
Spectral Clustering

PPT by Brandon Fain

Outline

• Review
• Community Detection Problem
• Conductance
• Graph Laplacian

• Spectral techniques to find low conductance cuts

• Spectral techniques for clustering and community detection

Motivating Problem: Community Detection

Given a social network,
how do you find the
strongly connected
communities?

Corollary question: How
would you suggest
friends to a user?

Conductance

• Let 𝐺 = (𝑉, 𝐸) be an undirected graph.
• 𝑆 ⊆ 𝑉 denote a cut in the graph.
• Let 𝛿 𝑆 ≔ | 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆 |.
• Let 𝑉𝑜𝑙 𝑆 = ∑!∈# 𝑑!, where 𝑑! is the degree of node 𝑖.
• The conductance of 𝑆 is

𝜙 𝑆 = $ #
%&'()*+ # ,)*+) -#)

.

• We want to find a low conductance cut: one with many more internal
edges than cut edges.

Laplacian Matrix

• The graph Laplacian is defined as
𝐿 = 𝐷 − 𝐴

where 𝐷 is the diagonal matrix with 𝐷!! = 𝑑! and 𝐷!/ = 0 for 𝑖 ≠ 𝑗, and
𝐴 is the adjacency matrix.
• Recall 𝐿𝑣 ! = ∑/: !,/ ∈1 𝑣! − 𝑣/ .
• Last time, we observed that the orthogonal eigenvectors

corresponding to eigenvalues of 0 told us the connected components
of the graph.
• Our intuition was that the eigenvectors for the smallest non-zero

eigenvalues should tell us something about low conductance cuts.

Outline

• Review
• Community Detection Problem
• Conductance
• Graph Laplacian

• Spectral techniques to find low conductance cuts

• Spectral techniques for clustering and community detection

Spectral Algorithm for Low Conductance Cut

• Let 𝜆 be the smallest non-zero eigenvalue of the graph Laplacian 𝐿
with corresponding eigenvector �⃗�.
• Sort the vertices 𝑖 in non-decreasing order of 𝑣!. For notational

convenience, say that after sorting: 𝑣2 ≤ 𝑣3 ≤ ⋯ ≤ 𝑣4.
• For i from 1 to n-1:
• 𝑆! ← {1, 2, … , 𝑖}
• 𝐶! ← 𝜙(𝑆!)

• Return 𝑆! with minimum 𝐶!.

Spectral Algorithm Analysis

• Efficiency. Note that the brute force algorithm for the problem
considers 24 cuts.
• Clearly, this algorithm considers 𝑂(𝑛) cuts.
• You need to calculate conductance at each step (potentially an Ω(𝑚)

calculation). Can you see how to avoid this?

• Accuracy. How “correct” is the algorithm?
• This is an NP-Complete problem, so this won’t solve it exactly (i.e., no

guarantee of minimum conductance cut). How close do we get?

Spectral Algorithm Analysis

• We will analyze the case of a d-regular graph, that is, one for which
every vertex has degree exactly d.
• (This makes the statement and proof easier, but a similar statement holds for

non-regular graphs).
• Then the conductance can be rewritten as

𝜙 𝑆 =
𝛿 𝑆

d ⋅ min(|𝑆|, |𝑉 − 𝑆|)
.

Suppose w.l.o.g. we just consider cuts where 𝑆 ≤ |𝑉 − 𝑆|. Define

𝜃 𝑆 =
𝛿(𝑆)
|𝑆|

.

Then the minimum conductance cut of a graph also minimizes 𝜃(𝑆).
Call this minimum 𝜃(𝑆) value Θ5 for a graph G.

Spectral Algorithm Analysis

• Theorem (Cheeger’s Inequality). Let G be a d-regular connected
graph with minimum conductance 6!

7
. Let S be the cut found by our

spectral algorithm. Let 𝜆3 be the second smallest eigenvalue of the
graph Laplacian of G. Then

8"
3
≤ Θ5 ≤ 𝜃 𝑆 ≤ 2𝑑𝜆3.

• Corrolary.
𝜃 𝑆
Θ5

≤
2𝑑𝜆3
Θ5

≤
2 2𝑑
𝜆3

This is a fairly pessimistic bound on typical performance in practice.

