---Repeat log2(N) times---
ADD R6,R6,R5              ;  Accumulate partial sum
CPREG R6,R5               ;  Copy R6 to R5
SHIFTMLPE R5          ;  For iteration i, repeat (Dw+2)*i*2 times
; End Repeat
ADD R6,R6,R5              ;  Final add
; Align rows of matrix A for next set of multiplies
;(Repeat (Dw+2)*N times) 
SHIFTMLPE R4        ; Move A ’N’ PEs to the left
; Move Result
CPREG R8,R9          ; if R8==1, this PE holds the first 
                               ; element of a row/column, move this to R9
PSHIFTML R9,R6   ; Move that bit into the predicate register R6
PRCPREG R6,R7      ; if predicate set, copy R6->R7 
SHIFTMLPE R7        ; Move R7 one PE to the left (*(Dw+2))

Figure 6-8. Matrix Multiply: Assembly Code (no unrolling)
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is optimized to use the SSE units, the P4 is able to do as well as the I-SS. If we disable the 

use of SSE units, run times increase by an order of magnitude.

SOSA cannot match the performance of the P4 or I-SS for small inputs, but it also 

devotes a much smaller area to do computation for small inputs. We can improve the 

throughput of the system for small input sizes by configuring independent cells and running 

multiple instances of the workloads. For example, if we assume an area of 100mm2 

(approximately the area of a P4 in 90nm CMOS), we can configure over 5,000 cells, with 

64 PEs per cell that each perform an 8x8 matrix multiplication (assuming an average inter-

node gap of 1µm) and can achieve significantly higher throughput (~50 times) than either 

the P4 or the I-SS.

6.5.3.2 Image Filters

Image filters are widely used in almost all image processing software packages. We 

evaluate the performance of three filters (generic 3x3 filter, separable gaussian filter and 

median filter) on SOSA. The gaussian and generic 3x3 filter perform a convolution 

between a mask and the image pixels. The number of instructions used in the convolution 

is a function of the mask size only. Thus, increasing image size only increases the overhead 

Figure 6-9. Matrix Multiply Run Time (# of PEs increases quadratically with matrix 
dimension)
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in accumulating neighborhood pixel values in a PE. The median filter differs slightly in that 

it accumulates pixel values and then computes the median of those values.

We plot the running time for the three filters on different architectures in Figure 6-10, 

Figure 6-11 and Figure 6-12. The vertical line in each figure corresponds to the image size 

for which the running time of the filter is the same for the P4 and SOSA. The simulator can 

handle image sizes up to 128x128 with reasonable simulation time and we again use linear 

extrapolation to predict the performance for larger inputs. Because of the data communica-

tion and instruction broadcast overheads, none of the filters achieve good performance on 

SOSA for small data input sizes. However, as input sizes increase, the parallel processing 

capability of SOSA helps it amortize the cost of the various overheads, allowing SOSA to 

eventually catch up and do better than both uniprocessors. Due to differing overheads, the 

three filters outperform the P4 and I-SS at different data input sizes. The generic filter and 

separable gaussian filter on SOSA are able to match the 16-CMP at N=16K. Predicated 

instructions in the SOSA implementation of the median filter increase runtime overheads, 

and SOSA is unable to match the performance of the ideal CMP configuration for image 

sizes up to 16Kx16K pixels. As we saw for matrix multiplication, SOSA cannot match the 

Figure 6-10. Gaussian Filter Runtime
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performance of the P4 or I-SS for small inputs for all three filters. However, we can achieve 

higher throughput by configuring multiple cells.
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Figure 6-11. Generic Filter Runtime
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6.5.3.3 Sort

Sorting data is a common operation found in a wide variety of workloads. We imple-

ment a parallel sort algorithm known as the “odd-even transposition sort” [78]. We have 

examined other parallel versions of sort but do not implement them since they require com-

plex and expensive data communication between PEs. Figure 6-13 compares the running 

time of sort on SOSA, and the other architectures. It is apparent from these results that this 

implementation of sort does not perform well on SOSA. Since this is an O(N) algorithm 

(N=>Input list size), the potential speedup over quicksort on a single processor (average 

case) is O(log(N)). However, as the number of PEs increases, the overhead of instruction 

broadcast increases (for N nodes, the height of the broadcast tree is approximately 

O(log(N)), thus increasing the running time. Combined with our high communication over-

head, this makes it impossible for SOSA to match the performance of the I-SS or P4. Note 

that even I-SOSA cannot outperform the I-SS at sorting. This highlights one key limitation 

of SOSA: it is not a general purpose architecture and cannot match the performance of con-

ventional processors on general purpose workloads.
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6.5.3.4 Tiny Encryption Algorithm (TEA) and eXtended TEA (XTEA)

TEA [147] and XTEA [97] are two simple encryption algorithms developed at the Uni-

versity of Cambridge that use a combination of shift, add and xor instructions to encrypt 64 

bit blocks of data with a 128-bit key. XTEA and TEA use the 128-bit key in slightly differ-

ent ways, with XTEA requiring more operations per iteration (to achieve better crypto-

graphic security). We divide the random network of nodes into multiple independent cells. 

Each cell executes a pipelined version of the encryption algorithm and requires at least 64 

PEs (corresponding to 64 encryption iterations).

Since each cell operates independently and can handle multiple data blocks in parallel, 

TEA and XTEA achieve better throughput on SOSA than on the I-SS or P4. A single cell 

(64 PEs) can perform 175,000 TEA encryptions per second and 170,000 XTEA encryp-

tions per second. Table 6-6 compares the performance of TEA on SOSA with other archi-

tectures. The table shows that SOSA can achieve 79% of the throughput of the ideal 16-

CMP, while using about the same area as a single core and running at a tenth of the speed 

(1ns vs. 0.1ns). The comparison with I-SOSA highlights the overheads due to simple nodes 

and limited bandwidth in SOSA.

6.5.3.5 Searching and Bin Packing

Searching and bin packing are two examples of applications that can be pipelined to 

achieve high throughput on SOSA. Bin packing with a first-fit heuristic is very similar to 

performing a linear search on a list (it requires a few more operations to adjust the weights 

Architecture Throughput (Encryptions/sec)
P4 @ 3 GHz 3.9 M/sec
I-SS 73.62 M/sec
16-CMP 1180 M/sec
SOSA (1 cell)  0.175 M/sec
I-SIMD (1 cell) 27.7 M/sec

SOSA (100 mm2, 5400 cells) 940 M/sec

I-SOSA(100mm2) 72300 M/sec

Table 6-6. TEA Throughput
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of bins). We implement a pipelined version of search in assembly where a database of 

strings is distributed across the register files of all PEs. In every iteration, the input arrives 

in one of the registers in the PE, is compared to each entry in the PE register file and then 

passed on to the next PE. This gives rise to a large search pipeline, which leads to a very 

high throughput. The search terminates when a match is found by sending a signal to the 

external control processor. It is important to note that the algorithm does not use any knowl-

edge of the string database to reduce the number of comparisons to find a match. The gap 

between SOSA and the superscalar processors is smaller for bin packing than for search 

since it requires more operations (which can happen in parallel on the P4 and I-SS) per iter-

ation. Table 6-7 lists the throughput achieved by the different architectures for search and 

bin packing.

6.5.4 Performance Sensitivity to System Parameters and Optimizations

In this section, we quantify the effect of various optimizations and changes in system 

parameter values on the performance of SOSA. We start with the effect of the PE length 

optimizations (Section 6.5.4.1). Next, we examine the effects of various software optimi-

zations (synch reuse and register specifier reuse) that reduce the number of instruction bits 

broadcast (Section 6.5.4.2). We then describe the effect of one- or two-bit wide registers on 

performance (Section 6.5.4.3). Next, we measure the effect of different compute and com-

munication latencies on performance (Section 6.5.4.4). We then evaluate the impact of var-

ious instruction buffer sizes (Section 6.5.4.5), and finally, we examine the effect of various 

node operating speeds (Section 6.5.4.6).

Benchmark SOSA P4 I-SS

Search (comparisons/
sec)

1010 109 2x109

Bin Packing (bins/
sec)

109 5x108 7.5x108

Table 6-7. Search and bin packing throughput
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6.5.4.1 PE Length Optimization

In Section 6.3.2, we described a mechanism to limit the length of PEs in order to improve 

system performance. We pick two representative benchmarks: 1) matrix multiplication for 

workloads that require monolithic cells and 2) TEA for workloads that require multiple 

cells. In Figure 6-14 we plot the number of nodes required for 32x32 matrix multiplication 

(1024 PEs) and TEA (64 PEs) as we vary the maximum permitted PE length in multiples 

of the ideal PE length (Ideal PE length = 2 + Data Width / Bits Per Register, Inf corresponds 

to no restriction on PE length). The results are normalized to the number of nodes required 

if there is no constraint on PE length. We see that as we restrict the PE length, the number 

of nodes required increases for both benchmarks (up to 14% for matrix multiplication, up 

to 38% for TEA). In Figure 6-15, we plot the running time for both benchmarks normalized 

to a configuration with no restrictions on PE length. As expected, limiting PE length 

reduces program running time (up to14% for matrix multiply, up to 22% for TEA). How-

ever, this increased performance comes at a cost of reduced node utilization as some nodes 

are now unused. For workloads that use multiple cells, this also implies a reduction in the 

number of available cells (since each cell is larger), which is likely to reduce system 

throughput. We can strike a balance between improved performance and extra nodes 

required by limiting PE length, as described in Section 6.3.2.
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6.5.4.2 Instruction Reuse

The results presented so far show the best performance of the SIMD architecture on matrix 

multiply, with instruction reuse allowed. In this section, we quantify the benefits of instruc-

tion reuse using matrix multiplication. Figure 6-16 plots the run time of matrix multiply 

normalized to a configuration without hardware support for instruction reuse. The base 

configuration includes hardware to optimize the PE-Shift and uses partial broadcast of 

instructions. We evaluate three cases in addition to the base case, the first with hardware 

support for ‘synch’ reuse, the second with hardware support for register increment/decre-

ment, and the third with both. The two bars for each configuration represent the results for 

32x32 and 64x64 matrices. Both reuse optimizations reduce the bandwidth requirement of 

the system by reducing the number of instruction bits broadcast. From our experiments, we 

see that program run time decreases by 12% and 19% for N=32 and N=64 respectively if 

the synch microinstruction is reused. Adding support for register increment/decrement 

decreases program run time by 12% for a 32x32 matrix, and by 8% for a 64x64 matrix. The 

larger matrix multiply is affected less because the run time of the program is dominated by 

Figure 6-16. Effect of instruction reuse
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PE-Shifts, which do not benefit from the optimization. If we enable both optimizations, run 

time decreases by about 35%. A system with both optimizations presents more opportuni-

ties to reduce the number of instruction bits broadcast, and clearly benefits more than a 

system with any one of the optimizations.

6.5.4.3 Sensitivity to Register Width

Increasing the width of the register file increases the work done within a node per 

instruction. It also reduces the number of registers available to the programmer (since the 

total storage on the node is assumed to be fixed at 32 bits). To avoid having a very small 

register file, we only examine having 1-bit or 2-bit wide registers. Increasing the width of 

the register file requires time-multiplexing of a 1-bit ALU, or the use of a 2-bit wide ALU. 

We measure system performance under both cases. We plot the normalized running times 

for matrix multiplication and TEA in Figure 6-17. We see that in both cases, 2-bit wide reg-

isters reduce program running time. In addition to reducing running time, 2-bit wide regis-

ters also reduce the number of nodes required to create a 32-bit PE by 88% (from 34 down 

to 18). The reduction in running time occurs for a 2-bit wide ALU as well as for the reuse 

of a 1-bit wide ALU.
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6.5.4.4 Sensitivity to Compute and Communication Latencies

We measure the effect of increasing the latency of the control/compute logic of the 

node. So far, we have assumed that all activity within a node takes exactly one time unit. 

We use matrix multiplication and TEA to evaluate the effect of increasing the latency of 

the control/compute logic block as well as the communication latency between the compute 

logic and transceivers. We plot the normalized running time for matrix multiply and TEA 

for varying latencies in Figure 6-18 and Figure 6-19 respectively. For both benchmarks, we 

observe that system performance is fairly insensitive to increased latencies less than 4 time 

quanta. When the total latency of the two logic blocks is greater than the latency of a bit 

transfer, we see a significant drop in performance as the latencies of all instructions 

increase.

6.5.4.5 Impact of Instruction Buffer Size

The instruction buffer stores instructions before the node is ready to execute them. It 

also enables the instruction broadcast mechanism to propagate instructions down the 

broadcast tree. Increasing the size of the instruction buffer typically improves performance 

since it allows increased overlap of communication and computation. However, it can 

cause increased contention on the bandwidth constrained links, leading to a loss in perfor-

mance. In addition, increasing instruction buffer size introduces additional complexity into 

the node. In Figure 6-20, we plot the normalized running time of matrix multiplication 

Figure 6-18. Matrix Multiplication: 
Varying execution and receive latency
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(64x64) and TEA as we vary the number of entries in the instruction buffer from 1 to 16. 

