Measuring Graph Centrality PageRank

PPT by Brandon Fain

Outline

- Measuring Graph Centrality: Motivation
- Random Walks, Markov Chains, and Stationarity Distributions
- Google's PageRank Algorithm

Directed Graph

Adjacency Matrix

	A	B	C	D	E	F
A	0	1	0	0	0	0
B	0	0	1	0	0	0
C	0	0	0	0	1	0
D	0	1	0	0	0	0
E	0	0	0	1	0	1
F	0	0	0	0	0	0

Graph Centrality

- Which vertex is "the most important" in this graph?
- What do we even mean by important?
- In this class, we will focus on importance as centrality as measured by a random walk.

Motivation - Social Media

- Who is "important" in the Twitter network?

Motivation - Academic Publishing

- How impactful is a scientific publication?

Motivation - Web Search

- Which webpages are most important for displaying after a search query? (The original motivation).

Google

Google Search rm Feeling Lucky

PageRank Example

Which are more important?

PageRank Example

Which are more popular on Facebook?

Outline

- Measuring Graph Centrality: Motivation
- Random Walks, Markov Chains, and Stationarity Distributions
- Google's PageRank Algorithm

Formalizing "Graph Centrality"

- Attempt 1. Measure the in-degree (number of incoming directed edges) of every vertex, and choose vertices with highest in-degree.

Node	in-degree
A	0
B	2
C	1
D	1
E	1
F	

Formalizing Graph Centrality

- Problem. Why do edges from unimportant and important nodes contribute equally?
-What is the most important and central vertex in this graph?

Formalizing Graph Centrality

- Attempt 2. Say that a vertex is "central" if we are likely to arrive at the vertex while traversing the graph.
- For example, in this graph, all traversals end at the same place.

Random Walk

- Question. What do we mean by "likely" in a traversal? Where is the probability coming from?
- Answer. We consider a random walk on graph $G=(V, E)$:
- Start at a random vertex
- For t from 1 to T steps:
- Choose an outgoing edge uniformly at random and follow it
- Let π_{i}^{t} be the probability that we are at node \boldsymbol{i} at time \boldsymbol{t}.
- Then the centrality of node \boldsymbol{i} is $\lim _{\boldsymbol{t} \rightarrow \infty} \boldsymbol{\pi}_{\boldsymbol{i}}^{\boldsymbol{t}}$.

Transition Probabilities

- We are doing a random walk on the vertices of \mathbf{G} with equal likelihood of moving to any adjacent vertex.
- Recall that on each step of the random walk, we choose an outgoing edge uniformly at random and follow it.
- Let d_{i} be the out-degree of vertex i.
- Then

$$
\pi_{j}^{t+1}=\sum_{i:(i, j) \in E} \frac{\pi_{i}^{t}}{d_{i}}
$$

- Note that $\overrightarrow{\pi^{t+1}}$ only depends on $\overrightarrow{\pi^{t}}$.
- Consider graph $G=(V, E)$ with \mathbf{n} vertices and $\mathbf{n} \mathbf{x} \mathbf{n}$ adjacency matrix \mathbf{A}.
- The $\mathbf{n} \mathbf{x} \mathbf{n}$ transition matrix \boldsymbol{P} is defined below: (Assume $d_{i} \geq 1$ for all i)

$$
P_{i j}=\left\{\begin{array}{cc}
\frac{1}{d_{i}}, & A_{i j}=1 \\
0, & A_{i j}=0
\end{array}\right.
$$

Each row of transition matrix \boldsymbol{P} represents a conditional probability distribution: we can interpret $P_{i j}$ as the probability that we move to j given we are at i.

