
Consistent Hashing

PPT by Brandon Fain

Outline

• Review Hashing

• Motivation: Caching Webpages

• Consistent Hashing

2

��*&��(�������	 ����������� ����������
����	��	����������������
����������� �
��

���	��������
�	����

�-$�&#�*��#��� !&#�"% ��
��	
���

��	
�

�
������������

�*!�(��������
�&%*�"%"% �
��������������

�'�(�*"&%)�&%���
/ ������������
/ ������������
/ �����������

�&,�)!&+#��*!����*��)*(+�*+(��� ���&(�%".�����������

��-)� +����
�� ��� ������! �������� �
����	��	�������������������
����������� ����

������	�������	
��

����� �.**), �-#�-�-# �% 1,��+ ��+�0(�!+)'�
-# �, -�� � 2���	��5���6	3���(��% 1,��+ �
�$,-$(�-���� -�.*��(��++�1������� �6	���

����� � $!�� � � �(���� ��������
���)-# +0$, �

�# (��)* +�-$)(,�-�% ���	� -$' �
���
���� �# �+�(" �)!�% 1,���(�� �&�+" �
4 ����$-�(.'� +,��0#$�#�+ *+ , (-�
	������������������	��	� �$!! + (-�% 1,��

4 �#�+��- +�,-+$(",�� / (�&�+" +��� ��������

��$ ��"�	������ ���������� ����������
����	��	�������������������
����������� ���

���������	��
��
��	��� �#������
��������	� � $ ���!�$���
%��&�"#��� ��������'#���$
(������*���+�)

�

�
��

�� �	

�

��

�

�+�

�����
���
�

�����

���	�

�������

�#��������'��#���#�"$����� ��!#��$�$ ���#� $� ����������"�� "��$ ������#�"$�����!#�$ ������"���'�
 ��%!����#� $���������	���
�	� ��%"#� ��������

��#���!�������� ����������� ����������
����	��	�������������������
����������� �
�	

�������������������
�����	�
�
��

��������#����""$��#������ �
������
�����
	��	
��
(������'�� � �� �"�� $���'������'�#�������"����
#����'�"��#����#�����������������#����&��!��
�#��!���'"��!����"����

��#�� ���#����$���!������'"����#���#����������
��#�� ���#����$���!����"��#"�
�������#�������������� ��� #����

� �����
� �%�!�����$���!������'"���!�"��#� ��������

Outline

• Review Hashing

• Motivation: Caching Webpages

• Consistent Hashing

7

Caching Webpages

• The usual model:

Caching Webpages

• Reality:

Caching Webpages

Can we cut out the server bottleneck?

Caching Webpages

• The usual model:

Just cache this locally.

Caching Webpages – Advantages

• Users get much faster response times from webpages.

• Overall network congestion is decreased.

• Server load is decreased.

• It’s a win win!
• Well…except that it costs space. Maybe too much for one device.

Caching Webpages

• Better yet, couldn’t multiple users/devices share a common cache of
recent urls?

• Problem: Who stores what? When we try to visit google.com, how do
we know which device in our local network has the page in cache?

• Solution: Hashing!

Caching Webpages

All 16 bit URLs

0000 0000 0000 0000

0000 0000 0000 0001

…

1111 1111 1111 1111

n machines

1

2

…

n

Hash h(x)

Set h(x) to be something like MD5(x) mod n
(MD5(x) is a widely used hash function producing a 128-bit hash of x)

The expected load on any machine will just be m/n, if
there are m webpages cached.

Caching Webpages

• Problem: What happens if we add or take away a device from this
caching scheme?

• We could just set h(x) to be something like MD5(x) mod (n+1).

• But then we have to move almost all m cached pages between
devices.

• For a problem at this scale on the internet, devices can come and go
too often for this to be even remotely feasible.

Outline

• Review Hashing

• Motivation: Caching Webpages

• Consistent Hashing

16

Consistent Hashing

• We want a way to increase or decrease the number of “buckets” in
our hash table without needing to shuffle a lot of data.

• Key idea: Don’t hash to machines directly. Hash to values, and also
hash the names of the machines.

• To lookup a page, find the active machine whose hash value is closest
(to the right) to the hash value of the page.

Consistent Hashing

Figure 2: Each element of the array above is a bucket of the hash table. Each object x is
assigned to the first cache server s on its right.

