Measuring Graph Centrality -PageRank

PPT by Brandon Fain

Outline

- Measuring Graph Centrality: Motivation
- Random Walks, Markov Chains, and Stationarity Distributions
- Google's PageRank Algorithm

Adjacency Matrix

	Α	В	С	D	E	F
Α	0	1	0	0	0	0
В	0	0	1	0	0	0
С	0	0	0	0	1	0
D	0	1	0	0	0	0
E	0	0	0	1	0	1
F	0	0	0	0	0	0

Graph Centrality

- Which vertex is "the most important" in this graph?
- What do we even mean by important?
- In this class, we will focus on importance as *centrality* as measured by a random walk.

Motivation – Social Media

• Who is "important" in the Twitter network?

Motivation – Academic Publishing

• How impactful is a scientific publication?

Motivation – Web Search

• Which webpages are most important for displaying after a search query? (The original motivation).

	Google	
	Google Search I'm Feeling Lucky	
Advertising Business About		Privacy Terms Settings

Gmail Images Sign in

PageRank Example

Which are more important?

PageRank Example

Outline

- Measuring Graph Centrality: Motivation
- Random Walks, Markov Chains, and Stationarity Distributions
- Google's PageRank Algorithm

Formalizing "Graph Centrality"

• Attempt 1. Measure the *in-degree* (number of incoming directed edges) of every vertex, and choose vertices with highest in-degree.

Node	in-degree	
А	0	
В	2	
С	1	
D	1	
E	1	
F	1	

Formalizing Graph Centrality

- **Problem.** Why do edges from unimportant and important nodes contribute equally?
- What is the most important and central vertex in this graph?

Formalizing Graph Centrality

- Attempt 2. Say that a vertex is "central" if we are likely to arrive at the vertex while traversing the graph.
- For example, in this graph, *all* traversals end at the same place.

Random Walk

- **Question.** What do we mean by "likely" in a traversal? Where is the probability coming from?
- Answer. We consider a *random walk* on graph G = (V, E):
- Start at a random vertex
- For t from 1 to T steps:
 - Choose an outgoing edge uniformly at random and follow it
- Let π_i^t be the **probability that we are at node** i at time t.
- Then the centrality of node i is $\lim_{t \to \infty} \pi_i^t$.

Transition Probabilities

- We are doing a random walk on the vertices of G with equal likelihood of moving to any adjacent vertex.
 - Recall that on each step of the random walk, we choose an outgoing edge uniformly at random and follow it.
- Let d_i be the out-degree of vertex i.
- Then

$$\pi_j^{t+1} = \sum_{i:(i,j)\in E} \frac{\pi_i^t}{d_i}.$$

- Note that $\overrightarrow{\pi^{t+1}}$ only depends on $\overrightarrow{\pi^t}$.
- Consider graph G = (V, E) with n vertices and n x n adjacency matrix A.
- The n x n transition matrix **P** is defined below: (Assume $d_i \ge 1$ for all i)

$$P_{ij} = \begin{cases} \frac{1}{d_i}, & A_{ij} = 1\\ 0, & A_{ij} = 0 \end{cases}$$

Each row of **transition matrix** P represents a conditional probability distribution: we can interpret P_{ij} as the probability that we move to j given we are at i.

Markov Chain

- Each row of **transition matrix P** represents a conditional probability distribution: we can interpret P_{ij} as the probability that we move to j given we are at i.
- The updates of $\overrightarrow{\pi^t}$ to $\overrightarrow{\pi^{t+1}}$ can be expressed a vector multiplication by the transition matrix P:

$$\overrightarrow{\pi^{t+1}} = \overrightarrow{\pi^t} P$$

• Note that $\overrightarrow{\pi^{t+1}}$ is independent the prior history, conditional on $\overrightarrow{\pi^t}$, i.e.,

$$\left(\overrightarrow{\pi^{t+1}} \mid \overrightarrow{\pi^{1}}, \overrightarrow{\pi^{2}}, \dots, \overrightarrow{\pi^{t}}\right) = \left(\overrightarrow{\pi^{t+1}} \mid \overrightarrow{\pi^{t}}\right).$$

• Thus, this random walk is a Markov Chain.

Stationary Distribution

- Recall $\overrightarrow{\pi^{t+1}} = \overrightarrow{\pi^t} P$
- $\lim_{t\to\infty} \overline{\pi^t}$, our measure of graph centrality, is the stationary distribution of the Markov chain.

Questions.

- 1. Does the limit even exist?
- 2. Does the limit depend on the starting state $\overline{\pi^1}$?
- 3. Can we compute $\lim_{t\to\infty} \overline{\pi^t}$ efficiently?

Existence and Uniqueness

- The transition matrix P^T is a matrix with rows swapped by the columns of P.
- An *eigenvector* of a matrix is a vector that when multipled by the matrix gives the same vector.
- Note that if $\lim_{t \to \infty} \overrightarrow{\pi^t}$ exists, then it must be some $\overrightarrow{\pi^*}$ such that $\overrightarrow{\pi^*} = \overrightarrow{\pi^*} P \ so P^T \overrightarrow{\pi^*} = \overrightarrow{\pi^*}$.
- That is, the stationary distribution $\overrightarrow{\pi^*}$ is an *eigenvector* of the transposed transition matrix P^T , with eigenvalue 1.
- Is it the only one? We need a theorem from linear algebra. Suppose for a moment that *P* has all strictly positive values.