Markov Chain

- Each row of transition matrix \boldsymbol{P} represents a conditional probability distribution: we can interpret $P_{i j}$ as the probability that we move to j given we are at i.
- The updates of $\overrightarrow{\pi^{t}}$ to $\overrightarrow{\pi^{t+1}}$ can be expressed a vector multiplication by the transition matrix P :

$$
\overrightarrow{\pi^{t+1}}=\overrightarrow{\pi^{t}} P
$$

- Note that $\overrightarrow{\pi^{t+1}}$ is independent the prior history, conditional on $\overrightarrow{\pi^{t}}$, i.e.,

$$
\left(\overrightarrow{\pi^{t+1}} \mid \overrightarrow{\pi^{1}}, \overrightarrow{\pi^{2}}, \ldots, \overrightarrow{\pi^{t}}\right)=\left(\overrightarrow{\pi^{t+1}} \mid \overrightarrow{\pi^{t}}\right)
$$

- Thus, this random walk is a Markov Chain.

Stationary Distribution

- Recall $\overrightarrow{\pi^{t+1}}=\overrightarrow{\pi^{t}} P$
- $\lim \overrightarrow{\boldsymbol{\pi}^{t}}$, our measure of graph centrality, is the stationary distribution of the Markov chain.

Questions.

1. Does the limit even exist?
2. Does the limit depend on the starting state $\overrightarrow{\boldsymbol{\pi}^{1}}$?
3. Can we compute $\lim _{t \rightarrow \infty} \overrightarrow{\pi^{t}}$ efficiently?

Existence and Uniqueness

- The transition matrix P^{T} is a matrix with rows swapped by the columns of P.
- An eigenvector of a matrix is a vector that when multipled by the matrix gives the same vector.
- Note that if $\lim _{t \rightarrow \infty} \overrightarrow{\pi^{t}}$ exists, then it must be some $\overrightarrow{\pi^{*}}$ such that

$$
\overrightarrow{\pi^{*}}=\overrightarrow{\pi^{*}} P \text { so } P^{T} \overrightarrow{\pi^{*}}=\overrightarrow{\pi^{*}} .
$$

- That is, the stationary distribution $\overrightarrow{\pi^{*}}$ is an eigenvector of the transposed transition matrix \boldsymbol{P}^{T}, with eigenvalue 1 .
- Is it the only one? We need a theorem from linear algebra. Suppose for a moment that P has all strictly positive values.

Existence and Uniqueness

- Perron-Frobenius Theorem (abbreviated). Let A be a square matrix with real, strictly positive entries. Then the following hold.

1. The largest eigenvalue (call it λ_{1}) of A is unique.
2. There is a unique eigenvector (call it $\overrightarrow{v^{*}}$) corresponding to λ_{1}, all entries of which are positive, and this is the only eigenvector with all positive entries.
3. The power iteration method that repeatedly applies $\overrightarrow{v^{t+1}}=A \overrightarrow{v^{t}}$ beginning from an initial vector $\overrightarrow{v^{1}}$ not orthogonal to $\overrightarrow{v^{*}}$ converges to $\overrightarrow{v^{*}}$ as $t \rightarrow \infty$.

- Every row of P is a probability distribution, so $P \overrightarrow{1}=\overrightarrow{1}$.
- By conditions 2 and 1, it must be that the largest eigenvalue of P is 1.
- Since P is square, P and P^{T} have the same eigenvalues, so 1 is the largest eigenvalue of P^{T} too!

Existence and Uniqueness

- Assume matrix P has all positive entries.
- Since 1 is the largest eigenvalue of P^{T}, the theorem implies that:
$\overrightarrow{\pi^{*}}$ exists and is the unique eigenvector of P^{T}.
- So we have answered questions 1 and 2: the stationary distribution exists, and it is unique.
- What about computation? The theorem tells us that the power iteration method converges in the limit...but how long does that take?

Computation

- Recall $\overrightarrow{\boldsymbol{\pi}^{t+1}}=\overrightarrow{\boldsymbol{\pi}^{t}} \boldsymbol{P}$ and this process limits to $\overrightarrow{\boldsymbol{\pi}^{*}}$ is the unique eigenvector of \boldsymbol{P}^{T}.
- The spectral gap is $\lambda_{1}-\lambda_{2}$ where
- Let $\lambda_{1}=1$ is the largest eigenvalue of P^{T}, and
- let λ_{2} be the second largest eigenvalue of P^{T}.

In general, the convergence rate is determined by the spectral gap.