Figure 3: (Left) We glue 0 and 232 � 1 together, so that objects are instead assigned to the
cache server that is closest in the clockwise direction. This solves the problem of the last
object being to the right of the last cache. (Right) Adding a new cache server s3. Object x2

moves from s0 to s3.

The key idea is: in addition to hashing the names of all objects (URLs) x, like before,
we also hash the names of all the cache servers s. The object and cache names need to be
hashed to the same range, such as 32-bit values.

To understand which objects are assigned to which caches, consider the array shown in
Figure 2, indexed by the possible hash values. (This array might be very big and it exists
only in our minds; we’ll discuss the actual implementation shortly.) Imagine that we’ve
already hashed all the cache server names and made a note of them in the corresponding
buckets. Given an object x that hashes to the bucket h(x), we scan buckets to the right
of h(x) until we find a bucket h(s) to which the name of some cache s hashes. (We wrap
around the array, if need be.) We then designate s as the cache responsible for the object x.

This approach to consistent hashing can also be visualized on a circle, with points on the
circle corresponding to the possible hash values (Figure 3(left)). Caches and objects both
hash to points on this circle; an object is stored on the cache server that is closest in the
clockwise direction. Thus n carches partition the circle into n segments, with each cache
responsible for all objects in one of these segments.

This simple idea leads to some nice properties. First, assuming reasonable hash functions,

5

Consistent Hashing

Figure 2: Each element of the array above is a bucket of the hash table. Each object x is
assigned to the first cache server s on its right.

Figure 3: (Left) We glue 0 and 232 � 1 together, so that objects are instead assigned to the
cache server that is closest in the clockwise direction. This solves the problem of the last
object being to the right of the last cache. (Right) Adding a new cache server s3. Object x2

moves from s0 to s3.

The key idea is: in addition to hashing the names of all objects (URLs) x, like before,
we also hash the names of all the cache servers s. The object and cache names need to be
hashed to the same range, such as 32-bit values.

To understand which objects are assigned to which caches, consider the array shown in
Figure 2, indexed by the possible hash values. (This array might be very big and it exists
only in our minds; we’ll discuss the actual implementation shortly.) Imagine that we’ve
already hashed all the cache server names and made a note of them in the corresponding
buckets. Given an object x that hashes to the bucket h(x), we scan buckets to the right
of h(x) until we find a bucket h(s) to which the name of some cache s hashes. (We wrap
around the array, if need be.) We then designate s as the cache responsible for the object x.

This approach to consistent hashing can also be visualized on a circle, with points on the
circle corresponding to the possible hash values (Figure 3(left)). Caches and objects both
hash to points on this circle; an object is stored on the cache server that is closest in the
clockwise direction. Thus n carches partition the circle into n segments, with each cache
responsible for all objects in one of these segments.

This simple idea leads to some nice properties. First, assuming reasonable hash functions,

5

Consistent Hashing

• With m webpages and n machines, we still have expected load m/n
per machine.

• Now we only have to move m/n pages, in expectation, when we add
or remove a machine.

• Note that we can even do this in lazy execution!

Consistent Hashing

• Problem. How do we actually implement the “find the active machine
whose hash value is closest (to the right) to the hash value of the
page” idea?

• Solution:
• Maintain a binary search tree on the machines, sorted by hash values.
• Then given the hash value of a page, we can find it’s machine in

O(log(n)) time, assuming the tree is balanced.
• Note – one should use a red and black tree, as the tree will be changing

frequently and needs to stay balanced.

Consistent Hashing

For example, suppose you
want to know to what
machine you should cache a
page hashed to 5.

Consistent Hashing

• Unfortunately, we have introduced another problem.

• In expectation, the load per machine should still be m/n. But
expectations aren’t everything…

Consistent Hashing

• These two distributions
have the same
expectation…

• But different variance.
Recall that the variance
of a random variable X
is 𝔼 𝑋 − 𝔼 𝑋 ! =
𝔼 X! − 𝔼 𝑋 !.

Consistent Hashing

• Let X be the random variable for the load on a machine after caching
m pages on n machines using our consistent hashing scheme.

• Problem. X has substantially higher variance than one would typically
expect in hashing applications. Why?

Consistent Hashing

• The standard idea is to create multiple logical machines for each
physical machine. Everything is as before, except multiple logical
machines actually get stored on the same device.

• Another general purpose idea for reducing variance in hashing is to
use multiple hash functions.

Consistent Hashing - Akamai

Market Capitalization = 12.3 billion USD

Consistent Hashing - Akamai