For TEA, adding instruction buffer entries improves performance, but results in diminish-

ing gains beyond four instruction buffer entries. For matrix multiplication, we actually see 

an increase in running time beyond one entry due to increased network contention. We use 

a single entry instruction buffer as a trade-off between node complexity and performance 

improvement over a node design without the instruction buffer.

6.5.4.6 Effect of Increasing Operating Speed

The results presented in the previous section assumed a conservative value of 1 nano-

second for the time unit. Recent measurements of carbon nanotubes indicate that it may be 

possible to operate devices based on nanotubes at very high frequencies (~1Terahertz) 

[34,122]. In Figure 6-21 we show the run time for the matrix multiply for two matrix sizes 

(N=128, N=512) for different time unit values. We also show the running time for the Pen-

tium 4 running at 3 GHz as a point of comparison. The figure shows that if SOSA could 

operate with lower values for the time unit, it would achieve run-times closer to the Pen-

tium 4 for smaller matrix sizes (N=128, with a time unit of ~100ps).
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6.5.4.7 Summary

In our sensitivity analysis, we find that SOSA’s performance is not very sensitive to com-

pute and internal communication latencies as long as these latencies are greater than inter-

node communication latencies. We find that increasing the size of the instruction buffer can 

improve performance, but results in increased node complexity. SOSA’s performance 

improves if we use wider registers, which also leads to a reduction in the number of nodes 

required to form a PE. However, due to node size limitations, there is a trade-off between 

wider registers and number of registers available. We also find that SOSA can benefit from 

running at faster speeds, limiting PE lengths and the instruction reuse mechanisms. Next, 

we evaluate a critical aspect of SOSA’s design: its ability to tolerate defective nodes.

6.5.5 Defect Tolerance

SOSA tolerates high node defect rates using the RPF algorithm to isolate defective nodes. 

Critical logic within each node uses built-in self-test logic to implement fail-stop behavior 

(Chapter 7). For the encryption benchmarks, the performance of SOSA gracefully degrades 
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as we lose nodes to defects (up to 30% defective nodes). For the other benchmarks, by over 

provisioning the system, SOSA tolerates up to 20% defective nodes with a small (<10%) 

degradation in performance.

The ability to tolerate defects is one of the primary features of SOSA. To test the defect 

tolerance, and to measure the effect of defects on performance, we run a number of exper-

iments varying the node defect rate. We break down our discussion of defect tolerance into 

two parts. First, we describe the effect of defects on the throughput of a system configured 

into multiple cells to run the encryption algorithms TEA and XTEA. Second, we describe 

the effect of defects on the performance of all the other workloads (which use a single cell).

For TEA and XTEA, if we keep the total area of the system constant (100mm2), as node 

defect rates increase we are able to configure fewer cells, resulting in reduced throughput. 

Figure 6-22 plots the throughput as node defect rates increase from 0% to 30% revealing a 

graceful degradation in performance. The connectivity of the random network of nodes is 

severely affected by node defect rates greater than 30%. This partitions the network and 

results in most partitions having insufficient functioning nodes to configure a 64 PE cell.

For single cell applications, the entire system must be over provisioned to ensure that a 

sufficient number of PEs can be configured, thus defects indirectly impact performance by 

reducing network connectivity and bandwidth. In all experiments, SOSA had 30% more 

nodes (24,000 total nodes) than the theoretical value needed for a 32x32 matrix multiply. 

The 30% extra nodes correspond to the maximum fraction of defective nodes that can be 

handled by the RPF algorithm while achieving good network connectivity. In Figure 6-23

we plot the run time for matrix multiply for a 32x32 matrix, normalized to a base case with 

no defects. As can be seen from the figure, there is a slight increase in run time when defects 

are introduced into the system. This increase is primarily because the average length of PEs 

increases. We do not show results for the other workloads since they are qualitatively sim-

ilar. If the system cannot configure sufficient PEs, the problem could potentially be divided 

into parts that can be solved with the available PEs. Such partitioning, if possible, is beyond 

the scope of this thesis. Though the defect tolerance capabilities of the RPF algorithm have 

been demonstrated before, our experiments show that the ability to tolerate high defect 
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Figure 6-22. TEA/XTEA: Graceful degradation of throughput with increasing node 
defect rate
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Figure 6-23. Matrix multiply performance with defects
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rates incurs only a small performance penalty (~8% for N=32, 32-bit PEs), a characteristic 

of increasing importance for future systems.

6.5.6 Equal Area Comparison

While we showed that our architecture can do better than a Pentium 4, it is important 

to ensure that we perform a fair comparison. We compare the performance of SOSA with 

that of the P4, for the same hardware area. The Pentium 4 manufactured in the 90nm pro-

cess takes up about 110mm2 in die area. We estimate that each node occupies about 9µm2. 

If we use an area equal to the Pentium 4 die area, we can fit a sufficient number of nodes 

to do a 512x512 matrix multiply. However, this occupies only a part of the die area 

(57mm2). We cannot fit the number of nodes required to do a 1024x1024 matrix multiply 

(given our current matrix layout) in 110mm2. Assuming that a time unit in our node is the 

same as the clock cycle time in a Pentium 4 (~333 picoseconds at 3GHz), we see that SOSA 

is about 83% faster than a Pentium 4. Note that we could have a network with a very high 

node defect rate and still achieve better performance than a Pentium 4 given equal area. 

Theoretically, we could have 47% defective nodes and still outperform the Pentium 4, but 

our ability to tolerate node defect rates beyond 30% would be limited by the RPF algorithm 

(see Chapter 4). However, even with the RPF algorithm, we could tolerate up to 30% defec-

tive nodes and still outperform the Pentium 4, while using less area.

6.5.7 Performance Summary

The results in this section show that a system built using a random network of simple nodes 

can outperform a Pentium 4 (P4) and an ideal superscalar processor (I-SS), despite being 

severely bandwidth limited and operating at a lower speed. A scaled version of the system 

can outperform an ideal 16-way CMP. The results also highlight the advantage of SOSA’s 

flexibility in configuring independent cells to improve system utilization and throughput. 

SOSA provides higher throughput than the P4 and I-SS on most of our benchmarks while 

using the same area. Coupled with the ability to tolerate a significant defect rate, SOSA 
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shows potential in harnessing the higher device densities that emerging technologies will 

deliver.

6.6 SOSA Limitations

While SOSA is able to achieve good performance on most of our benchmarks, the design 

has limitations. Our performance evaluation reinforces the common knowledge that a high 

computation to communication ratio is critical for achieving good performance. This is 

especially true on SOSA due to its low bandwidth and high communication latencies. Pro-

grams that require little inter-PE communication, nearest neighbor communication, regular 

and unidirectional dataflow or pipelined implementations of programs that require high 

throughput are likely to achieve good performance. In contrast, SOSA is unlikely to 

achieve good performance for programs that require all-to-all communication because of 

the logical ring topology and limited network bandwidth. Although SOSA achieves good 

performance on most of the workloads we studied, it is not a general purpose architecture 

(as clearly demonstrated by the performance of sort). SOSA is unlikely to be able to match 

the performance of conventional processors on most general purpose workloads. SOSA is 

also limited by a lack of hardware support for floating point operations. We have software 

implementations of floating point operations, but performance is limited by the use of pred-

icated instructions to handle control dependencies between different parts of the operations. 

This lack of support for floating point operations limits us to integer workloads. There are 

a large number of data parallel scientific workloads that would be well-suited for SOSA, 

but require floating point operations. As the underlying technology matures, it might be 

possible to incorporate floating point support and other features in each node. We discuss 

this in more detail in the next section.

6.7 Extending SOSA

In the near future, it might only be possible to self-assemble circuits that are smaller than 

the size required to implement a full SOSA node. It might still be possible to implement 
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SOSA given such a limited capability node but with a reduction in system performance. For 

example, it might be possible to reduce the number of transceivers, or even time-share a 

transceiver circuit over four links. Additional areas where functionality could be reduced 

include the ISA and the register file. However, the simpler node must still have support for 

the RPF algorithm, PE configuration, instruction execution and support for at least two vir-

tual channels (one for data, one for instructions). It would be useful to study the minimum 

features required in a node to support SOSA.

As self-assembly technology matures, it is more likely that some of the severe fabrica-

tion limitations may be removed. The performance of I-SOSA provides an upper bound of 

SOSA performance, assuming a time unit of 1 ns. However, with fewer fabrication limita-

tions, it might be possible to achieve better performance by revisiting design decisions that 

trade-off performance for reduced design complexity. For example, we might be able to use 

a more complex configuration mechanism to connect PEs in a mesh to increase network 

bisection bandwidth. If we can manufacture larger nodes, it might be possible to fit a full 

PE into one node. As emerging device technologies improve, it may be possible to operate 

them at higher speeds, leading to a potential increase in power consumption. However, 

even as technology scaling improves performance, the defect tolerance scheme used in 

SOSA would still be useful. It is important to note that while we assume DNA-based self-

assembly as the underlying fabrication process, SOSA does not require self-assembly and 

is applicable to any manufacturing technique that results in high defect rates and a loss of 

precise control during parts of the fabrication process.

There are two primary areas in which SOSA can be extended: a) improving the archi-

tecture, and b) improving the evaluation infrastructure. SOSA can be improved by adding 

mechanisms to tolerate transient faults. This could be done by extending PEs to perform 

simple checksum/parity computations. SOSA’s I/O bandwidth can be improved by exploit-

ing multiple anchors. In terms of infrastructure, SOSA development is limited by a lack of 

software tools (compiler, libraries, debugger, power analysis tools, etc.). The simulator also 

needs to be extended to model interactions with the external control processor.
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6.8 Conclusions

In this chapter, we have presented SOSA, a self-organizing SIMD architecture built 

from a random network of simple computational nodes. Despite high defect rates, low 

bandwidth and lack of underlying physical structure we show that, for data parallel work-

loads, SOSA is able to perform better than conventional superscalar processors, while oper-

ating at a lower speed and consuming much less power. A scaled version of SOSA can 

perform better than an ideal 16-way CMP. As the underlying technology matures, SOSA’s 

performance can be further improved as fabrication limitations are removed. While SOSA 

does not solve all problems encountered with self-assembled architectures, it is a step 

towards realizing defect tolerant computing systems built using emerging technologies. In 

the next chapter, we present the design of fail-stop behavior in a SOSA node and explore 

how node modularity can help tolerate higher defect rates.
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7  Design of a Fail-Stop SOSA Node

In the previous chapter, we presented the design and evaluation of a data parallel architec-

ture (SOSA) built using a random network of simple self-assembled nodes. DNA-based 

self-assembly enables the construction of a large number of nodes (109-1012 nodes) in par-

allel, resulting in a large node network. SOSA uses the RPF algorithm presented in 

Chapter 4 to isolate defective nodes from functional nodes in the network. However, before 

defective nodes can be isolated, they must be identified as being defective. Since extracting 

a defect map to establish locations of individual defective nodes does not scale to node net-

works of this size, we require an alternative mechanism to identify defective nodes. In this 

chapter, we present the design and evaluation of fail-stop nodes for SOSA. We use modular 

node design to extend the defect isolation mechanism to operate within a node and use a 

combination of hardware and software test strategies to verify the operation of node com-

ponents. If a node component fails or never completes the test, it is assumed to be defective 

and is not used, resulting in fail-stop behavior. This allows nodes to diagnose themselves 

and shut down in case of defects. We use hardware self-test mechanisms to verify critical 

node components, and software tests for non-critical components. 

Distinct tests for different node components enable the use of nodes with some defec-

tive components, as long as the defects do not affect critical functionality. This allows the 

system to tolerate a higher device defect rate, and improves resource utilization. We 

explore different node failure modes that enable graceful node degradation in the presence 

of defective components. We find that the use of partially defective nodes increases the 

device defect probability that can be tolerated by the system by an order of magnitude to 

1.5x10-4. This is three orders of magnitude higher than the typical failure probability in cur-

rent CMOS processes. We make the following contributions in this chapter:

1. We implement simple built-in self-test circuitry to achieve fail-stop behavior for criti-

cal logic blocks in SOSA nodes within assumed technological size constraints, and
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2. We exploit modular node design to develop multiple modes of failure for a node to 

allow the node to be used even if some non-critical components are defective.

The rest of the chapter is organized as follows. We begin by describing the design of 

fail stop nodes (Section 7.1) and evaluate the design using a simple node model 

(Section 7.2). We conclude the chapter with a summary of the key ideas (Section 7.3).

7.1 Fail-Stop Node Design

The RPF algorithm used by SOSA to achieve defect isolation requires nodes to imple-

ment fail-stop behavior. In this section, we explore hardware and software test strategies 

that can help achieve fail-stop behavior. A node is composed of three main components: 1) 

communication logic, 2) configuration logic and 3) compute logic, and we develop inde-

pendent test strategies for each. This simplifies test logic and enables the use of a partially 

functional node by isolating components that do not pass logic tests. The ability to use par-

tially functional nodes allows us to develop different node failure modes that can better uti-

lize the defect-free parts of a node. We assume a single stuck-at fault model for each 

component within a node. Thus each component must have the ability to detect a single line 

stuck at a zero or one.

