
Count Min-Sketch: The
Heavy Hitters Problem

PPT by Brandon Fain

Outline

• Review Big Data Streaming Model
• Bloom Filters

• Application: The Heavy Hitters Problem
• (Detecting Viral Google Searches)

• Streaming Data Structure: Count Min-Sketch

Big Data

• Problem. Too much data to fit in memory (e.g., who can store the
internet graph?

Big Data

• Problem. Alternatively, maybe we could store our data, but it would
take too long to process it, and we want a real time (or near real time)
application. הפועלהפועל

רעננהרעננה
נגדנגד
מכבימכבי
חיפהחיפה

SummerSummer
YoutYout

檔揔檔揔
㱾㱾

AlavésAlavés
x x

MontserratMontserrat
CaballéCaballé

JeuxJeux
OlympiquesOlympiques
de la Jeunede la Jeune

ArAr YêuYêu
VioricaViorica
DDăăncilncilăă InterpolInterpol

MU vsMU vs
NewcastleNewcastle

TrumpTrump
tt
ambientalambiental
MedellinMedellin

EVEV CharlCharl
YBYB
MatcMatc

Showing the latest hot searches in Showing the latest hot searches in ..All RegionsAll Regions

DownloadDownload
ScreensaverScreensaver

For Mac OS X 10.9+For Mac OS X 10.9+

Streaming Model

• Solution. In the streaming model of computation, we process the
data one piece at a time, with limited memory.

• Equivalently: we develop algorithms that run in a single left to right
pass over an array, with a small amount of auxiliary storage.

Football Duke Politics News ... Weather

0 1 2 3 … T

Auxiliary Storage of size n
(n << T)

Bloom Filter

• We have already seen how to construct a bloom filter, a form of lossy
compression (as opposed to lossless compression, e.g., Huffman).

• Answers membership queries; i.e., “Have I seen element x before in
the stream?”

• Applications include:
• Web browser checking for known malicious urls
• Checking for “one hit wonders” in web caching (remember consistent

hashing?)

Bloom Filter

• Our auxiliary storage is just a hash table of size n. Initialize all values
to 0.

• We also use r independent hash functions h1, …, hr.

• Whenever we see an element x in the stream, set h1(x) = … = hr(x) = 1.

• To check whether we have seen an element y:
• If h1(y) = … = hr(y) = 1, return True.
• Else, return False.

Bloom Filter

Football Duke Politics News … Weather

1 0 1 0 … 1

h1(Football) h2(Football) hr(Football)

Bloom Filter

• Guarantees:
• If we have seen x, we always correctly output True.
• If we have not seen x, we correctly output False with high probability.

• What if we want to remember more than just whether we have seen
x?

• How about “How many times have we seen x?”

Outline

• Review Big Data Streaming Model
• Bloom Filters

• Application: The Heavy Hitters Problem
• (Detecting Viral Google Searches)

• Streaming Data Structure: Count Min-Sketch

Heavy Hitters Problem

• In particular, suppose we want to construct an algorithm for detecting
viral google searches.

• There are a few billion google searches every day, and we’ll say that a
search is viral if it constitutes a constant fraction of those searches
(e.g., 1%).

• Can we detect these viral google searches with a single pass over the
stream of searches?

Heavy Hitters Problem

• We can formalize this as the heavy hitters problem.

• We are given a stream of length T and a parameter k.
• Think of T >> k.

• In a single pass over the stream, we want to find any elements that
appear at least T/k times.

Heavy Hitters Problem

• Bloom filters gets us part of the way there.

• In particular, if we had k=T, the heavy hitters problem is the
membership problem.

• Thus, the heavy hitters problem is at least as hard (computationally,
more on reductions later in the course) as the membership problem.

• Since we only had a correct algorithm with high probability for
membership, we shouldn’t expect an exact answer here.

Heavy Hitters Problem

• Thus, we consider the 𝜖-approximate heavy hitters problem. Still
given a stream of length T and a parameter k (T >> k), but we are also
given an “error tolerance” parameter 𝜖.

