Matrix Multiplication

PPT by Brandon Fain

Outline

- Review Strassen's Algorithm
- Detour - Matrix Squaring Divide and Conquer
- Implementing Strassen’s Algorithm

Review Strassen's Algorithm

- Divide and Conquer at a High Level:
- Check for your base case.
- Divide your problem into multiple identical subproblems.
- Recursively solve each subproblem.
- Merge the solutions to your subproblems.

Review Strassen's Algorithm

- Recall the matrix multiplication problem: we have two n by n matrices X and Y, and we want to compute $M=X Y$

By definition: $M_{i j}=\sum_{k=1}^{n} X_{i k} Y_{k j}$. So that gives us an $\mathrm{O}\left(\mathrm{n}^{3}\right)$ iterative algorithm for free. What about recursion?

Review Strassen's Algorithm

- Break each matrix up into four $(\mathrm{n} / 2)$ by $(\mathrm{n} / 2)$ sub-matrices as follows:

- Note
- $M_{A}=X_{A} Y_{A}+X_{B} Y_{C}$
- $M_{B}=X_{A} Y_{B}+X_{B} Y_{D}$
- $M_{C}=X_{C} Y_{A}+X_{D} Y_{C}$

There are 8 recursive subproblems to solve!

- $M_{D}=X_{C} Y_{B}+X_{D} Y_{D}$

Review Strassen's Algorithm

- Yields the recurrence $T(n)=8 T(n / 2)+O\left(n^{2}\right)$. So $T(n)=O\left(n^{3}\right)$. No better than the iterative algorithm!
- Strassen's insight: The run time is dominated by the branching factor of 8 . What if we could reduce that? Let:
$S_{1}=\left(X_{B}-X_{D}\right)\left(Y_{C}+Y_{D}\right)$
$S_{2}=\left(X_{A}+X_{D}\right)\left(Y_{A}+Y_{D}\right)$

$$
\begin{aligned}
& M_{A}=S_{1}+S_{2}-S_{4}+S_{6} \\
& M_{B}=S_{4}+S_{5} \\
& M_{C}=S_{6}+S_{7} \\
& M_{D}=S_{2}+S_{3}+S_{5}-S_{7}
\end{aligned}
$$

Review Strassen's Algorithm

- We went from 8 matrix multiplications (recursive calls) and 4 matrix additions (merge steps) to 7 matrix multiplications and 18 matrix additions.
- $T(n)=7 T(n / 2)+O\left(n^{2}\right)$. So $T(n)=O\left(n^{I(7)}\right) \sim O\left(n^{2.81}\right)$.
- Does this matter? We'll test that out in a minute.

Outline

- Review Strassen's Algorithm
- Detour - Matrix Squaring Divide and Conquer
- Implementing Strassen's Algorithm

Detour - Matrix Squaring Divide and Conquer

- Work on the following problem in groups. Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. We want to compute AA, the square of A.

1. Show that just five multiplications are sufficient to compute the square of a 2×2 matrix.
2. Suppose we run Strassen's algorithm but use 5 multiplications per recursive step instead of 7 using our observation from part 1. If this worked, what would be the asymptotic runtime?
3. Why does this not work?
4. *If you have time, try to give a reduction to prove that an $O\left(\mathrm{n}^{c}\right)$ time algorithm (for $2 \leq c<3$) for matrix squaring implies an $\mathrm{O}\left(\mathrm{n}^{\mathrm{c}}\right.$) time algorithm for matrix multiplication.

Detour - Matrix Squaring Divide and Conquer

1. Note that : $\left[\begin{array}{ll}a & b \\ c & e\end{array}\right]^{2}=\left[\begin{array}{ll}a^{2}+b c & b(a+d) \\ c(a+d) & c b+d^{2}\end{array}\right]$
2. The runtime would be $\log _{2} 5 \approx 2.32$
3. Not all of the subproblems are matrix squaring problems! (Plus, matrix multiplication, unlike scalar, is not commutative)
4. Suppose we have an $O\left(n^{c}\right)$ algorithm for matrix squaring, and we want an $\mathrm{O}\left(\mathrm{n}^{\mathrm{c}}\right.$) algorithm for matrix multiplication (say of $\mathrm{n} \times \mathrm{n}$ matrices A and B). Define the $2 \mathrm{n} \times 2 \mathrm{n}$ matrix $M=\left[\begin{array}{cc}0 & A \\ B & 0\end{array}\right]$. Then: $M^{2}=\left[\begin{array}{cc}A B & 0 \\ 0 & B A\end{array}\right]$, so we can read off the answer to $A B$.

- Review Strassen's Algorithm
- Detour - Matrix Squaring Divide and Conquer
- Implementing Strassen's Algorithm
- Does $\mathrm{n}^{2.81}$ really matter much compared to n^{3} ?

Implementing Strassen's Algorithm

- Break into groups of ~ 3.
- Code up 3 simple matrix multiplication algorithms:
- Iterative algorithm by definition
- Naïve recursive algorithm
- Strassen's recursive algorithm
- To test, generate random $32 \times 32,64 \times 64,128 \times 128$, and 256×256 matrices (in whatever way is convenient, use smallish integers).
- Time all of your algorithms, and try to explain your results.
- (ProTip - you may be able to improve your recursive algorithms by using the iterative algorithm once you get to small matrices, maybe 8×8 or 16×16).

Implementing Strassen's Algorithm

Run times in milliseconds										
n	Iterative							Recursive	Strassen	R Library
32	67	78	149	0						
64	552	552	342	1						
128	4155	4101	2444	2						
256	31730	34315	20071	15						

Conclusion

- Many recursive divide and conquer algorithms can be sped up if you can reduce the number of recursive calls, maybe at the expense of a larger merge step.
- (But this improvement might not be large until you work with larger problem sizes)
- There are tricks that matter in practice but not in theory. Examples:
- In many languages, basic operations like matrix multiplication, summing vectors, etc., are heavily optimized, and you shouldn't reinvent the wheel (outside of this exercise).
- Combining recursive and iterative methods rather than recursing all the way to the trivial base case often helps.