We begin the section by identifying logic blocks that are critical to achieving fail-stop 

behavior (Section 7.1.1). We then examine different hardware/software design options for 

implementing fail-stop, and identify the benefits of each approach (Section 7.1.2). Next, 

we describe the test mechanisms we use for communication (Section 7.1.3), configuration 

(Section 7.1.4) and compute logic (Section 7.1.5). Finally, we develop various node failure 

modes that exploit node modularity to gracefully degrade node capabilities if some compo-

nents are defective (Section 7.1.6).

7.1.1 Critical Node Logic

We designate a logic block that must be defect free for the node to function correctly 

as “critical”. These logic blocks must be tested before a node accepts any external input to 
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avoid the possibility of system misconfiguration. Logic for VC0 (communication logic) 

and route setup (configuration logic) is critical. All other logic in the node can be tested 

during the defect isolation phase since it does not affect the ability of a node to receive and 

send data. While this remaining logic is not critical, it must still be tested to ensure correct-

ness. This can be performed with hardware or in software during defect isolation. Table 7-

1 classifies various node logic blocks based on their criticality. The classification of logic 

blocks into critical/non-critical provides a simple way of determining what logic should be 

tested in hardware and what can be tested with software. Next, we explore different hard-

ware and software test strategies.

7.1.2 Fail-Stop Node Design Options

Our goal is to achieve fail-stop behavior in nodes with minimal extra hardware. Critical 

logic must be tested before a node communicates with its neighbors, which implies the need 

for hardware test logic. For non-critical logic, we can choose between three options: 1) 

hardware test, 2) software test, and 3) hardware-software hybrid test. 

Hardware Test. We can add logic to each node to test the functionality of all components. 

This is equivalent to built-in self-test (BIST) [7,115] that does not require external test vec-

tors. The primary advantages of hardware testing are low latency and the ability to test the 

node independent of the rest of the system. However, a node that relies only on hardware 

test circuitry would not fit within technological size constraints due to the complexity of 

Component Critical Description
Configuration Logic Yes Input arbitration on VC-0, depth 

first route setup
Transceiver Logic - VC0 Yes Send/Receive logic for VC-0
Transceiver Logic - VC1/VC2 No Send/Receive logic for VC-1
Point-to-Point  Interconnect VC0-Yes, VC1/2-No Data interconnect within Node
ALU No Arithmetic Logic Unit
Register File No Register File in Compute Block
Instruction Buffer No First pipeline stage
Execution Control Registers No Storage for microinstructions

Table 7-1. Node Component Classification
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the test circuits. This makes a pure hardware test strategy impractical. Note that critical 

logic still requires hardware testing.

Software (external) Test. For all non-critical logic, we could rely on software based test-

ing using external test vectors. This can be combined with gradient broadcast to allow par-

allel testing of nodes, which would reduce test latency. This approach works well for 

instruction execution logic, but is not as useful for other components. For example, soft-

ware testing of the transceiver circuitry for VC-1 requires hardware support to allow rout-

ing of test vectors to the transceiver logic. For small logic blocks, this extra hardware could 

be more expensive than implementing a hardware test scheme.

Hardware/Software Hybrid Test. The final option for testing is to use a hybrid approach 

of hardware testing for simple components, and software testing for more complex compo-

nents. For example, transceiver logic is simple and requires identical testing for all three 

virtual channels. This can be done efficiently with simple test hardware. Furthermore, this 

test hardware can be shared between the three virtual channels. While this could increase 

test latency by a small amount, it results in reduced circuit size. Compute logic is fairly 

complex, and requires a large number of test vectors to ensure correct functionality. We can 

exploit existing hardware to test compute logic using external test vectors, with minimal 

extra hardware. This allows us to keep node size within technological constraints. The test 

vectors can be inserted after the RPF algorithm completes and before PE configuration 

begins. Using the same mechanisms as instruction broadcast in SOSA, the test vectors can 

be distributed to each node in an efficient manner using broadcast. As the test vectors are 

executed the result must be communicated to the node test logic. The number of test vectors 

inserted into the system depends on the test coverage required to achieve computation 

within reliability specifications. A detailed description of the test vectors is beyond the 

scope of this thesis.

In summary, we use hardware test strategies for node components that can be tested 

with simple logic. Where possible, we reuse test circuits to minimize overhead. In the next 

three subsections, we describe our test strategies for the three main components in a node.
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7.1.3 Fail-Stop Communication Logic

Communication logic within a node supports three virtual channels and has two pri-

mary components: 1) four transceivers, and 2) point to point links. The circuits for VC0 are 

part of the node’s critical logic since they are required during configuration. VC1 and VC2 

are not part of critical logic, but can share test logic with VC0. 

Each transceiver in a node must be tested to ensure correct functionality as defective 

logic in a transceiver can lead to incorrect system behavior. A node can be a useful part of 

a larger system even if it has only one functioning transceiver. However, if there are defec-

tive transceivers in a node, it is critical to isolate them from the rest of the system. To 

achieve this, we augment each transceiver with simple test logic and add a loopback path 

between the output and input logic of each transceiver. This path is enabled during test 

only. We exploit the simple four-phase handshake protocol used by the asynchronous logic 

in designing a test circuit that verifies the operation of the input/output logic. The trans-

ceiver is assumed to be defective by default. If the test verifies transceiver operation, the 

test circuit generates a signal to indicate that the transceiver is operational. 

The largest component of the test logic is a two-bit state machine which inserts a test 

bit pattern into the transceiver output logic. The test pattern consists of two bits (0 followed 

by 1). The test logic inserts the 0, then waits until it loops back to the input logic. If the test 

logic successfully receives the 0 from the input logic, it inserts a 1 and waits for it to loop 

back. If both data bits (0 and 1) are received correctly, the test logic generates a 

“TEST_OK” signal, which indicates that the transceiver functions correctly. If the data is 

never received or incorrect data is received, this signal is not generated, isolating this trans-

ceiver from the rest of the node. To avoid errors due to a fault in the TEST_OK signal, the 

configuration test logic requires a transition on the TEST_OK line to indicate a valid test. 

Figure 7-1 shows the circuit for one virtual channel in a transceiver, along with test logic.
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In addition to testing the transceiver logic, we need to test the point to point links that 

connect transceivers. However, routing on the point to point links depends on the result of 

the configuration process so we test point to point links when we test configuration logic.

7.1.4 Fail-Stop Configuration Logic

Configuration logic is responsible for determining the role of the node within the sys-

tem, and for establishing communication routes (inter-node and intra-node). This makes 

the configuration logic an extremely critical component, and a node cannot operate cor-

rectly if it is defective. We use a hardware test mechanism that exploits transceiver logic to 

test the configuration block. Since it uses transceiver logic, the test occurs after the trans-

ceiver logic test. The test logic first configures the depth first traversal order of the trans-

ceivers within the node, skipping any transceivers that do not generate a “TEST_OK” 

Figure 7-1. Transceiver logic for one virtual channel. (Test logic shown in the dotted 
rectangles is shared between virtual channels)
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signal. Next, the test logic uses a two-bit state machine to circulate a pair of bits (0 and 1) 

on all virtual channels. If the bits are routed correctly, they arrive back at the insertion point 

due to the loopback path at the transceivers. If the bits are received correctly, the node gen-

erates a “CONFIGURATION_OK” signal. To avoid masking defects due to defective 

route setup, each transceiver must ensure that each bit passes through it only once per VC. 

To ensure that there is no stuck at fault in the “CONFIGURATION_OK” signal, we use 

redundancy and duplicate the signal to ensure correct operation. The configuration test fails 

if there is a routing error, the bits never return, or the test logic receives the wrong bit val-

ues. A failed configuration test causes the entire node to shut down and appear defective to 

the rest of the system.

7.1.5 Fail-Stop Compute Logic

Testing the compute logic in a node is not as critical as testing the communication and 

configuration logic. This is because compute logic does not affect system configuration and 

a node with defective compute logic can be used to improve network connectivity. How-

ever, to ensure that the system generates correct results, the compute logic of each node 

must be tested. This test can be performed at any point before nodes are organized into 

larger computational entities. This allows us the flexibility of implementing hardware or 

software test strategies. In either case, the principle is similar to our previous test strategies 

- a successful test connects the logic block with the rest of the node. If the test fails, or does 

not complete, the block remains disconnected from other parts of the node.

Hardware Test. We can exploit existing logic to allow repeated execution of test instruc-

tions to verify the compute logic. However, this test is unlikely to cover all the logic in the 

compute block without significant extra hardware. Node size constraints and limited test 

coverage make this test strategy impractical.

Software Test. Software testing can be performed with minimal additions to the existing 

node logic. Testing of the compute logic must happen before nodes are organized into 

larger computational entities. We can combine software testing of the compute block with 

defect isolation by including the test vectors along with the configuration packet. Another 
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advantage of software testing of the compute logic is the possibility of exhaustive testing 

to ensure correct operation.

Our choice of hardware testing for communication and configuration logic, and soft-

ware testing for compute logic is driven by an analysis of the critical components of a node 

and technological constraints. As self-assembly technology matures, other test strategies 

could become more feasible. Next, we describe how we can exploit the modularity of the 

node to improve system connectivity and tolerate higher transistor defect rates.

7.1.6 Using Partially Functional Nodes

The test logic described earlier in this section opens up the possibility of using nodes 

with some defective components (if they do not affect system operation). For example, a 

node with a single defective transceiver can still communicate with up to three neighbors 

and perform computation. We explore four modes of failure that allow a node to operate 

with some defective components, defining each scheme based on the number of defects it 

can tolerate in the compute logic and transceivers. The failure modes are denoted CxTy, 

where x is the maximum number of defects that can be tolerated in compute logic (0 or 1), 

and y is the maximum number of defective transceivers that can be tolerated (0,1,2, or 3). 

The default scheme cannot tolerate any defects and is denoted C0T0. The four modes we 

add are: C0T2 (a node cannot tolerate defective compute logic, but can tolerate up to two 

defective transceivers), C0T3, C1T2 and a hybrid of C0T3 or C1T2. We list these failure 

modes in Table 7-2. Each failure mode tries to include nodes that could contribute to 

system operation. The difference is in the minimum operating components each node must 

have to be used by the system. Nodes are considered useful under C0T3 as long as they have 

one functional transceiver and can be used to compute. Under C1T2 a node is useful as long 

as it has the potential to improve system connectivity by providing an extra path between 

two parts of the system (i.e., two active transceivers). The hybrid scheme includes nodes 

that can either perform computation, or provide an extra path between two parts of the sys-

tem. As transistor failure probability increases, the number of nodes marked “defective” by 
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each scheme increases. Simulations reveal that this increase is fastest for C0T0, and slowest 

for the hybrid failure mode.

Each node requires extra logic to operate with some defective components. This logic 

keeps track of defective components in the node and disables the node if the defects cross 

the failure threshold. For example, the C1T2 scheme requires six bits to keep track of the 6 

primary node components (four transceivers, configuration logic, compute logic). In addi-

tion, it requires logic that determines if more than two transceivers have failed. While this 

adds to the size of the node, it allows us to better utilize each node. Next, we evaluate the 

effect of different node failure modes on the transistor defect probability that can be toler-

ated by the system.

7.2 Evaluation

We evaluate three aspects of the design. First, we verify that the test logic for commu-

nication and configuration detects defects and measure the overhead of adding the test logic 

in terms of extra transistors required (Section 7.2.1). Next, we explore the relationship 

between device failure probability and the expected number of defective nodes in the sys-

tem, in the context of different node failure modes (Section 7.2.2). Finally, we evaluate the 

benefit of our testing mechanisms by comparing how well the defect isolation mechanisms 

perform for different node failure modes (Section 7.2.3).

Name Description
C0T0 Node can tolerate no failures

C0T2 A node can tolerate up to two defective 
transceivers (compute logic must work)

C0T3 A node can tolerate up to three defective 
transceivers (compute logic must work)

C1T2 A node can tolerate defective compute logic 
as well as two defective transceivers

Hybrid A node can tolerate C0T3 or C1T2

Table 7-2. Node Failure Modes. CxTy defines the number of compute logic (x) and 
transceiver (y) failures that can be tolerated
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7.2.1 Test Logic

We implement the test logic described in Section 7.1.3 and Section 7.1.4 in VHDL and 

simulate it using the synopsys VHDL debugger. We first verify that the test circuit gener-

ates the “TEST_OK” signal in the absence of defects in the circuit within a deterministic 

delay. Next, we check the response of the test circuit when each signal within the circuit 

under test is forced to exhibit stuck-at behavior (i.e., forced to 0 or 1). In each case, we 

verify that in the presence of a stuck-at fault, the test logic does not return a “TEST_OK” 

signal. Since the test logic circulates a 0 and 1, we can detect single stuck at faults on data 

lines. Since most data exchanges use handshake signalling, stuck at faults prevent the cir-

cuit from making forward progress (the handshakes require changes in the logic level). To 

avoid incorrect test results due to defects in the test logic, we use a combination of two strat-

egies. First, for the transceivers, we use an asynchronous handshake for the TEST_OK sig-

nal. This forces the signal to undergo a transition from 0 to 1 before being recognized by 

the node. Second, we replicate the test signal for logic that cannot be forced to make a tran-

sition and require both replicas to match before using the signal. We can detect single stuck 

at faults in all the communication logic as well as the configuration logic. For some logic 

blocks, we can also detect double stuck-at faults, and in some cases bridging faults (e.g., 

when a signal on the input path is bridged to a signal on the output path). However, we do 

not exhaustively test the ability of our test logic to detect all double stuck-at faults, or bridg-

ing faults. The test circuits increase the size of the communication and configuration logic 

by 18% (736 transistors) and 35% (248 transistors) respectively. The overhead for the con-

figuration logic is higher since the original circuit is not very large.

