
Huffman Codes

PPT by Brandon Fain

Outline

• Review: Binary Search Trees

• Application: Data Compression and Prefix Codes

• Huffman Encoding: A lossless compression code for the characters of a
static alphabet.

2

Review: Binary Search Trees

• Binary search trees are data structures with search times dependent
on the height of the tree.

• At worst O(log2n) if there are n elements
and the tree is balanced.
• Can maintain balance dynamically with a

red-black tree.
• What’s it good for?

Application: Data Compression and Prefix
Codes
• Suppose you want to save a book onto a computer.
• Suppose there are m characters: {a1, a2, …, am} (for example, m=27 to

include the lowercase Latin alphabet and blank).
• A document is an array of n characters.
• We want to represent these n characters with as few bits as possible.

Data Compression and Prefix Codes

• The naïve algorithm is as follows:
• Use binary strings of length ⌈log!𝑚 ⌉.
• Each character is uniquely identified with a string.

• This does not exploit any structure of the problem. Suppose we have
three characters {a, b, c}, and they appear in our book the following
number of times:
• a appears 1,000,000 times
• b and c appear 50,000 times each

• The naïve algorithm uses 2,100,000 bits.

Data Compression and Prefix Codes

• But I claim we could have used just 1,100,000 bits.
• We want the code for the more common character ‘a’ to be shorter

than the codes for the less common ‘b’ and ‘c.’ What about:
• a = 1
• b = 10
• c = 11

• Suppose you are trying to decode “1011” Is it “baa” or “bc?”
• To fix this problem, we will use a prefix code.

Data Compression and Prefix Codes

• No code string should be a prefix to another. Try:
• a = 0
• b = 10
• c = 11

• Then “1011” is unambiguously “bc.”
• How would we keep track of this in a way that we can look it up

quickly when coding/decoding?
• Use a binary tree!

Data Compression and Prefix Codes

{a,b,c}

a {b,c}

b c

0

0

1

1

• To encode – Search for the leaf
corresponding to the character. It’s
encoding is the string of bits on
edges from the root to the leaf.

• To decode – Every bit gives you an
edge to take from the root. Stop
when you hit a leaf.

• This means encoding/decoding a
character takes time proportional
to the depth of the character.

Huffman Encoding

• Ideally, we want all characters to be at low depth in the tree.
• Barring that, we want common characters to be at low depth in the

tree, potentially by allowing uncommon characters to take on high
depth.
• Then common characters will take fewer bits of memory, and we can

decode/encode them faster.
• (By the way, this is how Unicode actually works)

• This motivates Huffman encoding, a greedy algorithm for
constructing such a tree.

Huffman Encoding

• Caveats – This is a lossless code for a static alphabet.
• Lossless code: You can always reconstruct the exact message.

• In contrast, many effective compression schemes for video/audio (e.g., jpeg)
are lossy, in that they do not preserve full information.

• Static alphabet: The characters and their frequencies remain
essentially the same throughout the document.
• Example: a b c a b c a b c a b c a b c …
• On the other hand: a a a a a … a b b b b b … b c c c c c … c.

• There are better ways to store this string!

Huffman Encoding Algorithm

• Recall there are m characters: {a1, a2, …, am} (for example, m=27 to
include the lowercase Latin alphabet and blank).
• Suppose character ak occurs with frequency pk.
• Algorithm to Construct Tree:

• Let A = {(a1, p1), (a2, p2), …, (am, pm)}
• While (|A| > 1):

• Let j and k be the indices of the two smallest values pj and pk in A
• Remove (aj, pj) and (ak, pk) from A
• Add a node (aj U ak, pj + pk) to A
• Add leaf nodes labeled aj and ak , if not already present in the tree.

