Late-Term Exam Review

PPT by Brandon Fain

Course Evaluations

- I want to stress that we take this seriously.
- Part of the reason this lab exists is in response to student feedback.
- Please let us know what you liked and did not like, what we should keep and what we can make better.

Course Evaluations

- Go to https://dukehub.duke.edu/

2. Click on the Evaluation icon (see image below) to begin the evaluation process. A course evaluation form will open up.

Late-Term Exam Format

- 4 problems, each will ask you to write and analyze an algorithm
- 2 from graph theory
- Connectivity: DFS, connected components, cycles, topological sort
- Short paths: BFS, Dijkstra's, Bellman-Ford
- Spanning Trees: Greedy, Prim, Kruskal
- 2 from other topics from lecture
- Polynomial multiplication and FFT
- Number theory algorithms and RSA
- Pattern matching
- Computational Geometry
- Dynamic Programming

Polynomial Multiplication and FFT

Chapter 30 Polynomials and the FFT

Public Key Cryptography

Working of RSA

1. Select at random two LARGE prime numbers p and q (100-200 decimal digits).
2. Compute $n=p q$.
3. Select a small odd integer e relatively prime to $\phi(n)=(p-1)(q-1)=$ number nontrivial factors of n
4. Compute d such that $e d=1 \bmod \phi(n)(d$ exists and is unique!!!).
5. Publish the public key function $P_{A}(M)=$ $M^{e} \bmod n$ (the pair (e, n)).
6. Keep secret the secret key function $S_{A}(C)=$ $C^{d} \bmod n$.

Pattern Matching

- Input: Two strings $\mathrm{T}[1 \ldots \mathrm{n}]$ and $\mathrm{P}[1 \ldots \mathrm{~m}]$, containing symbols from alphabet Σ.
E.g. :
$-\Sigma=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$
- T[1...18]="to be or not to be"
- P[1..2]="be"
- Goal: find all "shifts" $0 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{m}$ such that $\mathrm{T}[\mathrm{s}+1 \ldots \mathrm{~s}+\mathrm{m}]=\mathrm{P}$
E.g. 3, 16

Computational Geometry

- Algorithms for geometric problems
- Applications: CAD, GIS, computer
-

vision,.......

- E.g., the closest pair problem:
- Given: a set of points $\mathrm{P}=\left\{\mathrm{p}_{1} \ldots \mathrm{p}_{\mathrm{n}}\right\}$ in the plane, such that $\mathrm{p}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$
- Goal: find a pair $p_{i} \neq p_{j}$ that minimizes $\left\|p_{i}-p_{j}\right\|$

$$
\|p-q\|=\left[\left(p_{x}-q_{x}\right)^{2}+\left(p_{y}-q_{y}\right)^{2}\right]^{1 / 2}
$$

Computational Geometry

- Divide:
- Compute the median of x-coordinates
- Split the points into P_{L} and P_{R}, each of size $n / 2$
- Conquer: compute the closest pairs for P_{L} and P_{R}

Right side
closest pair closest pair
distance d2

-

- Combine the results (the hard part)

Dynamic Programming

9 Optimal substructure
 An optimal solution to a problem (instance) contains optimal solutions to subproblems.

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

Dynamic Programming
Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.
"a" not "the"

Dynamic Programming
Strategy: Consider prefixes of x and y.

- Define $c[i, j]=|\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n]=|\operatorname{LCS}(x, y)|$.

Theorem.

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max \{c[i-1, j], c[i, j-1]\} & \text { otherwise } .\end{cases}
$$

Dynamic Programming

Graph Connectivity - Depth First Search

Graph Connectivity - Depth First Search

- Runtime.
- $\mathrm{O}(|\mathrm{V}|+|E|)$ using adjacency lists.
- $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ using adjacency matrix
- In a dense graph, both are the same.

- Applications

- Connectivity - "Does there exist a path from u to v?" Also, discovering connected components.
- Cycle Detection - Just look for a "back" edge.
- Topological Sort - Find a directed acyclic graph such that all edges are left to right (to do this, sort decreasing by finish time).

Short Paths - Breadth First Search

Runtime

- O(|V|+|E|)

Applications

- Shortest path in an unweighted graph
- Graph coloring / Testing for bipartite graph

Short Paths - Dijkstra's Algorithm

- Exchange a standard queue in breadth first search for a priority queue maintained on minimum distance so far.
- Runtime
- $\mathrm{O}(|\mathrm{E}| \log (|\mathrm{V}|))$ with a binary heap
- Application
- Shortest paths in weighted graphs with no negative edges

Short Paths - Bellman Ford

- Rather than making a clever exploration of the graph...
- Repeat |V|-1 times:
- For every edge:
- If that gives you a shorter path to some vertex, update.
- Runtime
- O(|V||E|)
- Application
- Shortest path in weighted graphs with negative edges but no negative cycles
- Detecting negative cycles

Greedy Algorithm - Spanning Trees

- A tree is a connected graph with no cycles.
- A spanning tree is a tree with every vertex in the graph.
- Minimum spanning trees have a greedy choice property.

Greedy Algorithm - Spanning Trees

Optimal substructure

MST T :
(Other edges of G are not shown.)

- The MST of $\mathrm{T}_{1} \mathrm{UT}_{2}$ just takes the "cheapest" edge between the two components.

Greedy Algorithm - Spanning Trees

- This intuition yields two algorithms for minimum spanning trees.
- Prim's Algorithm - Maintain a single tree / connected component. At each step include the vertex outside the current tree with the cheapest edge to the current tree.
- Kruskal's Algorithm - Maintain many different trees / connected components. At each step, merge any two components using the cheapest edge possible.
- Runtime
- $\mathrm{O}(|\mathrm{E}| \log (|\mathrm{V}|))$ for both, but...
- Prim's algorithm just needs a priority queue, Kruskal's algorithm needs a new disjoint set data structure for maintaining and merging components.

Questions?