7.2.2 Node Failure Modes

In this subsection, we explore the relationship between the transistor failure probability 

and defective nodes for different node failure modes (see Table 7-2). In Chapter 4, we 

showed that our defect isolation mechanism could tolerate up to 30% defective nodes. In 

that analysis, we assumed the C0T0 failure mode for a node, where 30% defective nodes 

corresponds to a transistor failure probability of less than 4x10-5. It is unclear if self-assem-
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bly can guarantee such low transistor failure probabilities. We can tolerate a higher transis-

tor failure probability by allowing nodes to operate with some defective components. We 

compute the expected number of defective nodes over a range of transistor failure proba-

bilities, for different failure modes.

To study the relationship between per-transistor reliability and the fraction of defective 

nodes, we analyze a system with 106 nodes. Each node is assumed to have 10,000 transis-

tors, with a uniform device failure probability (Pf). We use a uniform random number gen-

erator to generate random numbers (RND) in the interval [0,1]. Each random number 

corresponds to one transistor in a node. If RND<Pf, the transistor is defective. Each tran-

sistor is mapped to a component, and a defective transistor renders the entire component 

defective (the hardware test logic detects single stuck at faults in the configuration and 

communication logic, and we assume that software test vectors can detect defects in the 

compute logic). For each node, we compute whether it is defective for each failure mode. 

For each value of Pf, we run 500 experiments with different random seeds. This analysis 

ignores defective interconnect (within and between nodes). To get an estimate of the effect 

of defects in interconnect, we can use the number of unit cells in a node to approximate 

defects in both transistors and interconnect.

In Figure 7-2, we plot the percentage of defective nodes in a system with 1 million 

nodes, as a function of the transistor failure probability. Each curve corresponds to one fail-

ure mode. As expected, the number of defective nodes in the system decreases as device 

reliability increases. However, we also see that the ability to test components within a node 

and allow graceful degradation allows us to reduce the number of defective nodes without 

increasing device reliability. It is important to note that for the hybrid failure mode, while 

a smaller number of nodes are designated defective compared to other failure modes, a 

large number of nodes have some defective components. While nodes with defective com-

pute logic cannot be used to perform computation, they are useful in improving the connec-

tivity of the network. Next, we use two baseline network topologies to evaluate the benefit 

of using partially defective nodes.
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7.2.3 Defect Isolation with Partially Defective Nodes

In the previous subsection, we examined the effect of different node failure modes on 

the relationship between transistor failure probability and node defect rate. This analysis 

did not examine the effect of the location of defective nodes on the system. We now explore 

two different node topologies (random and grid) to determine the effectiveness of the defect 

isolation mechanism with partially defective nodes. 

First, we compute the number of non-defective nodes that are reachable by the broad-

cast as a function of device failure probability, for three node failure modes (C0T0, C0T3

and Hybrid). We expect C0T0 to have the lowest number of reachable nodes, followed by 

C0T3, with the hybrid mode having the highest number of reachable nodes. However, a 

large number of nodes that are reachable with the hybrid mode have defective compute 

logic and only act towards improving system connectivity. To account for this difference, 

we also plot the number of reachable nodes with operational compute logic (denoted as 

Hybrid-Compute). Figure 7-3 plots the average number of nodes (as a percentage of total 

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1
e-

06

 1
e-

05

 1
e-

04

%
 D

ef
ec

tiv
e 

N
od

es

Device Failure Probability

C0T0
C0T2
C0T3
C1T2

Hybrid

Figure 7-2. Percentage defective nodes vs. device failure probability for 
different node failure modes
134



nodes) that can be reached for the three failure modes as a function of device failure rate, 

when nodes are connected in a 100x100 grid. For each device failure rate, we use 100 seed 

values for the random number generator to create different defect distributions, and com-

pute the average of these 100 runs. From Figure 7-3, we see that the Hybrid failure mode 

delivers a significant advantage over C0T0 and C0T3 (even if we look at nodes with func-

tioning compute logic only). While there is a sharp decrease in the number of reachable 

nodes beyond a certain device defect probability, this threshold is higher with Hybrid fail-

ure than with C0T0 failure. 

We also compute the number of non-defective nodes that are reachable in a random net-

work with 10,000 nodes. This random network is meant to be representative of self-assem-

bled networks of nodes. The random network has inherently lower connectivity than a 

regular grid and some nodes might be disconnected from the rest of the network. This 

implies that we should see a reduction in the failure probability threshold for all schemes. 

For the random networks, we generate 100 random topologies, and then use 100 seed 

values per topology to create distinct defect distributions and get statistically accurate 

results. Figure 7-4 plots the average number of nodes (as a percentage of total nodes) that 

Figure 7-3. Percentage Nodes Reachable vs. Device Failure Probability for a grid 
with different node failure modes
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can be reached for the three failure modes. As expected, we see the knees in the curves have 

shifted left, but the general shapes are similar to those seen for a regular grid.

Finally, we evaluate the benefit of using the hybrid failure mode over C0T0. In 

Figure 7-5, we plot the average fraction of all nodes that are reachable as a function of the 

percentage of defective nodes as defined by C0T0 (i.e., single defect renders node unus-

able). We plot two curves each for two types of network topologies (grid and random). The 

two curves correspond to the number of nodes reachable using C0T0, and the number of 

nodes with functioning compute logic reachable when using the hybrid failure mode. Note 

that the total number of nodes reachable by the hybrid mode is greater than those reachable 

with functioning compute logic, since the hybrid mode uses nodes with defective compute 

logic and two (or more) functioning transceivers. We see that the hybrid failure mode 

allows us to use nodes that would be unusable with C0T0.

Figure 7-4. Percentage Reachable Nodes vs. Device Failure Probability for a 
random network with different node failure modes
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7.2.4 Result Summary

We have presented a scheme for achieving fail-stop behavior in limited size nodes by 

dividing them into modular components. We analyze the trade-offs in implementing hard-

ware/software test schemes for the components, and use hardware testing for critical node 

logic, and software testing for other logic. Our results show that allowing partially defective 

nodes to participate in system operation increases the transistor failure probability that can 

be tolerated by the system. We have shown that allowing nodes with defective compute 

logic, but functional communication logic to remain in the system improves network con-

nectivity.

7.3 Conclusions

The use of partially functional nodes improves network connectivity, and helps the system 

tolerate devices with higher failure probabilities (increased from 4x10-5 to 1.5x10-4). The 

improved network connectivity allows the system to use a larger fraction of available com-

pute resources, which can lead to an improvement in system performance. As self-assem-
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bly matures as a technology, node size restrictions could reduce, allowing the use of faster, 

and more comprehensive hardware test schemes. In the next chapter, we explore the trade-

off between node complexity and the control required over self-assembly to create well-

connected networks of nodes.
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8  Self-Assembled Networks: 
Control vs. Complexity

In this thesis, we have assumed that the nodes created by DNA-based self-assembly are 

connected either in a mesh, or in a random network. However, these two topologies lie at 

opposite ends of a spectrum defined by the amount of control exercised over the self-

assembly process. In Chapter 3, we described one possible method of connecting self-

assembled nodes by growing DNA links between them and metallizing the links. However, 

there is no easy method to control node placement and orientation during self-assembly. 

Linking the nodes without any control over self-assembly is likely to create a random net-

work of nodes. However, self-assembly can potentially be augmented to allow control over 

node placement and control.

In this chapter, we study the properties of node networks created as we exercise varying 

degrees of control over how self-assembled circuit nodes are placed and oriented, and how 

inter-node links are created during self-assembly. We examine a range of networks, from 

a mesh (full control) to a random network of nodes (no control). For each network type, we 

determine the connectivity of the network, and the need for any additional hardware in each 

node’s communication logic to maximize the number of connected nodes. In particular, we 

examine the trade-off between node complexity and control required during self-assembly 

to maximize the number of connected nodes in the network. As the level of control 

decreases, we find that node communication hardware should be augmented to allow shar-

ing of links between several transceivers. This also results in better network connectivity 

in the presence of defective nodes and links. We evaluate the performance of SOSA on 

these networks using matrix multiplication as our benchmark and find that system perfor-

mance is independent of the underlying network, as long as sufficient nodes are available 

for computation. Finally, we show that the introduction of defects in nodes and links can 

exacerbate the poor connectivity found in networks with low control during self-assembly.
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Recently, researchers have been actively developing nanoelectronic devices and archi-

tectures that could potentially replace CMOS in the future. Most designs either assume the 

ability to create regular structures [31,53], or unstructured interconnect [141] (within a 

computing block). Since the networks we study are highly dependent on physical node 

locations, we cannot leverage the large body of work on generating [137] and analyzing 

internet topologies [91]. Future developments that allow embedding radio transceivers in 

nodes could potentially allow researchers to leverage this work. We make the following 

contributions in this chapter.

1. We show that system connectivity improves if we allow links to be shared between 

more than two transceivers, even for networks where we have low control during self-

assembly, and

2. If technology constraints limit the extra functionality that can be implemented in a 

node, we need to control node placement and orientation during self-assembly to 

achieve good system connectivity.

The rest of this chapter is organized as follows. We begin our discussion with a brief 

review of the communication functionality within a node (Section 8.1). Next, we describe 

how three specific aspects of self-assembly could potentially be controlled (Section 8.2). 

We then describe our experimental methodology and present an analysis of network char-

acteristics (Section 8.3). We conclude with a summary of the results presented in this chap-

ter (Section 8.4).

8.1 Node Communication Logic

A node’s communication logic has four transceivers that allow it to communicate with 

other nodes over single wire links. In any non-mesh topology, more than two links (and 

transceivers) can potentially be connected. In this case a transceiver can implement an infi-

nite backoff mechanism that permits only two active transceivers on that link. If a trans-

ceiver detects more than one transceiver signal over the link, it shuts down. This can 

potentially affect network connectivity in cases where the transceiver that shuts down pro-
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vides the only access to a region of the network. A more complex solution would be to 

allow more than two transceivers to share links (i.e., a bus mechanism). This requires addi-

tional functionality in each transceiver to allow arbitration for the link, as well as the use of 

source/destination identifiers per data transfer. We evaluate the potential benefits of one 

method of link sharing in Section 8.3.5. More details of the node’s communication infra-

structure can be found in Chapter 6 and Chapter 7. The choice between implementing infi-

nite backoff or a bus mechanism is influenced by technological constraints, device defect 

rate, and the level of control exercised during self-assembly. As self-assembly matures, it 

might be easily possible to create larger nodes that incorporate this extra functionality. 

Next, we explore ways in which node placement, orientation and inter-node link creation 

can be controlled during self-assembly.

8.2 Controlling Placement, Orientation and Link 
Creation During Self-Assembly

The topology of the network of nodes depends on the level of control exercised during 

node self-assembly, and during the creation of inter-node links. As self-assembly technol-

ogy matures, it might be possible to create three-dimensional topologies as well, but we 

limit ourselves to the analysis of two-dimensional topologies in this thesis. We explore 

topologies created as we vary control over three aspects of the manufacturing process:

• placement of nodes (P)

• orientation of nodes (O)

• creation of inter-node links (I)

In each case, we consider two alternatives: 1) full control and 2) no control to limit the 

parameter space to be explored. This results in eight network types, ranging from a random 

planar network to a mesh. Table 8-1 lists the networks by the type of control necessary to 

create them and Figure 8-1 shows examples of these networks. The goal is to identify the 

level of control necessary to maximize the number of connected nodes. Next, we describe 
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how we could potentially control P, O or I, and the implications of that control on the 

number of connected nodes in the network.

Placement (P). Control over node placement enables uniformly spaced nodes. We expect 

the uniform spacing to improve network connectivity. Control over node placement can be 

achieved in two ways: 1) pick and place techniques, and 2) placing DNA tags on the under-

Name

Control

ExamplePlacement (P) Orientation (O) Link (I)

N0 No No No Figure 8-1a

N1 No No Yes Figure 8-1b

N2 No Yes No Figure 8-1c

N3 No Yes Yes Figure 8-1d

N4 Yes No No Figure 8-1e

N5 Yes No Yes Figure 8-1f

N6 Yes Yes No Figure 8-1g

N7 Yes Yes Yes Figure 8-1h

Table 8-1. Classification of network topologies based on control over P, O and I.

