
Late-Term Exam Review

PPT by Brandon Fain

Course Evaluations

• I want to stress that we take this seriously.

• Part of the reason this lab exists is in response to student feedback.

• Please let us know what you liked and did not like, what we should
keep and what we can make better.

Course Evaluations

• Go to https://dukehub.duke.edu/

https://dukehub.duke.edu/

Late-Term Exam Format

• 4 problems, each will ask you to write and analyze an algorithm
• 2 from graph theory

• Connectivity: DFS, connected components, cycles, topological sort
• Short paths: BFS, Dijkstra’s, Bellman-Ford
• Spanning Trees: Greedy, Prim, Kruskal

• 2 from other topics from lecture
• Polynomial multiplication and FFT
• Number theory algorithms and RSA
• Pattern matching
• Computational Geometry
• Dynamic Programming

Polynomial Multiplication and FFT

Public Key Cryptography

Pattern Matching

Computational Geometry

Computational Geometry

Dynamic Programming

Dynamic Programming

Dynamic Programming

Dynamic Programming

Graph Connectivity – Depth First Search

Graph Connectivity – Depth First Search

• Runtime.
• O(|V| + |E|) using adjacency lists.
• O(|V|2) using adjacency matrix
• In a dense graph, both are the same.

• Applications
• Connectivity - “Does there exist a path from u to v?” Also, discovering

connected components.
• Cycle Detection – Just look for a “back” edge.
• Topological Sort – Find a directed acyclic graph such that all edges are left to

right (to do this, sort decreasing by finish time).

Short Paths – Breadth First Search

Runtime
• O(|V|+|E|)
Applications
• Shortest path in an unweighted

graph
• Graph coloring / Testing for bipartite

graph

Short Paths – Dijkstra’s Algorithm

• Exchange a standard queue in breadth first search for a priority queue
maintained on minimum distance so far.
• Runtime

• O(|E|log(|V|)) with a binary heap

• Application
• Shortest paths in weighted graphs with no negative edges

Short Paths – Bellman Ford

• Rather than making a clever exploration of the graph…
• Repeat |V|-1 times:
• For every edge:
• If that gives you a shorter path to some vertex, update.

• Runtime
• O(|V||E|)

• Application
• Shortest path in weighted graphs with negative edges but no negative cycles
• Detecting negative cycles

Greedy Algorithm – Spanning Trees

• A tree is a connected graph with no cycles.
• A spanning tree is a tree with every vertex in the graph.
• Minimum spanning trees have a greedy choice property.

Greedy Algorithm – Spanning Trees

• The MST of T1 U T2 just takes the “cheapest” edge between the two
components.

Greedy Algorithm – Spanning Trees

• This intuition yields two algorithms for minimum spanning trees.
• Prim’s Algorithm – Maintain a single tree / connected component. At

each step include the vertex outside the current tree with the
cheapest edge to the current tree.
• Kruskal’s Algorithm – Maintain many different trees / connected

components. At each step, merge any two components using the
cheapest edge possible.
• Runtime

• O(|E|log(|V|)) for both, but…
• Prim’s algorithm just needs a priority queue, Kruskal’s algorithm needs a new

disjoint set data structure for maintaining and merging components.

Questions?

