Count Min-Sketch: The Heavy Hitters Problem

PPT by Brandon Fain

Outline

- Review Big Data Streaming Model
- Bloom Filters
- Application: The Heavy Hitters Problem
- (Detecting Viral Google Searches)
- Streaming Data Structure: Count Min-Sketch

Big Data

- Problem. Too much data to fit in memory (e.g., who can store the internet graph?

Big Data

- Problem. Alternatively, maybe we could store our data, but it would take too long to process it, and we want a real time (or near real time) application.

Streaming Model

- Solution. In the streaming model of computation, we process the data one piece at a time, with limited memory.
- Equivalently: we develop algorithms that run in a single left to right pass over an array, with a small amount of auxiliary storage.

Football	Duke	Politics	News	\ldots	Weather
0	1	2	3	\ldots	T

Auxiliary Storage of size n ($\mathrm{n} \ll \mathrm{T}$)

Bloom Filter

- We have already seen how to construct a bloom filter, a form of lossy compression (as opposed to lossless compression, e.g., Huffman).
- Answers membership queries; i.e., "Have I seen element x before in the stream?"
- Applications include:
- Web browser checking for known malicious urls
- Checking for "one hit wonders" in web caching (remember consistent hashing?)

Bloom Filter

- Our auxiliary storage is just a hash table of size n. Initialize all values to 0 .
- We also use r independent hash functions h_{1}, \ldots, h_{r}
- Whenever we see an element x in the stream, set $h_{1}(x)=\ldots=h_{r}(x)=1$.
- To check whether we have seen an element y:
- If $h_{1}(y)=\ldots=h_{r}(y)=1$, return True.
- Else, return False.

Bloom Filter

Bloom Filter

- Guarantees:
- If we have seen x, we always correctly output True.
- If we have not seen x, we correctly output False with high probability.
- What if we want to remember more than just whether we have seen x ?
- How about "How many times have we seen x?"

Outline

- Review Big Data Streaming Modeł
- Bloom Filters
- Application: The Heavy Hitters Problem
- (Detecting Viral Google Searches)
- Streaming Data Structure: Count Min-Sketch

Heavy Hitters Problem

- In particular, suppose we want to construct an algorithm for detecting viral google searches.
- There are a few billion google searches every day, and we'll say that a search is viral if it constitutes a constant fraction of those searches (e.g., 1\%).
- Can we detect these viral google searches with a single pass over the stream of searches?

Heavy Hitters Problem

- We can formalize this as the heavy hitters problem.
- We are given a stream of length T and a parameter k.
- Think of $T \gg k$.
- In a single pass over the stream, we want to find any elements that appear at least T / k times.

Heavy Hitters Problem

- Bloom filters gets us part of the way there.
- In particular, if we had $\mathrm{k}=\mathrm{T}$, the heavy hitters problem is the membership problem.
- Thus, the heavy hitters problem is at least as hard (computationally, more on reductions later in the course) as the membership problem.
- Since we only had a correct algorithm with high probability for membership, we shouldn't expect an exact answer here.

Heavy Hitters Problem

- Thus, we consider the ϵ-approximate heavy hitters problem. Still given a stream of length T and a parameter k ($T \gg k$), but we are also given an "error tolerance" parameter ϵ.
- In a single pass over the stream using just $O(1 / \epsilon)$ auxiliary storage, we want to output a list L of elements such that:
- If x occurs at least T/k times in the stream, then x is in L.
- If x is in L, then with high probability, x occurs at least $T / k-\epsilon T$ times in the stream.
- (e.g., if $\epsilon=1 /(2 k)$, then we get $O(k)$ storage and should satisfy: if x is in L, with high probability, x occurs at least $T / 2 k$ times in the stream).

Outline

- Review Big Data Streaming Modeł
- Bloom Filters
- Application: The Heavy Hitters Problem
- (Detecting Viral Google Searches)
- Streaming Data Structure: Count Min-Sketch

Count Min-Sketch

- Big Idea. Just build a bloom filter that can count.
- Our auxiliary storage consists of r hash tables, each of size n and initialized to 0 's, with corresponding r independent hash functions h_{1}, \ldots, h_{r}.
- Whenever we see an element x in the stream:
- For all $i=1$ to $i=r:\left\{h_{i}(x)=h_{i}(x)+1\right\}$
- if $\min _{i} h_{i}(x) \geq T / k$, add x to L .

Count Min-Sketch

Count Min-Sketch

Count Min-Sketch

- Note that we occasionally overestimate frequencies, but we never underestimate frequencies.
- So it is easy to satisfy the first part of the heavy hitter's problem: "If x occurs at least T / k times in the stream, then x is in L."
- Problem. We need to argue that it is unlikely we overestimate so badly that we violate the other part: "If x is in L, then with high probability, x occurs at least $\mathrm{T} / \mathrm{k}-\epsilon \mathrm{T}$ times in the stream."

Count Min-Sketch

- Let f_{x} be the frequency (\# of times in stream) of element \boldsymbol{x}.
- $\operatorname{Let} \widehat{f}_{x}[1], \ldots, \widehat{f}_{x}[r]$ be our estimated frequencies, that is, $\widehat{f}_{x}[i]=h_{i}(x)$ at the end of our pass through the stream.
- Let $I_{x, y}[i]$ be an indicator random variable:
- $I_{x, y}[i]=1$ if $h_{i}(x)=h_{i}(y)$, and 0 otherwise.
- What is $\mathbb{E}\left[\widehat{f}_{x}[i]\right]$?

Count Min-Sketch

- We make the assumption of universal hashing:
- For all $x \neq y, \operatorname{Pr}(h(x)=h(y)) \leq \frac{1}{n}$.