Network 0 Network 1 Network 2 Network 3
P=N, O=N, I=N P=N, O=N, I=Y P=N, O=Y, I=N P=N, O=Y, I=Y

Network 7Network 5Network 4 Network 6
P=Y, O=Y, I=YP=Y, O=Y, I=NP=Y, O=N, I=YP=Y, O=N, I=N

(e)

(a) (b)

(f) (h)

(d)(c)

(g)

Figure 8-1. Examples of eight networks with varying control over placement (P), 
orientation (O), and inter-node link creation (I). (a-d): no control over P - nodes can get 
isolated due to large distances, control over O and I improve connectivity, (e-h): control 

over P improves connectivity, but can still result in isolated nodes without control over O 
and I.
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lying substrate to control the locations where nodes self-assemble. While each node is large 

enough to enable the use of pick and place strategies, they are not practical for systems with 

a large number of nodes. We can minimize external intervention by placing DNA tags on 

the substrate such that node growth is initiated at tag locations. The greater the number of 

tags per node, the greater the chance that nodes form at the right locations. However, 

increasing the number of tags, increases the effort required in preparing the substrate for 

self-assembly. Examples of the types of networks created with node placement can be 

found in Figure 8-1e-h. We expect that the uniform spacing of nodes decreases the chances 

of nodes being isolated.

Orientation (O). Control over orientation aligns node faces, which can increase the 

chances of links intersecting (as depicted in Figure 8-1c, Figure 8-1d, Figure 8-1g, and 

Figure 8-1h), potentially improving network connectivity. The techniques to control node 

placement could also be extended to control node orientation by increasing the number of 

tags per node. In addition to using multiple tags on the substrate, nodes could be aligned 

using an external electric field, or using fluid flow [62].

Inter-node Link Creation (I). Control over inter-node link creation implies control over 

the shape of links. Without creating a mesh network (and linear links), there is still a chance 

that more than two transceivers are connected by a link. Linear links cannot loop back on 

themselves and are useful in improving network connectivity. Researchers have demon-

strated the creation of mostly linear wire structures [50,80]. Networks with linear links are 

shown in Figure 8-1b, Figure 8-1d, Figure 8-1f, and Figure 8-1h.

8.3 Experimental Setup and Evaluation

We begin with a description of our custom network topology generator (Section 8.3.1). 

Next, we discuss the methodology used to model infinite backoff (Section 8.3.2), and link 

sharing between transceivers (Section 8.3.3). We then describe our methodology and 

experiments (Section 8.3.4). We then analyze the characteristics of the networks 

(Section 8.3.5), and their sensitivity to input parameters (Section 8.3.6). Finally, we 
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explore the effect of network topologies on system performance (Section 8.3.7) and the 

effect of defects on system connectivity for different network topologies (Section 8.3.8).

8.3.1 Topology Generator

The topology generator’s input parameters include the number of nodes, total area, type 

of control over placement (P), orientation (O), interconnect (I), and an optional parameter 

that decays interconnect growth with time (this reflects a potential reduction in the concen-

tration of DNA material available for self-assembly of the links). It also accepts a random 

seed, which allows the creation of distinct topologies. For networks with no control over 

node placement (P=N in Figure 8-1), it generates a random location for the node and places 

it there if all constraints are met (no overlap, minimum distance, within area). The program 

attempts to place each node a maximum of 106 times. For networks with control over node 

placement (P=Y in Figure 8-1), a simple check of the area and number of nodes allows the 

program to determine if the nodes fit. If O=N, each node is rotated (about its center) 

through a random angle before being placed.

After placing all nodes, the simulator models link growth between nodes. For random 

growth (I=N in Figure 8-1), we use a random number generator and a probability distribu-

tion function (PDF) for the angle and distance by which the link grows to perform a directed 

random walk. When we model linear growth (I=Y in Figure 8-1), we grow the link by a 

random length (<=50nm). Each link is grown iteratively until one of two conditions is sat-

isfied: 1) it collides with another node or link, or 2) the simulation terminates as a user-

defined condition is satisfied. Once growth of all links terminates, the simulator generates 

a graph corresponding to the node network created by the links, and generates connectivity 

statistics for the graph.

8.3.2 Modeling Infinite Backoff

The graph generated by the topology generator can include multiple intersecting links, 

which may link more than two node transceivers. A transceiver can implement infinite 

backoff by attempting to signal on a link. If the signal attempt collides with another trans-
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ceiver’s attempt, the transceiver retries after a random interval. If a transceiver receives two 

successful signals on the link, it shuts down. To model infinite backoff, we identify links 

with more than two transceivers, randomly pick two transceivers to be active, and discon-

nect the rest. There are multiple ways of picking a pair of transceivers, and we generate 

multiple networks by randomly picking different pairs of transceivers. Figure 8-2b shows 

four nodes with intersecting links after two transceivers apply infinite backoff and shut 

down (Node 1 and Node 4). This leaves the links from Node 2 and Node 3 connected.

8.3.3 Modeling Links as Buses

We model one possible implementation of shared links, where the N transceivers connected 

by a single link are divided into pairs that communicate with each other. If N is odd, one 

transceiver is not used. Figure 8-2c shows four nodes that can share links. Node 1 and Node 

2 form one pair, and Node 3 and Node 4 form a second pair. While each pair of nodes can 

1 2

3 41 2

3 4 1 2

3 4

(b) Infinite Backoff

(c) Shared Links (paired)

(a) Multiple Intersecting Links

Figure 8-2. Multiple Intersecting links (a) Unmodified, (b) with infinite backoff, 
and (c) paired links on a bus
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be viewed as being connected on distinct links, node communication hardware must deal 

with arbitration for the link.

8.3.4 Methodology and Experiments

The goal of the experimental evaluation is to analyze the characteristics of the different net-

work topologies. We use three metrics to assess network connectivity: 1) fraction of reach-

able nodes, 2) the number of transceivers connected per link, and 3) the number of 

connected links per node. The higher the fraction of connected nodes, the better the net-

work connectivity. The number of transceivers connected per link captures the instances 

where multiple links intersect. Such links have more than two transceivers connected per 

link. The number of connected links per node is a measure of how well a node is connected 

to the rest of the network (higher is better). The highest value is 4, but due to boundary 

effects, the value is limited to about 3.9 for a mesh. We also measure the effect of defective 

nodes and links on network connectivity, and measure the impact of network topologies on 

system performance. Finally, we measure the sensitivity of network characteristics to var-

ious inter-node link growth decay rates. For each of the eight network types, we generate 

100 topologies for different network sizes (1,296 nodes, 4,900 nodes, 10,000 nodes, 21,025 

nodes). For each network size, we also vary the inter-node link growth decay rate (0%-2%). 

For each topology, we generate ten networks each for shared links, and links that model 

infinite backoff. We report the average value over all runs for each metric. 

8.3.5 Network Connectivity

In Figure 8-3, we plot the size of the largest connected group of nodes as a fraction of 

total nodes for the four network sizes (1,296 nodes, 4,900 nodes, 10,000 nodes and 21,025 

nodes). For each network type, we plot three bars, the first representing the unconstrained 

network, the second corresponding to links modelled as buses, and the third with transceiv-

ers implementing infinite backoff. From Figure 8-3, we see that if connectivity is uncon-

strained all networks are able to connect in excess of 95% of the nodes. However when 

modeling realistic hardware, the fraction of reachable nodes decreases. The decrease is not 
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very large when links are treated as shared media. However, if we model infinite backoff 

on links, for networks without control over placement and orientation, the fraction of reach-

able nodes is less than 50%. The results are consistent across network sizes.

In Figure 8-4 we plot the average number of transceivers connected per link. For a fully 

connected network of nodes there would be two transceivers per link and 1.97 for a mesh 

since the boundary transceivers are disconnected. For the unconstrained networks the value 

is over 2 indicating that multiple transceivers share links. The value drops to about 1.7 for 

shared links, and about 1.55 for links with infinite backoff. This implies that only 55% links 

are connected to a second transceiver if we implement infinite backoff, which explains the 

poor network connectivity. The poor network connectivity is also apparent if we examine 

the number of transceivers per node that are connected to other transceivers (even if they 

Figure 8-3. Fraction of Reachable Nodes
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loop back to the same node). We plot the average number of active links per node in 

Figure 8-5. For a mesh, the ideal value is 3.89 (due to disconnected boundary links), but we 

see that except for networks where we exercise control over placement and orientation, the 

value is about 2.7. If we implement infinite backoff, the average number of active links per 

node drops to 2.3 since some nodes are forced to disconnect from links.

This highlights the trade-off between simple nodes and the degree of control required 

during self-assembly to achieve good network connectivity. Simpler nodes require regular 

topologies to achieve good connectivity. If nodes can implement mechanisms to allow 

more than two transceivers to share a single link, the system can be well connected even if 

there is no control over the manufacturing process. Next, we examine the sensitivity of net-

work connectivity as we vary the inter-node link growth decay rate.

Figure 8-4. Transceivers Per Link
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8.3.6 Effect of Decaying Growth Rate

In this subsection, we evaluate the sensitivity of our results to the decay factor that 

accounts for the slowing of the rate of growth of inter-node links. The decay factor repre-

sents the slow reduction in the concentration of the raw chemical components as self-

assembly proceeds. We model this decay by iteratively decreasing the length that a link can 

grow in each iteration. In Figure 8-6, we plot the average number of reachable nodes for 

four network sizes as we vary the decay rate from 0% to 5%. We see that the effect of the 

decay rate is qualitatively similar for different network sizes. The fraction of reachable 

nodes drops to nearly zero beyond a decay rate of 3%. This is because links are unable to 

grow far enough to actually reach other nodes. Since a mesh requires full control over self-

Figure 8-5. Average Active Links Per Node
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assembly, we do not plot the results for a mesh (no drop in connectivity up to a decay rate 

of 5%). Of the other networks, N6 (P=Y, O=Y, I=N) can tolerate a decay rate up to 2.5%, 

and N5 (P=Y, O=N, I=Y) can tolerate a decay rate up to 2%. The remaining configurations 

are more sensitive to the decay rate, primarily because they rely on longer link growth to 

achieve node connectivity. Networks N0 (P,O,I=N) and N2 (P=N, O=Y, I=N) are unable 

to tolerate decay rates greater than 0.5%. From these results, we can conclude that it will 

be important to maintain a sufficient concentration of raw materials during self-assembly 

to maximize system connectivity. 

8.3.7 System Performance

In an ideal system, performance would be independent of network topology. To quantify 

the effect of topology on system performance, we measure the running time of an applica-

tion (matrix multiplication) on different networks using a simulator for our data parallel 

architecture. We measure program run time for networks with at most two transceivers 

sharing links (infinite backoff), or pairs of transceivers sharing links (links as buses). We 

simulate matrix multiplication for three matrix sizes - 8x8, 16x16 and 32x32. In Figure 8-

7, we plot the running time of the three matrix sizes, normalized to the running time on a 

mesh. We find that as long as enough PEs can be configured in the network there is less 

than 5% variation in program running time. However, we also see that if we model infinite 

backoff, the system cannot configure sufficient PEs in networks without full control over 

placement and orientation.

8.3.8 Effect of Defects

To study the effect of defects on network connectivity, we apply a node failure model 

[107] with a range of device reliabilities. Table 8-2 lists the percentage of nodes that are 

reachable in a network of 21,025 nodes for shared links. The numbers in parentheses are 

the percentage of reachable nodes when modeling infinite backoff. We do not show this 

number if it is less than 10%. We see that the percentage of reachable nodes drops rapidly 

as device reliability or control over self-assembly decreases. System connectivity decreases 
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% Device 
Reliability

Configuration

N0 N1 N2 N3 N4 N5 N6 N7

99.990 3.8 4.9 3.9 2.5 3.4 6.6 86 (84) 90 (90)

99.993 18 26 19 7.2 18 38 91 (91) 93 (93)

99.996 73 73 73 31 72 72 95 (95) 96 (96)

99.999 88 88 89 78 89 (12) 85 (36) 99 (99) 99 (99)

100.00 91 91 92 84 92 (20) 87 (50) 100 (100) 100 (100)

Table 8-2. Percentage of nodes reachable with varying device reliabilities when links 
are shared between multiple transceivers. The figure in parentheses is for nodes 

implementing infinite backoff.
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since some regions get disconnected due to the loss of critical nodes/links to defects. This 

is reflected by a drop in the number of transceivers per link (between 22-50% drop) as the 

device reliability decreases from 100% to 99.99%.

The results highlight the benefit of link sharing over infinite backoff. Link sharing 

allows a larger number of nodes to remain connected as device reliability decreases. This 

is true even for configurations with low control during self-assembly (N0-N3). We can 

draw two conclusions from these results: 1) if device reliability is lower than 99.999%, we 

either need to control placement and orientation during self-assembly, or we need to imple-

ment link sharing, to maintain network connectivity, and 2) controlling placement and ori-

entation has a greater effect on network connectivity than link sharing.

