Huffman Codes

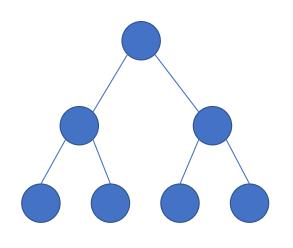
PPT by Brandon Fain

Outline

- Review: Binary Search Trees
- Application: Data Compression and Prefix Codes
- Huffman Encoding: A *lossless* compression code for the characters of a *static* alphabet.

Review: Binary Search Trees

• Binary search trees are data structures with search times dependent on the height of the tree.



- At worst O(log₂n) if there are n elements and the tree is balanced.
- Can maintain balance dynamically with a red-black tree.
- What's it good for?

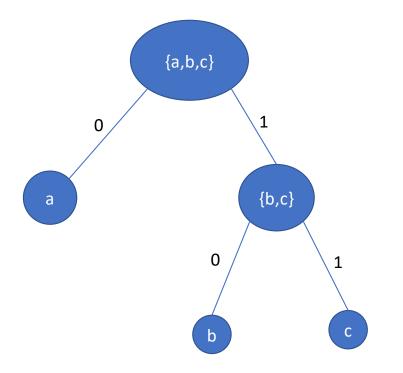
Application: Data Compression and Prefix Codes

- Suppose you want to save a book onto a computer.
- Suppose there are m characters: {a₁, a₂, ..., a_m} (for example, m=27 to include the lowercase Latin alphabet and blank).
- A document is an array of n characters.
- We want to represent these n characters with as few bits as possible.

- The naïve algorithm is as follows:
 - Use binary strings of length $\lceil \log_2 m \rceil$.
 - Each character is uniquely identified with a string.
- This does not exploit any structure of the problem. Suppose we have three characters {a, b, c}, and they appear in our book the following number of times:
 - a appears 1,000,000 times
 - b and c appear 50,000 times each
- The naïve algorithm uses 2,100,000 bits.

- But I claim we could have used just 1,100,000 bits.
- We want the code for the more common character 'a' to be shorter than the codes for the less common 'b' and 'c.' What about:
 - a = 1
 - b = 10
 - c = 11
- Suppose you are trying to decode "1011" Is it "baa" or "bc?"
- To fix this problem, we will use a **prefix code**.

- No code string should be a prefix to another. Try:
 - a = 0
 - b = 10
 - c = 11
- Then "1011" is unambiguously "bc."
- How would we keep track of this in a way that we can look it up quickly when coding/decoding?
- Use a binary tree!



- To encode Search for the leaf corresponding to the character. It's encoding is the string of bits on edges from the root to the leaf.
- To decode Every bit gives you an edge to take from the root. Stop when you hit a leaf.
- This means encoding/decoding a character takes time proportional to the depth of the character.

Huffman Encoding

- Ideally, we want all characters to be at low depth in the tree.
- Barring that, we want *common* characters to be at low depth in the tree, potentially by allowing *uncommon* characters to take on high depth.
- Then common characters will take fewer bits of memory, *and* we can decode/encode them faster.
 - (By the way, this is how Unicode actually works)
- This motivates **Huffman encoding**, a greedy algorithm for constructing such a tree.

Huffman Encoding

- Caveats This is a *lossless* code for a *static* alphabet.
- Lossless code: You can *always* reconstruct the exact message.
 - In contrast, many effective compression schemes for video/audio (e.g., jpeg) are *lossy*, in that they do not preserve full information.
- Static alphabet: The characters and their frequencies remain essentially the same throughout the document.
 - Example: a b c a b c a b c a b c a b c ...
 - On the other hand: a a a a a ... a b b b b b ... b c c c c c ... c.
 - There are better ways to store this string!

Huffman Encoding Algorithm

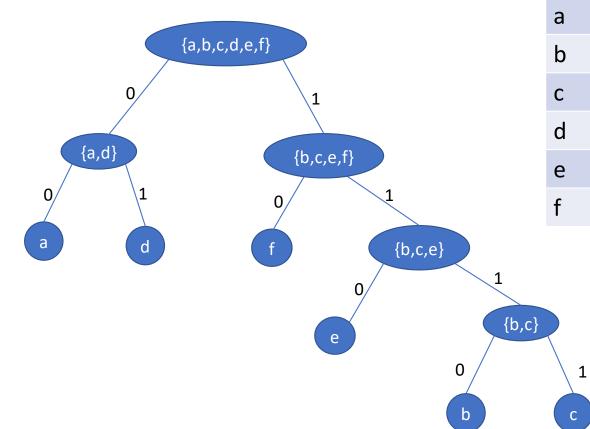
- Recall there are m characters: $\{a_1, a_2, ..., a_m\}$ (for example, m=27 to include the lowercase Latin alphabet and blank).
- Suppose character a_k occurs with frequency p_k.
- Algorithm to Construct Tree:
 - Let A = {(a₁, p₁), (a₂, p₂), ..., (a_m, p_m)}
 - While (|A| > 1):
 - Let j and k be the indices of the two smallest values \boldsymbol{p}_j and \boldsymbol{p}_k in A
 - Remove (a_j, p_j) and (a_k, p_k) from A
 - Add a node $(a_j \cup a_k, p_j + p_k)$ to A
 - Add leaf nodes labeled a_j and a_k, if not already present in the tree. Connect them to a parent node labeled a_j U a_k

