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Directed Graph                        Adjacency Matrix
𝐺 = 𝑉, 𝐸

A B C D E F

A 0 1 0 0 0 0

B 0 0 1 0 0 0

C 0 0 0 0 1 0

D 0 1 0 0 0 0

E 0 0 0 1 0 1

F 0 0 0 0 0 0



Graph Centrality

• Which vertex is “the most 
important” in this graph?

• What do we even mean by 
important?

• In this class, we will focus on 
importance as centrality as 
measured by a random walk. 



Motivation – Social Media

• Who is “important” in the Twitter network?



Motivation – Academic Publishing

• How impactful is a scientific publication? 



Motivation – Web Search

• Which webpages are most important for displaying after a search 
query? (The original motivation).



PageRank Example

Which are more 
important?



PageRank Example
Which are more 
popular on 
Facebook?
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Formalizing “Graph Centrality”

• Attempt 1. Measure the in-degree (number of incoming directed 
edges) of every vertex, and choose vertices with highest in-degree.

Node in-degree

A 0

B 2

C 1

D 1

E 1

F 1



Formalizing Graph Centrality

• Problem. Why do edges from unimportant and important nodes 
contribute equally?
• What is the most important and central vertex in this graph?



Formalizing Graph Centrality

• Attempt 2. Say that a vertex is “central” if we are likely to arrive at 
the vertex while traversing the graph.
• For example, in this graph, all traversals end at the same place. 



Random Walk

• Question. What do we mean by “likely” in a traversal? Where is the 
probability coming from?
• Answer. We consider a random walk on graph 𝐺 = 𝑉, 𝐸 :

• Start at a random vertex
• For t from 1 to T steps:
• Choose an outgoing edge uniformly at random and follow it

• Let 𝝅𝒊𝒕 be the probability that we are at node 𝒊 at time 𝒕. 
• Then the centrality of node 𝒊 is 𝐥𝐢𝐦

𝒕→$
𝝅𝒊𝒕. 



Transition Probabilities
• We are doing a random walk on the vertices of G with equal likelihood of 

moving to any adjacent vertex.
• Recall that on each step of the random walk, we choose an outgoing edge uniformly at 

random and follow it.
• L𝐞𝐭 𝒅𝒊 be the out-degree of vertex 𝒊. 
• Then

𝜋"
#$% = '
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𝜋&
#

𝑑&
.

• Note that 𝜋#$% only depends on 𝜋#. 
• Consider graph 𝐺 = 𝑉, 𝐸 with n vertices and n x n adjacency matrix A.
• The n x n transition matrix 𝑷 is defined below: (Assume 𝑑& ≥ 1 for all 𝑖)

𝑃&" = 4
1
𝑑&
, 𝐴&" = 1

0, 𝐴&" = 0
Each row of transition matrix 𝑷 represents a conditional probability distribution: 
we can interpret 𝑃&" as the probability that we move to 𝑗 given we are at 𝑖.



Markov Chain
• Each row of transition matrix 𝑷 represents a conditional probability 

distribution: we can interpret 𝑃%& as the probability that we move to 𝑗
given we are at 𝑖.
• The updates of 𝝅𝒕 to 𝝅𝒕'𝟏 can be expressed a vector multiplication by 

the transition matrix 𝑷:
𝜋)'* = 𝜋) 𝑃

• Note that 𝜋)'* is independent the prior history, conditional on 𝜋) ,	i.e.,

𝜋)'* 𝜋*, 𝜋+, … , 𝜋) = 𝜋)'* 𝜋) .

• Thus, this random walk is a Markov Chain.



Stationary Distribution
• Recall 𝜋)'* = 𝜋) 𝑃
• 𝐥𝐢𝐦
𝒕→$

𝝅𝒕, our measure of graph centrality, is the stationary distribution of 
the Markov chain.

Questions.
1. Does the limit even exist?

2. Does the limit depend on the starting state 𝝅𝟏?

3. Can we compute 𝐥𝐢𝐦
𝒕→$

𝝅𝒕 efficiently? 



Existence and Uniqueness
• The transition matrix 𝑃, is a matrix with rows swapped by the 

columns of 𝑃.
• An eigenvector of a matrix is a vector that when multipled by the 

matrix gives the same vector.

• Note that if lim
)→$

𝜋) exists, then it must be some 𝜋∗ such that
𝜋∗ = 𝜋∗ 𝑃 𝑠𝑜 𝑃, 𝜋∗ = 𝜋∗ .

• That is, the stationary distribution 𝜋∗ is an eigenvector of the 
transposed transition matrix 𝑷𝑻, with eigenvalue 1.

• Is it the only one? We need a theorem from linear algebra. Suppose 
for a moment that 𝑃 has all strictly positive values.



Existence and Uniqueness

• Perron-Frobenius Theorem (abbreviated). Let A be a square matrix 
with real, strictly positive entries. Then the following hold.

1. The largest eigenvalue (call it 𝜆!) of A is unique.
2. There is a unique eigenvector (call it 𝑣∗) corresponding to 𝜆!, all entries of 

which are positive, and this is the only eigenvector with all positive entries.
3. The power iteration method that repeatedly applies 𝑣#$! = 𝐴𝑣# beginning 

from an initial vector 𝑣! not orthogonal to 𝑣∗ converges to 𝑣∗ as 𝑡 → ∞.