Existence and Uniqueness

- **Perron-Frobenius Theorem** (abbreviated). Let A be a square matrix with real, strictly positive entries. Then the following hold.
 - 1. The largest eigenvalue (call it λ_1) of A is unique.
 - 2. There is a *unique* eigenvector (call it $\overrightarrow{v^*}$) corresponding to λ_1 , all entries of which are positive, and this is the *only* eigenvector with all positive entries.
 - 3. The power iteration method that repeatedly applies $\overrightarrow{v^{t+1}} = A \overrightarrow{v^t}$ beginning from an initial vector $\overrightarrow{v^1}$ not orthogonal to $\overrightarrow{v^*}$ converges to $\overrightarrow{v^*}$ as $t \to \infty$.
- Every row of P is a probability distribution, so $P \vec{1} = \vec{1}$.
- By conditions 2 and 1, it must be that the largest eigenvalue of P is 1.
- Since P is square, P and P^T have the same eigenvalues, so 1 is the largest eigenvalue of P^T too!

Existence and Uniqueness

- Assume matrix *P* has all positive entries.
- Since 1 is the largest eigenvalue of P^T , the theorem implies that: $\overrightarrow{\pi^*}$ exists and is the *unique* eigenvector of P^T .
- So we have answered questions 1 and 2: the stationary distribution exists, and it is unique.
- What about computation? The theorem tells us that the power iteration method converges in the limit...but how long does that take?

- Recall $\overrightarrow{\pi^{t+1}} = \overrightarrow{\pi^t} P$ and this process limits to $\overrightarrow{\pi^*}$ is the *unique* eigenvector of P^T .
- The spectral gap is $\lambda_1 \lambda_2$ where
 - Let $\lambda_1 = 1$ is the largest eigenvalue of P^T , and
 - let λ_2 be the second largest eigenvalue of P^T .

In general, the convergence rate is determined by the spectral gap.

- The spectral gap is in turn related to the *conductance* of the underlying graph:
- Let $S \subseteq V$ be a cut in graph G = (V, E) that disconnects vertices of V S from S.
- The *conductance* of the cut is $\phi(S) = \frac{|\{(i,j) \in E : i \in S, j \notin S\}|}{\min(\sum_{i \notin S} d_i, \sum_{i \in S} d_i)}$.

- The conductance of a graph is the minimum conductance of any cut.
- Example: A cut separating the 4 vertices of *V S* (on left) from 2 vertices of *S* (on right), with
 - $|\{(i,j) \in E : i \in S, j \notin S\}| = 2,$
 - $\sum_{i \notin S} d_i$ =10 and
 - $\sum_{i\in S} d_i = 4.$

$$\phi(S) = \frac{2}{\min(10,4)} = \frac{1}{2}$$

- Example 2: A cut separating the 3 vertices of *V S* (on left) from 3 vertices of *S* (on right), with
 - $|\{(i,j) \in E : i \in S, j \notin S\}| = 1,$
 - $\sum_{i \notin S} d_i = 7$ and
 - $\sum_{i\in S} d_i = 7$.

$$\phi(S) = \frac{1}{\min(7,7)} = \frac{1}{7}$$

- Recall $\overrightarrow{\pi^{t+1}} = \overrightarrow{\pi^t} P$ and this process limits to $\overrightarrow{\pi^*}$ is the *unique* eigenvector of P^T .
- How is conductance related to convergence time of iterations to convergence?
 - Intuitively, lower conductance graphs have bottlenecks, and it may take a longer time for the random walk to traverse the cut.
 - By contrast, power iteration converges rapidly on graphs with high conductance (e.g., complete graphs).
- To converge (to within some constant error term), one needs $O\left(\frac{log(n)}{\phi^2}\right)$ iterations. What does that look like in practice?

Outline

Measuring Graph Centrality: Motivation

• Random Walks, Markov Chains, and Stationarity Distributions

• Google's PageRank Algorithm

- Page rank is named after Larry Page.
- He was doing a PhD at Stanford when he started working on the project of building a search engine.
- He didn't finish his PhD, but he is currently the Alphabet CEO and worth around 83 billion USD.
- This is largely due to his PageRank algorithm developed as a graduate student at Stanford.

- PageRank treats the web as a huge graph, where webpages are vertices, and hyperlinks are directed edges.
- The PageRank algorithm simply applies the **power iteration method** to **compute the stationary distribution of a random walk on the web**.
- Recall that we needed *all* entries in *P* to be strictly positive to be guaranteed that this works.
- That means that from any vertex, there has to be nonzero probability of transitioning to *any* other vertex.

- To satisfy this, PageRank assumes a slightly different random walk than we described. In particular:
- Start at a random vertex
- For t from 1 to T steps:
 - If current page has no links
 - Choose a page uniformly at random.
 - Else
 - With probability 0.15, choose a page uniformly at random.
 - With the remaining probability, choose a link from the current page uniformly at random and follow it.

• Thus, if there are n web pages in total, the transition matrix for this random walk is given by

$$P_{ij} = \begin{cases} \frac{0.85A_{ij}}{d_i} + \frac{0.15}{n}, & i \text{ has links} \\ \frac{1}{n}, & i \text{ has no links} \end{cases}$$

- Then we just compute the stationary distribution by the power iteration method.
- What kind results does this generate?

Resulting PageRank

- Note that our modification also ensures that the conductance of the graph is not too small. In practice, 50 to 100 power iterations suffice for a reasonable approximation to the stationary distribution.
- This might seem hard for large n, but note that the graph itself is extremely sparse, so matrix vector multiplication can be implemented efficiently.
- All other things equal, google search prefers to show results with higher PageRank.
- The #1 thing that increases your PageRank?
 - Having other important pages link to you.
 - For example, develop an **important algorithm**, like Larry Page's PageRank and found a startup company based on your algorithm.