Huffman Encoding: Example

- Break into groups of 3-4.
- By hand, construct the Huffman code for the following alphabet and probabilities: Character Probability

:	Character	Probability
	а	0.24
	b	0.1
	С	0.03
	d	0.2
	е	0.12
	f	0.31

• Then encode "fad" and "ceb"



Huffman Encoding: Example

Character	Probability
а	0.24
b	0.1
С	0.03
d	0.2
е	0.12
f	0.31

- "fad" = 100001
- "ceb" = 11111101110

Huffman Encoding: Efficient Implementation

- Implementation detail Note that constructing the Huffman tree requires a *priority queue*.
- A priority queue is a queue maintained on an arbitrary key value, rather than just the insertion order. Supports insertion and extractMin.
- Naively, you could use an array to get O(1) insertion, O(m) extractMin.
- Better idea: use a *heap*, which can be implemented as...
 - Another Binary tree!
 - Yielding an O(log(m)) insertion and extractMin.
- Overall, makes the greedy algorithm O(mlog(m)) instead of O(m²)

Huffman Encoding: Efficient Implementation

- Aside How much does O(mlog(m)) vs O(m²) matter anyway?
- Suppose your computer can process 1 billion cycles / second (1 GHz). Then how much time difference does log(m) vs m make?

Μ	Time in ms for O(mlog(m)) algorithm	Time in ms for O(m ²) algorithm
2 ⁸	0.002	0.066
2 ¹¹	0.023	4.194
2 ¹⁴	0.229	268.44
2 ¹⁷	2.228	17,179.870 (~ 17 seconds)

Huffman Encoding: Inductive Proof of Optimality

- If character a_k occurs with frequency p_k and has depth d_k , then we need $\sum_{k=1}^{m} p_k d_k$ bits to encode the message.
- **Claim**. Huffman coding is optimal (for any *lossless* code with a *static* alphabet)
- **Proof.** By induction on m.
- Base case. When m=2, Huffman encoding uses a single bit for each character.
- Inductive case. Suppose Huffman encoding is optimal for m characters. Want to show optimality for any alphabet on m+1 characters.

Huffman Encoding

- **Proof (continued).** Let G be an arbitrary alphabet on m+1 characters.
- Let T_G be an optimal binary code tree on G with minimum frequency characters a_1 , a_2 as *siblings* (children of a common parent node) of maximum depth in T_G .
- Since characters a_1 , a_2 are *siblings*, they have the same depth $d_1 = d_2$ in T_G.
- Consider the alphabet H = (G U {a₀}) {a₁, a₂}, where a₀ is a new character with frequency p₀ = p₁+p₂.
- Let $T_H = T_G$ with a_1 and a_2 removed and their parent replaced with a_0 .
- The character a_0 has depth $d_1 1$ in the new tree T_H
- Consider encoding with T_H , using a_0 whenever you see a_1 or a_2 . Let $B(T_H)$ and $B(T_G)$ be the bits required.

Huffman Encoding: Inductive Proof of Optimality

- Proof (continued). Then
 - $B(T_H) = B(T_G) + p_0 d_0 (p_1 d_1 + p_2 d_2)$
 - $B(T_H) = B(T_G) + (p_1 + p_2)(d_1 1) d_1(p_1 + p_2)$
 - $B(T_H) = B(T_G) (p_1 + p_2)$
- Now consider the Huffman code trees on H and G; call them S_H and S_G . $B(S_H) \le B(T_H)$ by the inductive hypothesis, and the same calculations as above give us that $B(S_H) = B(S_G) (p_1 + p_2)$, so
 - $B(S_G) \le B(T_H) + (p_1 + p_2)$
 - $B(S_G) \leq B(T_G)$

Conclusions

- Binary trees are useful beyond the "obvious" applications.
- The structure in data can often be exploited (in this case to save memory).
- Huffman Coding compresses only the characters of an alphabet.
- Other algorithms (e.g., Lempel-Ziv) compress strings and give improved compression.