8.4 Conclusions

In this chapter, we evaluate the characteristics of a class of network topologies that 

could be created by exercising varying degrees of control during the self-assembly of 

simple nodes. The evaluation highlights the trade-off between node complexity and the 

amount of control required during self-assembly to maximize the number of connected 

nodes in the network. We also see that so long as the network has enough nodes, system 

performance is not affected by the type of configuration created by self-assembly. Finally, 

we see that introducing defects has a greater effect on networks with a lower degree of con-

trol during self-assembly. However, this can be mitigated to some extent by allowing more 

than two transceivers to share a link.
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9 Related Work

In this chapter, we describe prior architecture research related to the work presented in this 

thesis. We divide our discussion into two categories, CMOS-based architectures 

(Section 9.1) and architectures based on technologies other than CMOS (Section 9.2).

9.1 CMOS-based Architectures

There has been extensive research on designing and building vector [23,45] and SIMD 

machines [73,83,13,143]. The CM-2 [143] data parallel architecture uses up to 65536 bit-

serial processing elements to execute parallel programs. Workloads are split up into their 

parallel and sequential components. The processor array executes the parallel component, 

while an external unit handles the sequential parts of the code. Each processor has 64 kilo-

bits of bit addressable memory and connects to its four neighbors. All processors execute 

the same instruction at a time. The result of the operation can either be stored or discarded. 

The recent “Cell” processor [61] has eight SIMD cores that can be programmed indepen-

dently, unlike the PEs in SOSA. The primary differences between SOSA and past work is 

our focus on overcoming the challenges imposed by the fabrication technology and the 

need to tolerate defects.

The Teramac [27,59] architecture developed at HP Labs was one of the first attempts 

at building a high performance defect tolerant architecture. The Teramac achieves defect 

tolerance by creating a defect map for the system and then configuring the rest of the system 

to avoid defective regions. The Teramac uses an extremely long (~300 Mbit) configuration 

instruction to setup every FPGA in the system. This method would not scale if the number 

of devices that needed to be configured was very high. NANA and SOSA use a distributed 

configuration algorithm to provide logical structure to the node network without requiring 
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an external defect map. This is critical since we have little information about the topology 

of the network. 

Researchers have proposed various voting and redundancy schemes [56] to deal with 

defects, including triple modular redundancy (TMR) [90], recursive TMR [140], N-modu-

lar redundancy [145], NAND multiplexing and hot/cold sparing [31] (particularly in the 

context of molecular electronic systems). The defect tolerance scheme presented in this 

paper does not rely on redundant computation but isolates defectives regions in the system.

The accumulator based design and ISA in NANA are similar to the design used by Kim 

et al [76]. Their aim was to exploit the fact that instructions can be grouped into indepen-

dent sets of dependant instructions. Dependant instructions are linked through the use of an 

accumulator. The differences between the two designs lie in the bit-serial nature of our 

design, and the use of only a single accumulator, embedded in the instruction stream.

Both NANA and SOSA could potential leverage prior work to exploit thread level par-

allelism. This includes work done on multiscalar processors [131], slipstream [136], and 

the TRIPS architecture [124]. Multiscalar processors break programs into speculative 

threads that help speed up execution. Slipstream uses a run-ahead thread either for fault tol-

erance, or to speed up execution.

Several research projects have looked at building computing systems with a subset of 

the goals for NANA and SOSA, including self-organization [5,19,125], routing and resil-

iency in the face of defects [1,71,65] and the ability to compose complex computational 

units from simpler blocks [92], but we face added challenges because of the extremely lim-

ited computational capabilities available in nodes.

9.2 Architectures based on Emerging Technologies

The most related work to this thesis, is Dwyer’s proposal to use a DNA guided self-assem-

bly technique to build a massively parallel computer [35,38,42]. Two machines were pro-

posed as part of that work, the Decoupled Array Multi Processor (DAMP), and the Oracle. 

The Oracle solves instances of NP-complete problems by storing all solutions in the assem-
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bly process, and then performing a simple search for the solution. The DAMP attacks 

“embarrassingly parallel” problems by dedicating a vast number of bit serial processing 

elements to solving a single problem. The processing elements of the DAMP can be con-

trolled only through a shared controller and cannot communicate with each other. In con-

trast, the nodes in NANA and SOSA can communicate with each other which enables both 

architectures to execute more complex workloads. In addition, the DAMP does not explic-

itly deal with defect or fault tolerance.

The Nanofabrics [53] work from CMU is similar to the Teramac in its use of reconfig-

urable devices as well as its approach to defect tolerance. Resonant tunneling diodes (two 

terminal devices) are configured into supernodes of appropriate functionality after a test 

phase maps out defective components. The logic blocks are similar to FPGAs and can 

implement 3-bit boolean functions and their complements. The devices use the Split-phase 

Abstract Machine (SAM) architecture, which implements active messages in the reconfig-

urable hardware. Nanofabrics requires the device to be reconfigured per application, while 

both NANA and SOSA can potentially be used without reconfiguration (However, SOSA 

might require reconfiguration to adjust cell sizes, not device function). Nanofabrics also 

relies on a very regular arrangement of devices to achieve defect tolerance. It is unclear 

whether devices can be manufactured with the precision required to make precise mesh 

structures.

DeHon presents an architecture that exploits three terminal devices (FETs) by self-

assembling arrays of nanowires and FETs [31]. Sparing and remapping are used to provide 

defect tolerance. The architecture provides a mechanism to interface the nano-scale com-

ponents to micro-scale components. The design assumes the ability to self-assemble 

nanowires and devices into arbitrary patterns, without providing details of how this could 

be done. Snider et al. [130] use CMOS like logic to build defect tolerant nanoscale fabrics 

out of crossbars of three terminal devices. The system can configure a regular crossbar of 

devices to implement a microprocessor, but assumes the ability to locate defects before 

mapping a circuit onto the crossbar.
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Several other researchers propose various forms of array-based nanoarchitectures. 

Ancona proposes a systolic array architecture for single electron transistors [8], but it 

requires precise control over fabrication. Beckett et al propose a nanoarchitecture based on 

integrated processing and memory nodes with a local interconnection [12]. At the nanos-

cale they note that computation is cheap, while long distance communication is very expen-

sive. SOSA makes use of the same fact, and attempts to minimize communication between 

processing elements. Fountain introduces the propagating instruction processor (PIP) that 

is a pipelined SIMD machine [47]. The PIP also uses bit-serial processing elements, where 

the data is held at each element, and instructions flow through the processor. SOSA is sim-

ilar to the PIP, but has a substantially less structured interconnection network. 

Han exploits NAND multiplexing and reconfiguration to support a defect tolerant 

architecture [55]. More generally, Nikolic et al. argue that reconfiguration is the best 

approach for handling fabrication defects, but that other redundancy techniques are neces-

sary to handle transient faults [101]. They acknowledge that one of the keys to using recon-

figuration is that defect isolation must be easy.

Bit serial architectures have been commonly used in digital signal processing (DSP) 

applications [11,72], and are also being used with new technologies like single flux quan-

tum (SFQ) [153] to demonstrate their feasibility. Both designs presented in this thesis use 

a bit-serial approach for reasons similar to the DAMP [35], PIP [47] and CM-2 [143], and 

because of the limited size of a self-assembled circuit. The bit-serial approach helps in 

exploiting bit-level parallelism.

Current research is exploring the impact on architecture of emerging nanoelectronic 

technologies. This includes molecular electronics [43,141,51,142], quantum dots [99], cel-

lular automata [113] and quantum computing [103,134]. Neural networks [102,117,128] 

have been used by researchers due to their inherent fault tolerance. However, they have 

limited applications due to the complexity of the learning algorithms required to train them. 

Hardware implementations of neural networks [69,127] also exist, but are limited by the 

complexity of the design. Researchers have tried using cellular automata [99,113] to build 

systems out of a large number of simple components. Peper et al [113] use asynchronous 
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arrays of delay insensitive circuits to build a specific type of cellular automata known as a 

self-timed cellular automaton. Cells are connected to their immediate neighbors and do not 

require global knowledge to process data. Each cell has interaction rules that control state 

transitions. State transitions occur when neighboring cell states and the state of the current 

cell match a predefined pattern. Boolean gates cannot be used as universal sets for self-

timed logic, so a different set of logic primitives is designed and used. Cellular automata 

suffer from problems of limited fan-out (maximum of 3). Also, because of the different 

logic primitives used, there is no longer a direct correspondence between conventional pro-

grams and the underlying hardware primitives. This is likely to limit the use of asynchro-

nous cellular automata to a narrow range of applications. Researchers have also tried 

combining neural networks with cellular automata, to produce cellular neural networks, 

where the network can learn, but requires limited connectivity. However, even this limited 

connectivity is hard to achieve, which limits the usefulness of this approach. Other 

researchers have focused on the challenges in designing computing systems using emerg-

ing technologies like molecular electronics and scaled CMOS, and suggest ways of over-

coming these challenges [46,100,133].
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10  Summary and Conclusions

Manufacturing defects, power density, process variability, transient faults, quantum 

effects, bulk semiconductor material limits, rising verification costs and multibillion dollar 

fabrication facilities are some of the challenges facing the continued scaling of CMOS. 

While architectural modifications (e.g., multicore) can provide some short-term relief, the 

semiconductor industry recognizes the need to explore long term alternatives to CMOS 

devices and fabrication techniques. Consequently, researchers have focused on identifying 

device and manufacturing technologies that could replace CMOS in the future. While these 

technologies are in their infancy, by studying their potential uses for building computing 

systems, architects can gain a deeper understanding of their limitations and opportunities 

while providing important feedback to the scientists developing the new technologies.

In this thesis, we study the impact of one class of emerging technologies, DNA-based 

self-assembly of nanoelectronic components, on architecture design. These technologies 

are characterized by their ability to manufacture a large number of simple devices in paral-

lel, but suffer from increased defect rates and limited control over fabrication. A promising 

instance of such technologies is DNA-based self-assembly of nanoscale components that 

has the potential to achieve tera- to peta-scale integration. We start with the development 

of a circuit architecture for this technology, we design and evaluate an active-network 

based architecture (NANA) that incorporates an execution and memory system. Using the 

lessons learned through the design of NANA, we develop a data parallel architecture 

(SOSA) that makes efficient use of a large number of nodes to form a high-performance 

computing system.

The first contribution of this thesis is the design of a circuit architecture [109] that can 

be used to build small nodes with the ability to compute and communicate with up to four 

neighbors. We propose the use of aperiodic patterns to create circuits on a DNA-lattice. 
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These circuits are then interconnected to create a large random network of simple nodes 

that can then be organized to create system architectures.

The second contribution of this thesis is the adaptation of an existing routing algorithm 

to isolate defective nodes and provide logical structure in a random network of nodes. Self-

assembly provides a lower degree of control than conventional manufacturing processes 

like lithography, and is expected to increase the fraction of defective components in a sys-

tem. We adapt the reverse path forwarding algorithm [110] to isolate defective nodes and 

organize nodes in a broadcast tree. We can then use simple algorithms like depth-first tra-

versal to organize nodes into more complex entities.

The third contribution of this thesis is the design of the nanoscale active network archi-

tecture (NANA) [111]. This architecture represents a first cut at the development of a high-

performance architecture built using self-assembled computing blocks. NANA uses the 

logical structure provided by the RPF algorithm to organize a random network of nodes 

into disjoint execution and memory networks. The architecture exploits bit-level parallel-

ism in the data stream to improve performance and can execute a variety of general purpose 

workloads.

The fourth contribution of this thesis is the design of a data parallel architecture (SOSA) 

[112] that incorporates lessons learned during the design and evaluation of NANA to build 

a high-performance computing system. SOSA organizes a random network of homogenous 

nodes to create SIMD style processing elements connected in a logical ring. By exploiting 

the large parallel computing capability of the node network, SOSA is able to match the per-

formance of existing architectures while operating at a lower speed and consuming lower 

power. While this architecture has some limitations it is a positive step towards realizing 

defect tolerant computing systems built using emerging technologies that may provide 

inexpensive terascale integration. Future designs that use emerging technologies can ben-

efit from the lessons learned through the design and evaluation of SOSA.

As advances are made in the development of emerging device and manufacturing tech-

nologies, some of the limitations assumed in this thesis may no longer hold. In the early 

stages of development of these technologies, it might be possible to create hybrid devices 
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that mix CMOS and self-assembled circuits. One possible use would be to build special-

purpose high-performance processor cores that are added to conventional processors to 

improve system performance on a specific class of applications. However, the overall goal 

would be to develop defect-tolerant high-performance architectures that make efficient use 

of the available compute resources.
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Appendix A: NANA Instruction 
Set

NANA supports a small general purpose instruction set, listed in Table A-1. Before we 

describe the operation of the instructions, establish some basic terminology. The operand 

stream is assumed to consist of a series of operands. The first operand (accumulator) is 

denoted ‘A’, the second operand is denoted as ‘B’, the third operand is ‘C’, and the last 

operand is denoted as ‘Z’. Bit-slice separators are denoted by [-]. We explain the operation 

of all instructions in terms of their effect on the operand stream.

