Late-Term Exam Review

PPT by Brandon Fain

Course Evaluations

- I want to stress that we take this seriously.
- Part of the reason this lab exists is in response to student feedback.
- Please let us know what you liked and did not like, what we should keep and what we can make better.

Course Evaluations

- Go to https://dukehub.duke.edu/
- 2. Click on the **Evaluation** icon (see image below) to begin the evaluation process. A course evaluation form will open up.

		HOME	REGISTRATION	ACADEMICS	FINANCIAL AID	BURSAR	Pi
Student Schedule							
Student Weekly Sche	dule Student Class Schedule	-					
		2016 Fall Term +					
Course	Description	Instructor	Mtg Days/Times	Class Dates F	loom	Evaluation	
CHEM 89S - 01 (5165)	FIRST-YEAR SEMINAR (TOP) (SEM) TOPIC SCIENCE OF	Multiple	TTH - 03:05PM to 04:20PM	08/29 to F 12/09	French Science 2237	/	

Late-Term Exam Format

- 4 problems, each will ask you to write and analyze an algorithm
- 2 from graph theory
 - Connectivity: DFS, connected components, cycles, topological sort
 - Short paths: BFS, Dijkstra's, Bellman-Ford
 - Spanning Trees: Greedy, Prim, Kruskal
- 2 from other topics from lecture
 - Polynomial multiplication and FFT
 - Number theory algorithms and RSA
 - Pattern matching
 - Computational Geometry
 - Dynamic Programming

Polynomial Multiplication and FFT

Public Key Cryptography

Working of RSA

- 1. Select at random two LARGE prime numbers p and q (100-200 decimal digits).
- 2. Compute n = pq.
- 3. Select a small odd integer e relatively prime to $\phi(n) = (p-1)(q-1)$ number nontrivial factors of n
- 4. Compute d such that $ed = 1 \mod \phi(n)$ (d exists and is unique!!!).
- 5. Publish the **public key** function $P_A(M) = M^e \mod n$ (the pair (e, n)).
- 6. Keep secret the secret key function $S_A(C) = C^d \mod n$.

Pattern Matching

- Input: Two strings T[1...n] and P[1...m], containing symbols from alphabet Σ.
 E.g. :

 -Σ={a,b,...,z}
 T[1...18]="to be or not to be"
 - P[1..2]="be"
- Goal: find all "shifts" $0 \le s \le n-m$ such that T[s+1...s+m]=PE.g. 3, 16

Computational Geometry

- Algorithms for geometric problems
- Applications: CAD, GIS, computer vision,.....
- E.g., the *closest pair* problem:
 - Given: a set of points $P=\{p_1...p_n\}$ in the plane, such that $p_i=(x_i,y_i)$
 - Goal: find a pair $p_i \neq p_j$ that minimizes $||p_i - p_j||$ $||p-q|| = [(p_x-q_x)^2+(p_y-q_y)^2]^{1/2}$

Closest pair:

0

0

0

0

0

Computational Geometry

- Divide:
 - Compute the median of x-coordinates
 - Split the points into P_L and P_R , each of size n/2
- Conquer: compute the closest pairs for P_L and P_R
- Combine the results (the hard part)

Optimal substructure An optimal solution to a problem (instance) contains optimal solutions to subproblems.

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

v:

Example: Longest Common Subsequence (LCS) • Given two sequences $x[1 \dots m]$ and $y[1 \dots n]$, find a longest subsequence common to them both. "a" not "the" *x*: A

functional notation, but not a function

LCS(x, y)

Strategy: Consider *prefixes* of *x* and *y*.

- Define c[i, j] = |LCS(x[1 . . i], y[1 . . j])|.
- Then, c[m, n] = |LCS(x, y)|.

Theorem.

 $c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$

Graph Connectivity – Depth First Search

Graph Connectivity – Depth First Search

• Runtime.

- O(|V| + |E|) using adjacency lists.
- O(|V|²) using adjacency matrix
- In a dense graph, both are the same.

Applications

- Connectivity "Does there exist a path from u to v?" Also, discovering connected components.
- Cycle Detection Just look for a "back" edge.
- Topological Sort Find a directed acyclic graph such that all edges are left to right (to do this, sort decreasing by finish time).

Short Paths – Breadth First Search

Runtime

O(|V|+|E|)
 Applications

Applications

- Shortest path in an unweighted graph
- Graph coloring / Testing for bipartite graph

Short Paths – Dijkstra's Algorithm

- Exchange a standard queue in breadth first search for a *priority queue* maintained on minimum distance so far.
- Runtime
 - O(|E|log(|V|)) with a binary heap
- Application
 - Shortest paths in *weighted* graphs with *no* negative edges

Short Paths – Bellman Ford

- Rather than making a clever exploration of the graph...
- Repeat |V|-1 times:
 - For every edge:
 - If that gives you a shorter path to some vertex, update.
- Runtime
 - O(|V||E|)
- Application
 - Shortest path in weighted graphs with negative edges but no negative cycles
 - Detecting negative cycles

Greedy Algorithm – Spanning Trees

- A tree is a connected graph with no cycles.
- A spanning tree is a tree with every vertex in the graph.
- Minimum spanning trees have a greedy choice property.

Greedy-choice property A locally optimal choice is globally optimal.

Greedy Algorithm – Spanning Trees

• The MST of $T_1 U T_2$ just takes the "cheapest" edge between the two components.

Greedy Algorithm – Spanning Trees

- This intuition yields two algorithms for minimum spanning trees.
- **Prim's Algorithm** Maintain a single tree / connected component. At each step include the vertex outside the current tree with the cheapest edge to the current tree.
- Kruskal's Algorithm Maintain many different trees / connected components. At each step, merge any two components using the cheapest edge possible.

• Runtime

- O(|E|log(|V|)) for both, but...
- Prim's algorithm just needs a priority queue, Kruskal's algorithm needs a new disjoint set data structure for maintaining and merging components.

Questions?