
Matrix Multiplication

PPT by Brandon Fain

Outline

• Review Strassen’s Algorithm

• Detour – Matrix Squaring Divide and Conquer

• Implementing Strassen’s Algorithm

2

Review Strassen’s Algorithm

• Divide and Conquer at a High Level:
• Check for your base case.
• Divide your problem into multiple identical subproblems.
• Recursively solve each subproblem.
• Merge the solutions to your subproblems.

Review Strassen’s Algorithm
• Recall the matrix multiplication problem: we have two n by n matrices

X and Y, and we want to compute M = XY

YXM =

By definition: 𝑀!" = ∑#$%& 𝑋!#𝑌#" . So that gives us an O(n3)
iterative algorithm for free. What about recursion?

Review Strassen’s Algorithm

There are 8 recursive
subproblems to solve!

=
MA MB

MC MD

• Note
• MA = XAYA+ XBYC

• MB = XAYB+ XBYD

• MC = XCYA+ XDYC

• MD = XCYB+ XDYD

XA XB

XC XD

YA YB

YC YD

• Break each matrix up into four (n/2) by (n/2) sub-matrices as follows:

Review Strassen’s Algorithm

• Yields the recurrence T(n) = 8T(n/2) + O(n2). So T(n) = O(n3). No better
than the iterative algorithm!
• Strassen’s insight: The run time is dominated by the branching factor

of 8. What if we could reduce that? Let:
S1 = (XB - XD) (YC + YD)
S2 = (XA + XD) (YA + YD)
S3 = (XA - XC) (YA + YB)
S4 = (XA + XB) (YD)
S5 = (XA) (YB - YD)
S6 = (XD) (YC - YA)
S7 = (XC + XD) (YA)

MA = S1 + S2 – S4 + S6
MB = S4 + S5
MC = S6 + S7
MD = S2 + S3 + S5 – S7

Review Strassen’s Algorithm

• We went from 8 matrix multiplications (recursive calls) and 4 matrix
additions (merge steps) to 7 matrix multiplications and 18 matrix
additions.
• T(n) = 7 T(n/2) + O(n2). So T(n) = O(nlg(7)) ~ O(n2.81).
• Does this matter? We’ll test that out in a minute.

Outline

• Review Strassen’s Algorithm

• Detour – Matrix Squaring Divide and Conquer

• Implementing Strassen’s Algorithm

8

Detour – Matrix Squaring Divide and Conquer
• Work on the following problem in groups. Let A be an n x n matrix.

We want to compute AA, the square of A.
1. Show that just five multiplications are sufficient to compute the

square of a 2 x 2 matrix.
2. Suppose we run Strassen’s algorithm but use 5 multiplications per

recursive step instead of 7 using our observation from part 1. If this
worked, what would be the asymptotic runtime?

3. Why does this not work?
4. *If you have time, try to give a reduction to prove that an O(nc) time

algorithm (for 2 ≤ 𝑐 < 3) for matrix squaring implies an O(nc) time
algorithm for matrix multiplication.

Detour – Matrix Squaring Divide and Conquer

1. Note that : 𝑎 𝑏
𝑐 𝑒

'
=

𝑎' + 𝑏𝑐 𝑏(𝑎 + 𝑑)
𝑐(𝑎 + 𝑑) 𝑐𝑏 + 𝑑'

2. The runtime would be log' 5 ≈ 2.32
3. Not all of the subproblems are matrix squaring problems! (Plus,

matrix multiplication, unlike scalar, is not commutative)
4. Suppose we have an O(nc) algorithm for matrix squaring, and we

want an O(nc) algorithm for matrix multiplication (say of n x n
matrices A and B). Define the 2n x 2n matrix 𝑀 = 0 𝐴

𝐵 0 . Then:

𝑀' = 𝐴𝐵 0
0 𝐵𝐴 , so we can read off the answer to AB.

• Review Strassen’s Algorithm

• Detour – Matrix Squaring Divide and Conquer

• Implementing Strassen’s Algorithm
• Does n2.81 really matter much compared to n3?

Implementing Strassen’s Algorithm

• Break into groups of ~ 3.
• Code up 3 simple matrix multiplication algorithms:

• Iterative algorithm by definition
• Naïve recursive algorithm
• Strassen’s recursive algorithm

• To test, generate random 32x32, 64x64, 128x128, and 256x256
matrices (in whatever way is convenient, use smallish integers).
• Time all of your algorithms, and try to explain your results.
• (ProTip – you may be able to improve your recursive algorithms by

using the iterative algorithm once you get to small matrices, maybe
8x8 or 16x16).

Implementing Strassen’s Algorithm

Run times in milliseconds

n Iterative Recursive Strassen R Library

32 67 78 149 0

64 552 552 342 1

128 4155 4101 2444 2

256 31730 34315 20071 15

Conclusion

• Many recursive divide and conquer algorithms can be sped up if you
can reduce the number of recursive calls, maybe at the expense of a
larger merge step.
• (But this improvement might not be large until you work with larger problem

sizes)

• There are tricks that matter in practice but not in theory. Examples:
• In many languages, basic operations like matrix multiplication, summing

vectors, etc., are heavily optimized, and you shouldn’t reinvent the wheel
(outside of this exercise).

• Combining recursive and iterative methods rather than recursing all the way
to the trivial base case often helps.