Instruction Type Instructions
Arithmetic ADD, INC, SUB, DEC, SHL, SHR
Comparison COMPEQ, COMPGT, COMPLT, SETEQ, SETGT, 

SETLT, SETZ
Operand Stream Control LDCONST0, LDCONST1, CPACC, MOV, DELOP, 

OPFLUSH, SWAP
Logical AND, NAND, NOR, NOT, OR, XOR, XNOR, NOP
Load LD [Mem], LDI [Mem]
Store ST [Mem], STI [Mem]
Conditional Store CST [Mem], CST_RST [Mem], CRST [Mem], CSTI 

[Mem], CSTI_RST [Mem], CRSTI [Mem]
Unconditional Control Transfer JMP [Mem], CALL [Mem],JMPI [Mem],CALLI 

[Mem]
Conditional Control Transfer CALLNZ [Mem], CALLZ [Mem], CALLNZI 

[Mem], CALLZI [Mem]

Table A-1. NANA Instruction Set
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A.1 Arithmetic Instructions

A.2 Logical Instructions

Opcode Length Input Output

ADD 8 bits A,B A+B

Operand Stream

Before [A].[B].[C]....[Z]

After [A+B].[C]...[Z]

Opcode Length Input Output

SUB 8 bits A,B A-B

Operand Stream

Before [A].[B].[C]....[Z]

After [A-B].[C]...[Z]

Opcode Length Input Output

INC 8 bits A A+1

Operand Stream

Before [A].[B].[C]....[Z]

After [A+1].[B].[C]...[Z]

Opcode Length Input Output

ADD 8 bits A A-1

Operand Stream

Before [A].[B].[C]....[Z]

After [A-1].[B].[C]...[Z]

Opcode Length Input Output

SHL 8 bits A A<<1

Operand Stream

Before [A0].[B0][C0]...[Z0][-][A1][B1][C1]..[Z1][-]...

After [0].[B0][C0]...[Z0][-][A0][B1][C1]...[Z1][-][A1][B2][C2]...
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Opcode Length Input Output

SHR 8 bits A A>>1

Operand Stream

Before [A0].[B0][C0]...[Z0][-][A1][B1][C1]..[Z1][-]...

After [B0][C0]...[Z0][A1][-][B1][C1]...[Z1][A2][-][B2][C2]...[Z2][A3]

Opcode Length Input Output

AND 8 bits A,B A.B

Operand Stream

Before [A].[B].[C]....[Z]

After [A.B].[C]...[Z]

Opcode Length Input Output

OR 8 bits A,B A U B

Operand Stream

Before [A].[B].[C]....[Z]

After [A U B].[C]...[Z]

Opcode Length Input Output

XOR 8 bits A,B A XOR B

Operand Stream

Before [A].[B].[C]....[Z]

After [A xor B].[C]...[Z]

Opcode Length Input Output

NOT 8 bits A A

Operand Stream

Before [A].[B].[C]....[Z]

After [A][B].[C]...[Z]
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A.3 Operand Stream Control Instructions

Opcode Length Input Output

XNOR 8 bits A,B A xnor B

Operand Stream

Before [A].[B].[C]....[Z]

After [A xnor B].[C]...[Z]

Opcode Length Input Output

NOR 8 bits A,B A U B

Operand Stream

Before [A].[B].[C]....[Z]

After [A U B].[C]...[Z]

Opcode Length Input Output

NAND 8 bits A,B A.B

Operand Stream

Before [A].[B].[C]....[Z]

After [A.B].[C]...[Z]

Opcode Length Input Output

SWAP 8 bits A,B B,A

Operand Stream

Before [A].[B].[C]....[Z]

After [B].[A].[C]...[Z]

Opcode Length Input Output

CPACC 8 bits A A,Z=A

Operand Stream

Before [A].[B].[C]....[Z]

After [A].[B].[C]...[Z][A]
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Opcode Length Input Output

MOV 8 bits A See Below

Operand Stream

Before [A].[B].[C]...[Z]

After [B].[C]...[Z][A]

Opcode Length Input Output

LDCONST0 8 bits - Z=0

Operand Stream

Before [A].[B].[C]...[Z]

After [A].[B].[C]...[Z][0]

Opcode Length Input Output

LDCONST1 8 bits - Z=1

Operand Stream

Before [A].[B].[C]....[Z]

After [A].[B].[C]...[Z][1]

Opcode Length Input Output

DELOP 8 bits A -

Operand Stream

Before [A].[B].[C]...[Z]

After [B].[C]...[Z]

Opcode Length Input Output

OPFLUSH 8 bits - -

Operand Stream

Before [A].[B].[C]...[Z]

After
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A.4 Comparison Instructions

The comparison instructions modify a flag that is stored in the tail of the execution packet. 

The flag is modified after the node has seen all operands and performed the comparison 

operation. There are two types of comparison operations that differ in their effect on the 

second operand in the comparison. The first type consumes the second operand of the com-

parison and can be identified by the prefix “COMP”. The second type does not affect the 

second operand and can be identified by the prefix “SET”. Neither type affects the first 

operand. In the rest of this appendix, we use [Flag] to denote the input value of the flag and 

[Updated Flag] to denote the new value after the comparison instruction has been per-

formed.

Opcode Length Input Output

NOP 8 bits - -

Operand Stream (No change)

Before [A].[B].[C]...[Z]

After [A].[B].[C]...[Z]

Opcode Length Input Output

COMPEQ 8 bits A,B A=B =>F=T

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [C]...[Z][Updated Flag]

Opcode Length Input Output

COMPLT 8 bits A,B A<B=>F=T

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [C]...[Z][Updated Flag]
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Opcode Length Input Output

COMPGT 8 bits A,B A>B=>F=T

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [C]...[Z][Updated Flag]

Opcode Length Input Output

SETZ 8 bits A A=0 => F=T

Operand Stream 

Before [A].[B].[C]...[Z][Flag]

After [B].[C]...[Z][Updated Flag]

Opcode Length Input Output

SETEQ 8 bits A,B A=B=>F=T

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [B].[C]...[Z][Updated Flag]

Opcode Length Input Output

SETLT 8 bits A,B A<B=>F=T

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [B].[C]...[Z][Updated Flag]

Opcode Length Input Output

SETGT 8 bits A,B A>B=>F=T

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [B].[C]...[Z][Updated Flag]
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A.5 Memory Instructions

The Memory instructions can be divided into four parts: 1) load instructions, 2) store 

instructions 3) conditional store instructions and 4) load PC instructions. We introduce 

additional notation to denote contents of a memory location. [Mem] denotes the contents 

of memory location with the address specified by the instruction. [[Mem]] denotes the con-

tents of the memory location with the address [Mem]. For example, given an 8-bit address 

0xAB containing 0x00DE, [Mem] evaluates to 0x00DE, while [[Mem]] evaluates to the 

contents of memory location 0x00DE.

A.5.1 Load Instructions

A.5.2 Store Instructions

Opcode Length Input Output

LD 16 bits 8-bit address Z=[Mem]

Operand Stream

Before [A].[B].[C]...[Z]

After [A].[B].[C]...[Z][Mem]

Opcode Length Input Output

LDI 16 bits 8-bit address Z=[[Mem]]

Operand Stream

Before [A].[B].[C]...[Z]

After [A].[B].[C]...[Z][[Mem]]

Opcode Length Input Output

ST 16 bits 8-bit address, A [Mem]=A

Operand Stream

Before [A].[B].[C]...[Z]

After [B].[C]...[Z]
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A.5.3 Conditional Store Instructions

Conditional store instructions do not remove A from the operand stream since there is 

no guarantee that the store has occurred. To remove A, an explicit ‘DELOP’ instruction 

must be placed after the conditional store to guarantee removal of the operand.

Opcode Length Input Output

STI 16 bits 8-bit address,A [[Mem]]=A

Operand Stream

Before [A].[B].[C]...[Z]

After [B].[C]...[Z][Mem]

Opcode Length Input Output

CST 16 bits 8-bit address,A if [Flag]=True then [Mem]=A, else 
NOP

Operand Stream (No Change)

Before [A].[B].[C]...[Z][Flag]

After [A].[B].[C]...[Z][Flag]

Opcode Length Input Output

CST_RST 16 bits 8-bit address,A if [Flag]=True then [Mem]=A and 
[Flag]=False, else NOP

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [A].[B].[C]...[Z][Updated Flag]

Opcode Length Input Output

CRST 16 bits 8-bit address,A if [Flag]=False then [Mem]=A, else 
NOP

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [A].[B].[C]...[Z][Flag]
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A.5.4 Control Transfer Instructions

There are two types of control transfer instructions: 1) those that create a new execution 

packet (‘CALL’ variants) and 2) those that do not result in the creation of a new packet 

(‘JMP’ variants). Each instruction operates in a similar manner. The data returned by the 

memory system is split into two parts: the first byte forms part of the execution packet, 

while the second part is used as an address for the next fragment of the execution packet. 

The instruction continues executing until the address in the second part is zero, at which 

point the instruction terminates. This behavior is shared by all the control transfer instruc-

tions.

Opcode Length Input Output

CSTI 16 bits 8-bit address,A if [Flag]=True then [[Mem]]=A, else 
NOP

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [A].[B].[C]...[Z][Flag]

Opcode Length Input Output

CSTI_RST 16 bits 8-bit address,A if [Flag]=True then [[Mem]]=A and 
[Flag]=False, else NOP

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [A].[B].[C]...[Z][Updated Flag]

Opcode Length Input Output

CRSTI 16 bits 8-bit address,A if [Flag]=False then [[Mem]]=A, else 
NOP

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [A].[B].[C]...[Z][Flag]
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Opcode Length Input Output

CALL 16 bits 8-bit address New packet starting from [Mem]

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After Empty

Opcode Length Input Output

CALLNZ 16 bits 8-bit address,A If [Flag]=True, then fetch new packet 
starting from [Mem], else NOP

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After Empty

Opcode Length Input Output

CALLZ 16 bits 8-bit address,A If [Flag]=False, then fetch new packet 
starting from [Mem], else NOP

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After Empty

Opcode Length Input Output

CALLI 16 bits 8-bit address,A Fetch new packet starting from 
[[Mem]]

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After Empty

Opcode Length Input Output

CALLNZI 16 bits 8-bit address,A If [Flag]=True, then fetch new packet 
starting from [[Mem]], else NOP

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After Empty
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Opcode Length Input Output

CALLZI 16 bits 8-bit address,A If [Flag]=False, then fetch new packet 
starting from [[Mem]], else NOP

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After Empty

Opcode Length Input Output

JMP 16 bits 8-bit address Fetch instructions into current packet 
starting from [Mem]

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [A].[B].[C]...[Z][Flag]

Opcode Length Input Output

JMPI 16 bits 8-bit address Fetch instructions into current packet 
starting from [[Mem]]

Operand Stream

Before [A].[B].[C]...[Z][Flag]

After [A].[B].[C]...[Z][Flag]
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Appendix B: SOSA Instruction Set

SOSA supports a small microcoded instruction set, listed in Table B-1. Instructions can 

be divided into six classes: a) arithmetic, b) logical, c) bit shift, d) predicate modifying, e) 

comparison, and f) miscellaneous and pseudo instructions,. Since the instructions are 

micro-coded, it is possible to create instructions that overlap two categories. With the 

exception of instructions that cause inter PE communication, all instructions can be predi-

cated. All instructions are 16 bits long and the definitions of individual bits in the instruc-

Instruction Type Instruction Type

ADD Arithmetic AND Logical

BITSHIFTLMPE Bit Shift/Inter PE BITSHIFTMLPE Bit Shift/Inter PE

CHREG Pseudo Instruction CLEAR Logical

CPPRED Logical CPREG Logical

CPSHIFTML Bit Shift CPSHIFTLM Bit Shift

DEC Arithmetic INC Arithmetic

MVSTCURRPE Logical/Bit Shift MVSTNEXTPE Logical/Bit Shift

NOP Miscellaneous NOT Logical

OR Logical PINV Predicate Modifying

PSet Predicate Modify-
ing

PSetEven Predicate Modifying

PSetOdd Predicate Modify-
ing

PSHIFTML Bit Shift

PSHIFTLM Bit Shift REPEAT Pseudo Instruction

SETEQ Comparison SETGT Comparison

SETLT Comparison SHIFTLM Bit Shift

SHIFTLMPE Bit Shift/Inter PE SHIFTML Bit Shift

SHIFTMLPE Bit Shift/Inter PE SIG_CTRL Miscellaneous

SUB Arithmetic SWAP Miscellaneous

XOR Logical

Table B-1. SOSA Instruction Set
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tion are given in Table B-2. Before we describe individual instructions, we establish 

notation that will be used through this appendix. Registers are specified by a register micro-

instruction that allows the user to specify up to three instructions. We will denote these 

three as Rs, Rt and Rd. Since the PEs are connected in a logical ring, the current PE is 

denoted by PEC, the PE to its left is denoted by PEL and the PE to its right is denoted by 

PER. Each PE has one predicate and status bit per physical register. These are denoted by 

Pi (predicate bit i) and Si (status bit i). We now describe instructions, breaking down the 

discussion into the different categories.