• Every row  of 𝑃 is a probability distribution, so 𝑃 1 = 1.
• By conditions 2 and 1, it must be that the largest eigenvalue of 𝑃 is 1.
• Since 𝑃 is square, 𝑃 and 𝑃,have the same eigenvalues, so 1 is the 

largest eigenvalue of 𝑃,too!



Existence and Uniqueness
• Assume matrix 𝑃 has all positive entries. 
• Since 1 is the largest eigenvalue of 𝑃,, the theorem implies that:
𝝅∗ exists and is the unique eigenvector of 𝑷𝑻.

• So we have answered questions 1 and 2: the stationary distribution 
exists, and it is unique.

• What about computation? The theorem tells us that the power 
iteration method converges in the limit…but how long does that take?



Computation
• Recall 𝝅𝒕'𝟏 = 𝝅𝒕 𝑷 and this process limits to 𝝅∗ is the unique eigenvector of 𝑷𝑻.
• The spectral gap is 𝝀𝟏 − 𝝀𝟐 where
• Let 𝜆! = 1 is the largest eigenvalue of 𝑃%, and
• let 𝜆& be the second largest eigenvalue of 𝑃% .

In general, the convergence rate is determined by the spectral gap.

• The spectral gap is in turn related to the conductance of the underlying graph:

• Let 𝑆 ⊆ 𝑉 be a cut in graph 𝐺 = 𝑉, 𝐸 that disconnects vertices of 𝑉 - 𝑆 from 𝑆. 

• The conductance of the cut is 𝝓 𝑺 = | 𝒊,𝒋 ∈𝑬:𝒊∈𝑺,𝒋∉𝑺 |
𝐦𝐢𝐧(∑𝒊∉𝑺 𝒅𝒊, ∑𝒊∈𝑺 𝒅𝒊)

.



Computation
• The conductance of a graph is the minimum conductance of any cut.
• Example: A cut separating the 4 vertices of 𝑉 - 𝑆 (on left) from 2 

vertices of 𝑆 (on right), with
• | 𝑖, 𝑗 ∈ 𝐸: 𝑖 ∈ 𝑆, 𝑗 ∉ 𝑆 | =2,
• ∑+∉, 𝑑+ =10 and
• ∑+∈, 𝑑+ =4.

S
𝜙 𝑆 =

2
min(10,4) =

1
2



Computation

S
𝜙 𝑆 =

1
min(7, 7) =

1
7

• Example 2: A cut separating the 3 vertices of 𝑉 - 𝑆 (on left) from 3 
vertices of 𝑆 (on right), with
• | 𝑖, 𝑗 ∈ 𝐸: 𝑖 ∈ 𝑆, 𝑗 ∉ 𝑆 | =1,
• ∑+∉, 𝑑+ =7 and
• ∑+∈, 𝑑+ =7.



Computation
• Recall 𝝅𝒕'𝟏 = 𝝅𝒕 𝑷 and this process limits to 𝝅∗ is the unique 

eigenvector of 𝑷𝑻 .
• How is conductance related to convergence time of iterations to 

convergence?
• Intuitively, lower conductance graphs have bottlenecks, and it may take a longer 

time for the random walk to traverse the cut.

• By contrast, power iteration converges rapidly on graphs with high conductance 
(e.g., complete graphs).

• To converge (to within some constant error term), one needs 𝑶 𝒍𝒐𝒈 𝒏
𝝓𝟐

iterations. What does that look like in practice?  
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PageRank

• Page rank is named after Larry Page.

• He was doing a PhD at Stanford when he started working on 
the project of building a search engine. 

• He didn’t finish his PhD, but he is currently the Alphabet 
CEO and worth around 83 billion USD.

• This is largely due to his PageRank algorithm developed as a 
graduate student at Stanford.



PageRank

• PageRank treats the web as a huge graph, where webpages are vertices, 
and hyperlinks are directed edges.

• The PageRank algorithm simply applies the power iteration method to 
compute the stationary distribution of a random walk on the web.

• Recall that we needed all entries in 𝑃 to be strictly positive to be 
guaranteed that this works.

• That means that from any vertex, there has to be nonzero probability of 
transitioning to any other vertex.



PageRank

• To satisfy this, PageRank assumes a slightly different random walk 
than we described. In particular:

• Start at a random vertex
• For t from 1 to T steps:
• If current page has no links
• Choose a page uniformly at random. 

• Else
• With probability 0.15, choose a page uniformly at random.
• With the remaining probability, choose a link from the current 

page uniformly at random and follow it.



PageRank

• Thus, if there are n web pages in total, the transition matrix for this 
random walk is given by

𝑃%& =

0.85𝐴%&
𝑑%

+
0.15
𝑛 , 𝑖 ℎ𝑎𝑠 𝑙𝑖𝑛𝑘𝑠

1
𝑛 , 𝑖 ℎ𝑎𝑠 𝑛𝑜 𝑙𝑖𝑛𝑘𝑠

• Then we just compute the stationary distribution by the power 
iteration method. 
• What kind results does this generate?



Resulting PageRank



PageRank
• Note that our modification also ensures that the conductance of the graph 

is not too small. In practice, 50 to 100 power iterations suffice for a 
reasonable approximation to the stationary distribution.

• This might seem hard for large n, but note that the graph itself is extremely 
sparse, so matrix – vector multiplication can be implemented efficiently.

• All other things equal, google search prefers to show results with higher 
PageRank.

• The #1 thing that increases your PageRank? 
• Having other important pages link to you.
• For example, develop an important algorithm, like Larry Page’s PageRank and found 

a startup company based on your algorithm.