Connect them to a parent node labeled aj U ak

Huffman Encoding: Example
• Break into groups of 3-4.
• By hand, construct the Huffman code for the following alphabet and

probabilities:

• Then encode “fad” and “ceb”

Character Probability
a 0.24
b 0.1
c 0.03
d 0.2
e 0.12
f 0.31

Huffman Encoding: Example

{b,c,e}

e
{b,c}

b c

0 1

{a,d}

a d f

{b,c,e,f}

{a,b,c,d,e,f}

0

0

0

0

1

1

1

1

• “fad” = 100001
• “ceb” = 11111101110

Character Probability
a 0.24
b 0.1
c 0.03
d 0.2
e 0.12
f 0.31

Huffman Encoding: Efficient Implementation

• Implementation detail – Note that constructing the Huffman tree
requires a priority queue.
• A priority queue is a queue maintained on an arbitrary key value,

rather than just the insertion order. Supports insertion and
extractMin.
• Naively, you could use an array to get O(1) insertion, O(m) extractMin.
• Better idea: use a heap, which can be implemented as…

• Another Binary tree!
• Yielding an O(log(m)) insertion and extractMin.

• Overall, makes the greedy algorithm O(mlog(m)) instead of O(m2)

Huffman Encoding: Efficient Implementation

• Aside – How much does O(mlog(m)) vs O(m2) matter anyway?
• Suppose your computer can process 1 billion cycles / second (1 GHz).

Then how much time difference does log(m) vs m make?

M Time in ms for O(mlog(m))
algorithm

Time in ms for O(m2) algorithm

28 0.002 0.066

211 0.023 4.194

214 0.229 268.44

217 2.228 17,179.870 (~ 17 seconds)

Huffman Encoding: Inductive Proof of Optimality

• If character ak occurs with frequency pk and has depth dk, then we
need ∑!"#$ 𝑝!𝑑! bits to encode the message.
• Claim. Huffman coding is optimal (for any lossless code with a static

alphabet)

• Proof. By induction on m.
• Base case. When m=2, Huffman encoding uses a single bit for each

character.
• Inductive case. Suppose Huffman encoding is optimal for m

characters. Want to show optimality for any alphabet on m+1
characters.

Huffman Encoding

• Proof (continued). Let G be an arbitrary alphabet on m+1 characters.
• Let TG be an optimal binary code tree on G with minimum frequency

characters a1, a2 as siblings (children of a common parent node) of maximum
depth in TG.
• Since characters a1, a2 are siblings, they have the same depth 𝑑! = 𝑑" in TG.
• Consider the alphabet H = (G U {a0}) - {a1, a2}, where a0 is a new character with

frequency p0 = p1+p2.
• Let TH = TG with a1 and a2 removed and their parent replaced with a0.
• The character a0 has depth 𝑑! − 1 in the new tree TH

• Consider encoding with TH, using a0 whenever you see a1 or a2. Let B(TH) and
B(TG) be the bits required.

Huffman Encoding: Inductive Proof of Optimality

• Proof (continued). Then
• 𝐵 𝑇" = 𝐵 𝑇# + 𝑝$𝑑$ −(𝑝%𝑑% + 𝑝!𝑑!)
• 𝐵 𝑇" = 𝐵 𝑇# + (𝑝% + 𝑝!)(𝑑% − 1) − 𝑑%(𝑝% + 𝑝!)
• 𝐵 𝑇" = 𝐵 𝑇# − 𝑝% + 𝑝!

• Now consider the Huffman code trees on H and G; call them SH and
SG. 𝐵 𝑆% ≤ 𝐵 𝑇% by the inductive hypothesis, and the same
calculations as above give us that 𝐵 𝑆% = 𝐵 𝑆& − 𝑝# + 𝑝' , so
• 𝐵 𝑆# ≤ 𝐵 𝑇" + (𝑝%+𝑝!)
• 𝐵 𝑆# ≤ 𝐵(𝑇#)

Conclusions

• Binary trees are useful beyond the “obvious” applications.

• The structure in data can often be exploited (in this case to save
memory).

• Huffman Coding compresses only the characters of an alphabet.

• Other algorithms (e.g., Lempel-Ziv) compress strings and give
improved compression.