- The spectral gap is in turn related to the conductance of the underlying graph:
- Let $S \subseteq V$ be a cut in graph $G=(V, E)$ that disconnects vertices of $V-S$ from S.
- The conductance of the cut is $\phi(S)=\frac{|\{(i, j) \in E: i \in S, j \notin S\}|}{\min \left(\sum_{i \notin S} d_{i}, \sum_{i \in S} d_{i}\right)}$.

Computation

- The conductance of a graph is the minimum conductance of any cut.
- Example: A cut separating the 4 vertices of $V-S$ (on left) from 2 vertices of S (on right), with
- $|\{(i, j) \in E: i \in S, j \notin S\}|=2$,
- $\sum_{i \notin S} d_{i}=10$ and
- $\sum_{i \in S} d_{i}=4$.

$$
\phi(S)=\frac{2}{\min (10,4)}=\frac{1}{2}
$$

Computation

- Example 2: A cut separating the 3 vertices of $V-S$ (on left) from 3 vertices of S (on right), with
- $|\{(i, j) \in E: i \in S, j \notin S\}|=1$,
- $\sum_{i \notin S} d_{i}=7$ and
- $\sum_{i \in S} d_{i}=7$.

$$
\phi(S)=\frac{1}{\min (7,7)}=\frac{1}{7}
$$

Computation

- Recall $\overrightarrow{\boldsymbol{\pi}^{t+1}}=\overrightarrow{\boldsymbol{\pi}^{t}} \boldsymbol{P}$ and this process limits to $\overrightarrow{\boldsymbol{\pi}^{*}}$ is the unique eigenvector of P^{T}.
- How is conductance related to convergence time of iterations to convergence?
- Intuitively, lower conductance graphs have bottlenecks, and it may take a longer time for the random walk to traverse the cut.
- By contrast, power iteration converges rapidly on graphs with high conductance (e.g., complete graphs).
- To converge (to within some constant error term), one needs $\boldsymbol{O}\left(\frac{\log (n)}{\phi^{2}}\right)$ iterations. What does that look like in practice?

Outline

- Measuring Graph Centrality: Motivation
- Random Walks, Markov Chains, and Stationarity Distributions
- Google's PageRank Algorithm

PageRank

- Page rank is named after Larry Page.
- He was doing a PhD at Stanford when he started working on the project of building a search engine.

- He didn't finish his PhD, but he is currently the Alphabet CEO and worth around 83 billion USD.
- This is largely due to his PageRank algorithm developed as a graduate student at Stanford.

PageRank

- PageRank treats the web as a huge graph, where webpages are vertices, and hyperlinks are directed edges.
- The PageRank algorithm simply applies the power iteration method to compute the stationary distribution of a random walk on the web.
- Recall that we needed all entries in P to be strictly positive to be guaranteed that this works.
- That means that from any vertex, there has to be nonzero probability of transitioning to any other vertex.

PageRank

- To satisfy this, PageRank assumes a slightly different random walk than we described. In particular:
- Start at a random vertex
- For t from 1 to T steps:
- If current page has no links
- Choose a page uniformly at random.
- Else
- With probability 0.15 , choose a page uniformly at random.
- With the remaining probability, choose a link from the current page uniformly at random and follow it.

PageRank

- Thus, if there are n web pages in total, the transition matrix for this random walk is given by

$$
P_{i j}=\left\{\begin{array}{c}
\frac{0.85 A_{i j}}{d_{i}}+\frac{0.15}{n}, \quad \text { i has links } \\
\frac{1}{n}, \quad \text { i has no links }
\end{array}\right.
$$

- Then we just compute the stationary distribution by the power iteration method.
- What kind results does this generate?

Resulting PageRank

PageRank

- Note that our modification also ensures that the conductance of the graph is not too small. In practice, 50 to 100 power iterations suffice for a reasonable approximation to the stationary distribution.
- This might seem hard for large n , but note that the graph itself is extremely sparse, so matrix - vector multiplication can be implemented efficiently.
- All other things equal, google search prefers to show results with higher PageRank.
- The \#1 thing that increases your PageRank?
- Having other important pages link to you.
- For example, develop an important algorithm, like Larry Page's PageRank and found a startup company based on your algorithm.

