Huffman Codes

PPT by Brandon Fain



Outline

* Review: Binary Search Trees
* Application: Data Compression and Prefix Codes

* Huffman Encoding: A lossless compression code for the characters of a
static alphabet.



Review: Binary Search Trees

* Binary search trees are data structures with search times dependent
on the height of the tree.

* At worst O(log,n) if there are n elements
and the tree is balanced.

e Can maintain balance dynamically with a
red-black tree.

 What’s it good for?




Application: Data Compression and Prefix
Codes

» Suppose you want to save a book onto a computer.

* Suppose there are m characters: {a,, a,, ..., a,,} (for example, m=27 to
include the lowercase Latin alphabet and blank).

A document is an array of n characters.

* We want to represent these n characters with as few bits as possible.



Data Compression and Prefix Codes

* The naive algorithm is as follows:
* Use binary strings of length [log, m |.
* Each character is uniquely identified with a string.

* This does not exploit any structure of the problem. Suppose we have
three characters {a, b, c}, and they appear in our book the following
number of times:

* a appears 1,000,000 times
* b and c appear 50,000 times each

* The naive algorithm uses 2,100,000 bits.



Data Compression and Prefix Codes

* But | claim we could have used just 1,100,000 bits.

 We want the code for the more common character ‘a’ to be shorter
than the codes for the less common ‘b’ and ‘c.” What about:
*a=1
* b=10
e c=11
e Suppose you are trying to decode “1011” Is it “baa” or “bc?”

* To fix this problem, we will use a prefix code.



Data Compression and Prefix Codes

* No code string should be a prefix to another. Try:
*a=0
*b=10
e c=11

 Then “1011” is unambiguously “bc.”

 How would we keep track of this in a way that we can look it up
quickly when coding/decoding?

* Use a binary tree!



Data Compression and Prefix Codes

 To encode — Search for the leaf
corresponding to the character. It’s
encoding is the string of bits on
edges from the root to the leaf.

 To decode — Every bit gives you an
edge to take from the root. Stop
when you hit a leaf.

* This means encoding/decoding a
character takes time proportional
to the depth of the character.




Huffman Encoding

* |deally, we want all characters to be at low depth in the tree.

* Barring that, we want common characters to be at low depth in the
tree, potentially by allowing uncommon characters to take on high

depth.
* Then common characters will take fewer bits of memory, and we can

decode/encode them faster.
* (By the way, this is how Unicode actually works)

* This motivates Huffman encoding, a greedy algorithm for
constructing such a tree.



Huffman Encoding

e Caveats — This is a lossless code for a static alphabet.

* Lossless code: You can always reconstruct the exact message.

* In contrast, many effective compression schemes for video/audio (e.g., jpeg)
are lossy, in that they do not preserve full information.

* Static alphabet: The characters and their frequencies remain
essentially the same throughout the document.
e Example:abcabcabcabcabc..

* Onthe otherhand:aaaaa..abbbbb..bccccc..c
* There are better ways to store this string!



Huffman Encoding Algorithm

* Recall there are m characters: {a,, a,, ..., a,} (for example, m=27 to
include the lowercase Latin alphabet and blank).

* Suppose character a, occurs with frequency p,.

* Algorithm to Construct Tree:
* Let A={(ay, p1), (a3, P2), -s (Am) Pm)}
* While (|A] > 1):
* Letjand k be the indices of the two smallest values p; and p, in A
* Remove (a;, p;) and (a, py) from A
* Add a node (a; U ay, p;+ p) to A

* Add leaf nodes labeled a; and ay, if not already present in the tree.
Connect them to a parent node labeled a; U a



Huffman Encoding: Example

* Break into groups of 3-4.
* By hand, construct the Huffman code for the following alphabet and

probabilities:
0.24

0.1

0.03

0.2

0.12

0.31

- DO O O T QD

* Then encode “fad” and “ceb”



Huffman Encoding: Example

Probability

0.24
{a,b,c,d,e,f} 0.1
0.03
0.2
0.12
0.31

 “fad” =100001
* “ceb”=11111101110




Huffman Encoding: Efficient Implementation

* Implementation detail — Note that constructing the Huffman tree
requires a priority queue.

* A priority queue is a queue maintained on an arbitrary key value,
rather than just the insertion order. Supports insertion and
extractMin.

* Naively, you could use an array to get O(1) insertion, O(m) extractMin.

* Better idea: use a heap, which can be implemented as...

* Another Binary tree!
* Yielding an O(log(m)) insertion and extractMin.

* Overall, makes the greedy algorithm O(mlog(m)) instead of O(m?)



Huffman Encoding: Efficient Implementation

* Aside — How much does O(mlog(m)) vs O(m?) matter anyway?

» Suppose your computer can process 1 billion cycles / second (1 GHz).
Then how much time difference does log(m) vs m make?

Time in ms for O(mlog(m)) Time in ms for O(m2) algorithm
algorithm

28 0.002 0.066
21 0.023 4.194
214 0.229 268.44

2V 2.228 17,179.870 (~ 17 seconds)



Huffman Encoding: Inductive Proof of Optimality

* If character a, occurs with frequency p, and has depth d,, then we
need ). -, Prd bits to encode the message.

 Claim. Huffman coding is optimal (for any lossless code with a static
alphabet)

* Proof. By induction on m.

e Base case. When m=2, Huffman encoding uses a single bit for each
character.

* Inductive case. Suppose Huffman encoding is optimal for m
characters. Want to show optimality for any alphabet on m+1
characters.



Huffman Encoding

* Proof (continued). Let G be an arbitrary alphabet on m+1 characters.

* Let T be an optimal binary code tree on G with minimum frequency
characters a;, a, as siblings (children of a common parent node) of maximum
depth in Tg.

* Since characters a;, a, are siblings, they have the same depth d; = d, in Tg.

* Consider the alphabet H = (G U {a}) - {a, a5}, where a; is a new character with
frequency py = p1+p,.

* Let Ty, = T¢ with a; and a, removed and their parent replaced with a,.

* The character ay has depth d; — 1 in the new tree T,

 Consider encoding with T, using a; whenever you see a, or a,. Let B(Ty) and
B(Tg) be the bits required.



Huffman Encoding: Inductive Proof of Optimality

* Proof (continued). Then
* B(Ty) = B(T¢) + podo —(p1d1 + p2d3)
* B(Ty) = B(Tg) + (p1 + p2)(d1 — 1) — dy(p1 + p2)
* B(Ty) = B(Tg) — (p1 + p2)
* Now consider the Huffman code trees on H and G; call them S, and
S¢- B(Sy) < B(Ty) by the inductive hypothesis, and the same
calculations as above give us that B(Sy) = B(S;) — (p; + p,), so

* B(Sg) < B(Ty) + (p1t+p2)
* B(Sg) < B(Tg)



Conclusions

e Binary trees are useful beyond the “obvious” applications.

* The structure in data can often be exploited (in this case to save
memory).

 Huffman Coding compresses only the characters of an alphabet.

e Other algorithms (e.g., Lempel-Ziv) compress strings and give
improved compression.