• In a single pass over the stream using just O(1/𝜖) auxiliary storage, we
want to output a list L of elements such that:
• If x occurs at least T/k times in the stream, then x is in L.
• If x is in L, then with high probability, x occurs at least T/k - 𝜖T times in the

stream.
• (e.g., if 𝜖 = 1/(2k), then we get O(k) storage and should satisfy: if x is in L, with

high probability, x occurs at least T/2k times in the stream).

Outline

• Review Big Data Streaming Model
• Bloom Filters

• Application: The Heavy Hitters Problem
• (Detecting Viral Google Searches)

• Streaming Data Structure: Count Min-Sketch

Count Min-Sketch

• Big Idea. Just build a bloom filter that can count.

• Our auxiliary storage consists of r hash tables, each of size n and
initialized to 0’s, with corresponding r independent hash functions h1,
…, hr.

• Whenever we see an element x in the stream:
• For all i=1 to i=r: {hi(x) = hi(x) + 1}
• if min

!
ℎ! 𝑥 ≥ 𝑇/𝑘, add x to L.

Count Min-Sketch

+1 …
+1 …

… +1

+1 …
+1 …

Football Duke Football News … Weather

h1

h2

h3

h4

hr=5

Count Min-Sketch

+1 1 … +1
1 …

+1 … 1

1+1 …
+1 1 …

Football Duke Football News … Weather

h1

h2

h3

h4

hr=5

Count Min-Sketch

1 1+1 … 1
1+1 …

1 … 1+1

2+1 …
1 1+1 …

Football Duke Football News … Weather

h1

h2

h3

h4

hr=5

Count Min-Sketch

• Note that we occasionally overestimate frequencies, but we never
underestimate frequencies.

• So it is easy to satisfy the first part of the heavy hitter’s problem: “If x
occurs at least T/k times in the stream, then x is in L.”

• Problem. We need to argue that it is unlikely we overestimate so
badly that we violate the other part: “If x is in L, then with high
probability, x occurs at least T/k - 𝜖T times in the stream.”

Count Min-Sketch

• Let 𝑓! be the frequency (# of times in stream) of element x.

• Let#𝑓! 1 , … , #𝑓! 𝑟 be our estimated frequencies, that is,#𝑓! 𝑖 = ℎ"(𝑥)
at the end of our pass through the stream.

• Let 𝐼!,$ 𝑖 be an indicator random variable:
• 𝐼",$ 𝑖 = 1 if ℎ! 𝑥 = ℎ!(𝑦), and 0 otherwise.

• What is 𝔼 #𝑓! 𝑖 ?

Count Min-Sketch
• We make the assumption of universal hashing:

• For all 𝑥 ≠ 𝑦, Pr ℎ 𝑥 = ℎ 𝑦 ≤ %
&

.

Hence 𝔼 #𝑓! 𝑖 = 𝑓! + 𝔼 ∑$%! 𝑓$ × 𝐼!,$ 𝑖

= 𝑓! +3
$%!

𝑓$ 𝔼[𝐼!,$[𝑖]]

= 𝑓! + 3
$%&

𝑓$
𝑛
≤ 𝑓! +

𝑇
𝑛

Count Min-Sketch
• Recall we want to use O(1/𝜖) storage:
• Set the size of each hash table to n = 3/𝜖.
• Let 𝜖 = 1/(2k).
• Then

𝔼 #𝑓! 𝑖 ≤ 𝑓! +
𝑇
𝑛

≤ 𝑓! + 𝜖
𝑇
3

= 𝑓! +
𝑇
6𝑘 .

Count Min-Sketch
• Recall we want to use O(1/𝜖) storage:
• Set the size of each hash table n = 3/𝜖 and let 𝜖 = 1/(2k).
• Then we have shown:

𝔼 #𝑓! 𝑖 ≤ 𝑓! +
𝑇
6𝑘

.

• To bound the probability that we get a large overestimate, we can use
Markov’s inequality: For any constant c > 1 and random variable X,
r 𝑋 > 𝑐 𝔼 𝑋 ≤ '

(
.