B.1 Arithmetic Instructions

The arithmetic instructions modify the status bit stored in the tail of the PE. All arithmetic 

instructions can be predicated. We present one example of a predicated arithmetic instruc-

tion (predicated ADD) to illustrate the operation of a predicated instruction.

Bit Description

0-1 uop register selector

2 Add

3 Sub

4 Constant Op 1 (Ignore second register 
specifier)

5 AND

6 OR

7 XOR

8 Move Status Bit

9 Not

10 Shift LSB to MSB

11 Shift MSB to LSB

12 Set Predicate Bit

13 Reset Predicate Bit

14 Predicated Instruction

15 Inter PE instruction

Table B-2. Instruction Bit Definitions
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Mnemonic Operands Value Operation

ADD Rs, Rt, Rd 0x0004 Rd=Rs+Rt

Notes Sets status bit Sd if there is a carry out from the MSB

Mnemonic Operands Value Operation

INC Rs 0x0014 Rs=Rs+1

Notes Sets status bit Ss if there is a carry out from the MSB

Mnemonic Operands Value Operation

SUB Rs, Rt, Rd 0x0008 Rd=Rs-Rt

Notes Sets status bit Sd if there is a borrow out from the MSB

Mnemonic Operands Value Operation

DEC Rs 0x0018 Rs=Rs-1

Notes Sets status bit Ss if there is a borrow out from the MSB

Mnemonic Operands Value Operation

PRADD Rs, Rt, Rd 0x4004 Rd=Rs+Rt if Ps=1

Notes If Ps is set, the add is performed. If Ps is 0, the instruction 
is treated as a NOP. Sets status bit Sd if there is a carry out 
from the MSB

Mnemonic Operands Value Operation

PRSUB Rs, Rt, Rd 0x4008 Rd=Rs-Rt if Ps=1

Notes If Ps is set, the sub is performed. If Ps is 0, the instruction 
is treated as a NOP. Sets status bit Sd if there is a borrow 
out from the MSB
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B.2 Logical Instructions

SOSA supports basic logical instructions. Each of these instructions can be predicated. 

Logical instructions do not modify status bits.

Mnemonic Operands Value Operation

PRINC Rs 0x4014 Rs=Rs+1 if Ps=1

Notes If Ps is set, the INC is performed. If Ps is 0, the instruction 
is treated as a NOP. Sets status bit Sd if there is a carry out 
from the MSB

Mnemonic Operands Value Operation

PRDEC Rs 0x4018 Rs=Rs-1 if Ps=1

Notes If Ps is set, the DEC is performed. If Ps is 0, the instruc-
tion is treated as a NOP. Sets status bit Sd if there is a bor-
row out from the MSB

Mnemonic Operands Value Operation

AND Rs, Rt, Rd 0x0020 Rd=Rs.Rt

Notes -

Mnemonic Operands Value Operation

CLEAR Rs 0x0090 Rs=0t

Notes AND Rs with 0 to clear register

Mnemonic Operands Value Operation

CPPRED Ps, Pd 0x1030 Pd=Rs

Notes Copy predicate bit Ps into predicate bit Pd
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B.3 Bit Shift Instructions

SOSA supports instructions to shift bits within a register in a PE, and between PEs. 

Instructions that send bits between PEs cannot be predicated.

Mnemonic Operands Value Operation

CPREG Rs, Rd 0x0030 Rd=Rs

Notes Copy Rs to Rd

Mnemonic Operands Value Operation

NOT Rs 0x0200 Rs=Rs

Notes Invert bits of Rs

Mnemonic Operands Value Operation

OR Rs, Rt, Rd 0x0040 Rd=Rs U Rt

Notes -

Mnemonic Operands Value Operation

XOR Rs, Rt, Rd 0x0080 Rd=Rs XOR Rt

Notes -

Mnemonic Operands Value Operation

BITSHIFTLMPE Rs 0x8410 Rs << 1

Notes Shift from LSB to MSB, move across PE boundaries, 
PEC.Ss gets copied into PER.Ps, PEL.Ss gets copied 
into PEC.Ps, PEC.Ps becomes the LSB

Mnemonic Operands Value Operation

MVSTCURRPE Ss 0x0900 Ps=Ss

Notes Copy the status bit Ss into the predicate bit Ps
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Mnemonic Operands Value Operation

BITSHIFTMLPE Rs 0x8810 Rs >> 1

Notes Shift from MSB to LSB, move across PE boundaries, 
PEC.Ss gets copied into MSB, PEC.Ps gets copied into 
PEL.Ss, PER.Ps gets copied into PEC.Ss

Mnemonic Operands Value Operation

CPSHIFTLM Rs, Rt 0x0430 Rt=Rs >> 1

Notes Copy Rs to Rt, and shift Rt from LSB to MSB 1 posi-
tion. Does not cross PE boundaries, Pt, St not changed

Mnemonic Operands Value Operation

CPSHIFTML Rs, Rt 0x0830 Rt=Rs <<1

Notes Copy Rs to Rt, and shift Rt from MSB to LSB 1 posi-
tion. Does not cross PE boundaries, Pt, St not changed

Mnemonic Operands Value Operation

MVSTNEXTPE PEC.Ss 0x8500 PER.Ps=PEC.Ss

Notes Copy the status bit Ss from the current PE into the 
predicate bit Ps of the next PE

Mnemonic Operands Value Operation

PSHIFTLM Rs 0x1400 Rs >> 1

Notes Shift Rs from LSB to MSB 1 position. Does not cross 
PE boundaries, LSB sent to Ps, Ss copied to Ps

Mnemonic Operands Value Operation

PSHIFTML Rs 0x1800 Rs <<1

Notes Shift Rs from MSB to LSB 1 position. Does not cross 
PE boundaries, Ps copied to LSB, Ss copied to MSB, 
Ss=0
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B.4 Predicate Modifying Instructions

SOSA supports instructions that modify predicate bits. These instructions themselves 

can be predicated.

Mnemonic Operands Value Operation

SHIFTLM Rs 0x0400 Rs >> 1

Notes Shift Rs from LSB to MSB 1 position. Does not cross 
PE boundaries. Ps and Ss unchanged

Mnemonic Operands Value Operation

SHIFTML Rs 0x0800 Rs <<1

Notes Shift Rs from MSB to LSB 1 position. Does not cross 
PE boundaries. Ps and Ss unchanged

Mnemonic Operands Value Operation

SHIFTLMPE Rs 0x8400 PEC.Rs=PEL.Rs 
PER.Rs=PEC.Rs

Notes Send register to next PE. Status and predicate bits also 
copied

Mnemonic Operands Value Operation

SHIFTMLPE Rs 0x8800 PEC.Rs=PER.Rs 
PEL.Rs=PEC.Rs

Notes Send register to previous PE. Status and predicate bits 
also copied
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B.5 Comparison Instructions

SOSA supports three comparison instructions that perform a comparison and set a pred-

icate bit based on the result of the comparison.

Mnemonic Operands Value Operation

PINV Ps 0x3200 Ps=Ps

Notes Invert predicate bit Ps

Mnemonic Operands Value Operation

PSet Ps 0x1000 Ps=1

Notes Set predicate bit Ps

Mnemonic Operands Value Operation

PSetEven Ps 0x2000 Ps=1 if Even PE

Notes Set Ps if current PE has an even ID

Mnemonic Operands Value Operation

PSetOdd Ps 0x1010 Ps=1 if Odd PE

Notes Set Ps if current PE has an odd ID

Mnemonic Operands Value Operation

SETEQ Rs,Rd,Pt 0x1084 Pt=1 if Rs=Rd

Notes Set Pt if the two source registers are equal.

Mnemonic Operands Value Operation

SETGT Rs,Rd,Pt 0x1008 Pt=1 if Rs>Rd

Notes Set Pt if Rs is greater than Rd
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B.6 Miscellaneous and Pseudo-Instructions

Mnemonic Operands Value Operation

SETLT Rs,Rd,Pt 0x1208 Pt=1 if Rs<Rd

Notes Set Pt if Rs is less than Rd

Mnemonic Operands Value Operation

NOP - 0x0000 None

Notes Do nothing

Mnemonic Operands Value Operation

SIG_CTRL - 0x8C00

Notes Send a signal to the external controller

Mnemonic Operands Value Operation

SWAP Rs,Rd 0x0370 Swap Rs and Rd

Notes Swap the values of Rs and Rd

Mnemonic Operands Value Operation

CHREG Rs,Rd,Rt -

Notes This pseudo-instruction allows reuse of current 
opcode with new register specifiers

Mnemonic Operands Value Operation

REPEAT 5 bit Count -

Notes This pseudo-instruction allows the repeated execution 
of an instruction
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B.7 Programming SOSA - Matrix Multiplication

In this section, we provide a brief overview of programming SOSA. We use matrix multi-

plication as a running example, and demonstrate how various optimizations can be applied 

to improve performance. We begin with the N3 algorithm for multiplying two NxN matri-

ces A and B, shown in Figure B-1. Now, since SOSA does not include memory addressable 

from within the PEs, we assume that data is distributed among the PEs. We choose a simple 

data layout - each PE holds one element each of the input matrices (depicted in Figure B-

2, for two 4x4 matrices). We divide the algorithm into four parts, each of which is repeated 

N times. The first part computes the N3 products, the second part accumulates sums to 

create elements of the result, the third part moves data within the PEs to set up the next iter-

for i=1 to N

 for j=1 to N

  for k=1 to N

   C[i][j]=C[i][j]+A[i][j]*B[j][k];

  end

 end

end

Figure B-1. Matrix Multiplication - N3 algorithm
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Figure B-2. Matrix Layout
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ation and the fourth part moves the each newly computed element of the result to its final 

location. Since SOSA does not have a native multiplication instruction, the first part is not 

trivial, and is implemented using a shift-add algorithm.

Figure B-3 shows the first version of the primary matrix multiply loop. There are four 

components as stated earlier: multiply, accumulate, align data, move result. The largest 

fraction of running time is spent in the first two parts of the algorithm, and we focus on opti-

mizing those parts. The primary optimizations applied to the third and fourth part include 

the reuse of microinstructions where possible. 

To optimize the accumulate, we observe that in each iteration, we want to accumulate 

N products into a single sum. However, we can exploit matrix sizes that are a power of two, 

to optimize this accumulation step. We replace the N add iterations by log(N) iterations, 

and in every kth iteration, we move the sum 2k PEs before performing the accumulate. This 

is depicted in Figure B-4 for N=16. This reduces the number of iterations, but does not 

reduce the amount of data that must be communicated. Note that we perform some extra 

; Initialize before Multiply
CPREG R4,R2        ; Copy R4->R2
CPREG R3,R1        ; Copy R3->R1
CLEAR R5           ; Clear R5
; Multiply (Loop Dw times) (Dw: Data Width)
SHIFTLM R1               ;  Shift LSB to MSB (multiply by 2)
PSHIFTML R2,R5        ;  Shift MSB to LSB, LSB to pred.reg R5
PRADD R5,R1,R5         ;   if predicate is set, R5=R5+R1
CLEAR R6                  ;   Clear R6
; Accumulate partial products
;---Repeat N times---
ADD R6,R6,R5              ;  Accumulate partial sum
CPREG R6,R5               ;  Copy R6 to R5
SHIFTMLPE R5          ;  Send accumulated sum to previous PE
; Align rows of matrix A for next set of multiplies
;(Repeat (Dw+2)*N times) 
SHIFTMLPE R4        ; Move A ’N’ PEs to the left
; Move Result
CPREG R8,R9          ; if R8==1, this PE holds the first 
                               ; element of a row/column, move this to R9
PSHIFTML R9,R6   ; Move that bit into the predicate register R6
PRCPREG R6,R7      ; if predicate set, copy R6->R7 
SHIFTMLPE R7        ; Move R7 one PE to the left (*(Dw+2))

Figure B-3. Matrix Multiply: Assembly Code - No Optimizations
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ADD instructions on data elements that do not contribute to the final result. We show the 

final accumulate code in Figure B-5.

To optimize the multiplication, we use loop unrolling, and maximize our use of the reg-

ister file within each node. If we use 1-bit wide registers, we can unroll the multiply loop 

16 times, and perform only two iterations of shift-add. In each unrolled iteration, we create 

a shifted version of the multiplicand, and generate predicate bits using the multiplier. We 

use a predicated add to control whether the shifted multiplicand gets added depending on 

the predicate bit created by the multiplier. The loop unrolling allows us to reuse microin-

structions, which helps reduce instruction execution time.

; Accumulate partial products
;---Repeat log2(N) times---
ADD R6,R6,R5              ;  Accumulate partial sum
CPREG R6,R5               ;  Copy R6 to R5
SHIFTMLPE R5          ;  For iteration i, repeat (Dw+2)*i*2 times
; End Repeat

Figure B-5. Matrix Multiply: Assembly Code - No Optimizations

Figure B-4. Logarithmic Accumulate
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