Spectral Algorithm Analysis

• Proving 𝜃 𝑆 ≤ 2𝑑𝜆3 is difficult, and we don’t have the time.

• Proving 8"
3
≤ Θ5 ≤ 𝜃 𝑆 is relatively easy.

• Note that Θ5 ≤ 𝜃 𝑆 is by definition, so we really only need to prove
8"
3
≤ Θ5 .

• Proof Sketch. Recall that for any eigenvector 𝑣 with eigenvalue 𝜆,
𝐿𝑣 = 𝜆𝑣. Therefore

𝑣9𝐿 𝑣
𝑣9𝑣

=
𝑣9(𝜆 𝑣)
𝑣9𝑣

= 𝜆

• Proof Sketch (continued). We have already seen that for a connected
graph, the all 1 vector is an eigenvector for eigenvalue 0.
• The second smallest eigenvalue 𝜆3 has an eigenvector that is

orthogonal to this all 1 vector, and in particular:

𝜆3 = 𝑚𝑖𝑛:::⋅2<=
𝑣9𝐿 𝑣
𝑣9𝑣

.

• Consider a cut S, and define the vector 𝑣! = 1 − |𝑆|/|𝑉| for 𝑖 ∈ 𝑆 and
− |𝑆|/|𝑉| otherwise. For every S, this vector is orthogonal to 1.
• Furthermore, if you work out the algebra,

𝑣9𝐿 𝑣
𝑣9𝑣

=
𝛿(𝑆)

𝑆 ⋅ |𝑉 − 𝑆|/|𝑉|
=

𝛿(𝑆)
𝑆 ⋅ (1 − |𝑆|/|𝑉)

≤ 2
𝛿(𝑆)
𝑆

• Then 𝜆3 is at most 2𝛿(𝑆)/|𝑆|.
• Since this holds for any cut, it holds for the minimum cut, so 𝜆3 ≤ 2Θ>.

Outline

• Review
• Community Detection Problem
• Conductance
• Graph Laplacian

• Spectral techniques to find low conductance cuts

• Spectral techniques for clustering and community detection

Further Questions

• What if you want to partition your data into more than 2 clusters?

• What if you want to detect the community of an individual, rather
than just a good community globally in the graph?

• What if your data isn’t actually a graph to begin with?

• We will conclude with some heuristic spectral approaches for these
problems.

More Than 2 Clusters

• Suppose we want to partition the data into k clusters. A common
approach is as follows:
• Represent each vertex i as a length m vector, where:

• The j’th component of the vector is the i’th entry in the eigenvector of the
graph Laplacian corresponding to the j+1 smallest eigenvalue.

• For example, suppose we set m=2, and <5, -1, 3, -2> is the eigenvector
corresponding to the 2nd smallest eigenvalue, and <-1, 5, 0, 0> is the
eigenvector corresponding to the 3rd smallest eigenvalue.

• Then we would represent the first vertex as <5, -1>, the second as <-1, 5>, the
third as <3, 0> and the fourth as <-2, 0>.

• Now, run a standard clustering algorithm (e.g., k-means) on these
vectors.

Community Detection

• Suppose we have an individual i, and we know that she belongs to a
community with between n1 and n2 individuals. We want to predict
who those individuals are.
• One heuristic is as follows:

• Represent each individual as a vector according to the eigenvectors
corresponding to small (but non-zero) eigenvalues, exactly as in the last slide.

• Let d(x,y) be a distance function on these vectors (e.g., standard Euclidean
distance).

• For n from n1 to n2:
• Let 𝑆! be the n individuals with minimum distance to i.
• 𝐶! ← 𝜙(𝑆!)

• Return the 𝑆! with minimum 𝐶!

Non Graphical Data

• What if your data wasn’t a graph to begin with? For example, if you
wanted to cluster something like:

• Just create a graph by setting points that are sufficiently close to one
another to be adjacent vertices.
• Then run your favorite spectral analysis.

Summary
• There are deep connections between the eigenvalues and eigenvectors of

the graph Laplacian and the connectivity properties of a graph.

• For clustering problems where you care about connectivity, spectral
clustering, exploiting these properties, is the standard approach.

• It is useful for minimum conductance cuts and community detection
problems on graphs, but it can also be applied to non-graphical data.

• In your last lab homework, you will play around with spectral techniques
on an email graph.