A Quick Intro to Data Stream Algorithmics – CS262
19

Basic Tools: Tail Inequalities
n General bounds on tail probability of a random variable

(that is, probability that a random variable deviates far
from its expectation)

n Basic Inequalities: Let X be a random variable with
expectation and variance Var[X]. Then, for any

µe µ µe

Probability
distribution

Tail probability

0>eµ

Markov: Chebyshev:
22εμ

Var[X]με)|μXPr(| £³-
ε1
1ε)μ)(1Pr(X
+

£+³

𝔼 𝑋 𝑐 𝔼 𝑋

> 𝑐 𝔼 𝑋
l

Count Min-Sketch
• Recall we want to use O(1/𝜖) storage: Set the size of each hash table n =

3/𝜖 and let 𝜖 = 1/(2k).
• Then we have shown:

𝔼 #𝑓! 𝑖 ≤ 𝑓! +
𝑇
6𝑘 .

• To bound the probability that we get a large overestimate, we can use
Markov’s inequality: For any constant c > 1 and random variable X,
Pr 𝑋 > 𝑐 𝔼 𝑋 ≤ "

#
.

So we have show:
For c = 3/2, Pr #𝑓! 𝑖 >

$
%
𝔼 #𝑓! 𝑖 = $

%
𝑓! +

&
'(

≤ %
$
.

A Quick Intro to Data Stream Algorithmics – CS262
19

Basic Tools: Tail Inequalities
n General bounds on tail probability of a random variable

(that is, probability that a random variable deviates far
from its expectation)

n Basic Inequalities: Let X be a random variable with
expectation and variance Var[X]. Then, for any

µe µ µe

Probability
distribution

Tail probability

0>eµ

Markov: Chebyshev:
22εμ

Var[X]με)|μXPr(| £³-
ε1
1ε)μ)(1Pr(X
+

£+³

𝔼 𝑋 𝑐 𝔼 𝑋

> 𝑐 𝔼 𝑋
l

Count Min-Sketch
• We have shown: Pr #𝑓! 𝑖 >

"
#
𝔼 #𝑓! 𝑖 = "

#
𝑓! +

$
%&

≤ #
"
.

• Recall however, that we output the minimum estimate.
• Since the r hash functions are chosen independently:

Pr min
'
#𝑓! 𝑖 >

3
2 𝔼

#𝑓! 𝑖 = Pr ∀𝑖, #𝑓! 𝑖 >
3
2 𝔼

#𝑓! 𝑖

r
=3

'()

Pr #𝑓! 𝑖 >
3
2 𝔼

#𝑓! 𝑖

≤
2
3

*

Count Min-Sketch
• Recall that the Heavy Hitter’s Problem for 𝜖 = 1/(2k) is:

• we get O(k) storage and should satisfy:
• if x is in L, with high probability, x occurs at least T/(2k) times in the stream.

• Consider some x with 𝑓! <
+
#,

. We have shown that

Pr min
'
#𝑓! 𝑖 >

3𝑇
4𝑘 +

𝑇
4𝑘 =

𝑇
𝑘 ≤

2
3

*
.

• So if x is in L, then it occurs at least T/(2k) times in the stream with probability at least:
1- !

"

#
.

• So if we want an error with probability at most 2% (say), we just need to use
𝑟 = log"/# 50 = 10 independent hash functions.

Count Min-Sketch

• In summary, we can use 20/𝜖 = O(1/𝜖) space to:
• find all elements that appear at least T/k times in the stream, and
• output elements that appear less than T/(2k) times in stream with probability

at most 2%.
• And in practice, even fewer hash functions often suffice for good

performance.

• Note that we can do all of this with just a single linear scan over the
stream (and only constant time operations per element), and just
O(1/𝜖) storage.
• The amount of auxiliary storage we use is completely independent of T!

Count Min-Sketch

• Food for Thought. What if you didn’t know T beforehand?
• Maybe this is just a real time application, and you want to maintain a list of

any elements that are heavy hitters among what you have seen so far.