Hence

$$
\begin{aligned}
\mathbb{E}\left[\widehat{f}_{x}[i]\right] & =f_{x}+\mathbb{E}\left[\sum_{y \neq x} f_{y} \times I_{x, y}[i]\right] \\
& =f_{x}+\sum_{y \neq x} f_{y} \mathbb{E}\left[I_{x, y}[i]\right] \\
& =f_{x}+\sum_{y \neq \mathrm{x}} \frac{f_{y}}{n} \leq f_{x}+\frac{T}{n}
\end{aligned}
$$

Count Min-Sketch

- Recall we want to use $\mathrm{O}(1 / \epsilon)$ storage:
- Set the size of each hash table to $n=3 / \epsilon$.
- Let $\epsilon=1 /(2 \mathrm{k})$.
- Then

$$
\begin{gathered}
\mathbb{E}\left[\widehat{f}_{x}[i]\right] \leq f_{x}+\frac{T}{n} \\
\leq f_{x}+\epsilon \frac{T}{3} \\
=f_{x}+\frac{T}{6 k} .
\end{gathered}
$$

Count Min-Sketch

- Recall we want to use $O(1 / \epsilon)$ storage:
- Set the size of each hash table $n=3 / \epsilon$ and let $\epsilon=1 /(2 k)$.
- Then we have shown:

$$
\mathbb{E}\left[\widehat{f}_{x}[i]\right] \leq f_{x}+\frac{T}{6 k}
$$

- To bound the probability that we get a large overestimate, we can use Markov's inequality: For any constant c>1 and random variable X, General bounds on tail probability of a random variable (that is, probability that a random variable deviates far from its expectation)

Count Min-Sketch

- Recall we want to use $O(1 / \epsilon)$ storage: Set the size of each hash table $\mathrm{n}=$ $3 / \epsilon$ and let $\epsilon=1 /(2 \mathrm{k})$.
- Then we have shown:

$$
\mathbb{E}\left[\widehat{f}_{x}[i]\right] \leq f_{x}+\frac{T}{6 k}
$$

- To bound the probability that we get a large overestimate, we can use Markov's inequality; For any constant c > 1 and random variable X, $\operatorname{Pr}(X>c \mathbb{E}[X]) \leq \frac{1}{c}$. General bounds on tail probability of a random variable (that is, probability that a random variable deviates far from its expectation)

So we have show:
For $\mathrm{c}=3 / 2, \operatorname{Pr}\left(\widehat{f}_{x}[i]>\frac{3}{2} \mathbb{E}\left[\widehat{f}_{x}[i]\right]=\frac{3}{2} f_{x}+\frac{T}{4 k}\right) \leq \frac{2}{3}$.

Count Min-Sketch

- We have shown: $\operatorname{Pr}\left(\widehat{f}_{x}[i]>\frac{3}{2} \mathbb{E}\left[\widehat{f}_{x}[i]\right]=\frac{3}{2} f_{x}+\frac{T}{4 k}\right) \leq \frac{2}{3}$.
- Recall however, that we output the minimum estimate.
- Since the r hash functions are chosen independently:

$$
\begin{gathered}
\operatorname{Pr}\left(\min _{i} \widehat{f}_{x}[i]>\right. \\
\left.\frac{3}{2} \mathbb{E}\left[\widehat{f}_{x}[i]\right]\right)=\operatorname{Pr}\left(\forall i, \widehat{f}_{x}[i]>\frac{3}{2} \mathbb{E}\left[\widehat{f}_{x}[i]\right]\right) \\
=\prod_{i=1}^{r} \operatorname{Pr}\left(\widehat{f}_{x}[i]>\frac{3}{2} \mathbb{E}\left[\widehat{f}_{x}[i]\right]\right) \\
\leq\left(\frac{2}{3}\right)^{r}
\end{gathered}
$$

Count Min-Sketch

- Recall that the Heavy Hitter's Problem for $\epsilon=1 /(2 k)$ is:
- we get $O(k)$ storage and should satisfy:
- if x is in L, with high probability, x occurs at least $T /(2 k)$ times in the stream.
- Consider some x with $f_{x}<\frac{\mathrm{T}}{2 \mathrm{k}}$. We have shown that

$$
\operatorname{Pr}\left(\min _{i}^{2 \mathrm{f}} \widehat{f}_{x}[i]>\frac{3 T}{4 k}+\frac{T}{4 k}=\frac{T}{k}\right) \leq\left(\frac{2}{3}\right)^{r}
$$

- So if x is in L, then it occurs at least $T /(2 k)$ times in the stream with probability at least:

$$
\text { 1- }\left(\frac{2}{3}\right)^{r} \text {. }
$$

- So if we want an error with probability at most 2% (say), we just need to use $r=\left\lceil\log _{3 / 2}(50)\right\rceil=10$ independent hash functions.

Count Min-Sketch

- In summary, we can use $20 / \epsilon=O(1 / \epsilon)$ space to:
- find all elements that appear at least T / k times in the stream, and
- output elements that appear less than $\mathrm{T} /(2 \mathrm{k})$ times in stream with probability at most 2\%.
- And in practice, even fewer hash functions often suffice for good performance.
- Note that we can do all of this with just a single linear scan over the stream (and only constant time operations per element), and just O(1/ ϵ) storage.
- The amount of auxiliary storage we use is completely independent of T !

Count Min-Sketch

- Food for Thought. What if you didn't know T beforehand?
- Maybe this is just a real time application, and you want to maintain a list of any elements that are heavy hitters among what you have seen so far.

