
Matrices and Graphs –
Spectral Techniques

PPT by Brandon Fain

Outline

• Motivating Problem: Community Detection

• Spectral Clustering and Conductance

• Graph Laplacian

Motivating Problem: Community Detection

Given a social network,
how do you find the
strongly connected
communities?

Corollary question: How
would you suggest
friends to a user?

Motivating Community Detection

• But the question is much broader than this: it’s about clustering, the
fundamental task in unsupervised machine learning.

• Stated loosely, clustering is about creating a partition of the data so
that points within a partition are more similar to one another than
points outside of the partition.

• But what is the right notion of “similar?” For geometric data, perhaps
it is geometric distance or compactness. What about for a graph?

Community Detection – Spectral Clustering

• In fact, as you can probably see, there are other applications where
you might like to cluster based on “community structure” in a graph:
it captures the idea of similarity by connectivity!

• In such applications, one typically:
• Given a similarity measure S(), draw a graph by placing an edge

between data points x and y with S(x,y) < t, for some threshold t.
• Use spectral clustering to partition the graph based on its

connectivity (i.e., ignore everything else about the data).

Community Detection - Spectral Clustering

• Questions:
• How do we measure the quality of a cluster?
• How do we compute such a clustering?

• This class and next, we’ll try to answer these questions.

• Today, we’ll focus on the first question, and reviewing some tools we
will need to answer the second next week.

Outline

• Motivating Problem: Community Detection

• Spectral Clustering and Conductance

• Graph Laplacian

Spectral Clustering – Measuring Quality

• In the simplest case, suppose we just want to generate a 2-partition
(i.e., split the data into two sets). What objective should we
minimize?

• Take 0: Compute the minimum cut in the graph.
• Let 𝐺 = (𝑉, 𝐸) be an undirected graph.
• Let 𝑆 ⊆ 𝑉 denote a cut in the graph.
• Let 𝛿 𝑆 ≔ | 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆 |.
• In the minimum cut problem, we want to find a cut 𝑆 that

minimizes 𝛿(𝑆).

Take 0 – Minimum Cut

• For example: 𝑆, 𝛿 𝑆 = 1

• Looks pretty reasonable!
• What is wrong with this notion, and how would you fix it?

Take 1 – Normalized Minimum Cut

• Somehow, we want to find a large partition of vertices with a small
number of cut edges.

• Take 1: Compute the minimum normalized cut in the graph.
• Again Let 𝐺 = (𝑉, 𝐸) be an undirected graph and 𝑆 ⊆ 𝑉 denote a

cut in the graph, with 𝛿 𝑆 ≔ | 𝑢, 𝑣 ∈ 𝐸: 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆 |.
• In the minimum normalized cut problem, we want to find a cut 𝑆

that minimizes
𝛿 𝑆

𝑆 ⋅ |𝑉 − 𝑆|
• (Sometimes called the isoperimetric ratio)

Take 2 - Conductance

• The isoperimetric ratio should look very familiar to you.

• Recall that last week we discussed conductance as a property of
graphs related to how quickly power iteration computes the stationary
distribution of a random walk on the graph.

• Let 𝑆 be a cut. Let 𝑉𝑜𝑙 𝑆 = ∑!∈# 𝑑!, where 𝑑! is the degree of node 𝑖.
The conductance of 𝑆 is

𝜙 𝑆 = $ #
%&'()*+ # ,)*+) -#)

.

Conductance

• Last week, we were interested in graphs for which power iteration
could quickly converge to find the stationary distribution of a random
walk.

• For that, we wanted a graph for which all cuts had high conductance.

• For the spectral partitioning problem, we will look for a particular cut
in the graph with very low conductance (which means there are a lot
of internal edges, but very few cut edges).

Outline

• Motivating Problem: Community Detection

• Spectral Clustering and Conductance

• Graph Laplacian

Eigenvectors and Eigenvalues

• Consider a matrix 𝑀. We say that
𝜆 is an eigenvalue of 𝑀 with
associated eigenvector �⃗� if

𝑀 �⃗� = 𝜆 �⃗�.

• Think of 𝑀 as a linear function or
linear transformation. An
eigenvector is an input that only
changes in scale, not direction.

Laplacian Matrix

• The particular matrix we are interested in is the graph Laplacian,
defined as

𝐿 = 𝐷 − 𝐴
where 𝐷 is the diagonal matrix with 𝐷!! = 𝑑! and 𝐷!/ = 0 for 𝑖 ≠ 𝑗, and
𝐴 is the adjacency matrix.
• There is also a normalized graph Laplacian defined as

E𝐿 = 𝐼 − 𝐷-
0
1 𝐴 𝐷-

0
1.

It is helpful to get some intuition by trying to write down some graph
Laplacians, so let’s try a few.

Laplacian Matrix

• Write down the Laplacian (un-normalized) of the following:

1. A 5-cycle

2. A 5-star

3. K5

2 -1 0 0 -1

-1 2 -1 0 0

0 -1 2 -1 0

0 0 -1 2 -1

-1 0 0 -1 2
5 -1 -1 -1 -1 -1

-1 1 0 0 0 0

-1 0 1 0 0 0

-1 0 0 1 0 0

-1 0 0 0 1 0

-1 0 0 0 0 1

4 -1 -1 -1 -1

-1 4 -1 -1 -1

-1 -1 4 -1 -1

-1 -1 -1 4 -1

-1 -1 -1 -1 4

Laplacian Matrix

• Why do we care about this matrix? The first intuition is to note that

𝐿𝑣 ! = 𝑑!𝑣! − G
/: !,/ ∈3

𝑣/ = G
/: !,/ ∈3

𝑣! − 𝑣/ .

Therefore,

𝑣4𝐿𝑣 =G
!∈)

𝑣! G
/: !,/ ∈3

𝑣! − 𝑣/ = G
!,/ ∈3

𝑣! (𝑣! − 𝑣/)

𝑣4𝐿𝑣 = G
!,/ ∈3,!5/

𝑣! − 𝑣/
1

Laplacian Matrix

• In other words, given a graph with Laplacian 𝐿, and a vector 𝑣 that
assigns a value to every vertex in the graph, 𝑣4𝐿𝑣 is the sum of
squared differences of neighbors in the graph.

• So the Laplacian matrix is definitely recording something about
connectivity.

• But actually, this simple fact allows us to show a few other
connections.

Laplacian Matrix

• Given 𝑣4𝐿𝑣 = ∑ !,/ ∈3,!5/ 𝑣! − 𝑣/
1

.

• Then 𝐿 is a positive semidefinite matrix (by definition). It follows that
all of the eigenvalues of 𝐿 are nonnegative (an excellent exercise).

• Note that it’s also clear that 𝐿1 = (0)1, so the smallest eigenvalue is
0, and 1 is an associated eigenvector.

• In fact, there is an important connection between this eigenvalue
and the graph.

Laplacian Matrix

• Claim. The number of connected components in a graph equals the
number of orthonormal eigenvectors associated with eigenvalue 0 of
the graph Laplacian.
• Proof. Suppose there are k connected components in the graph. For

each component 𝑆 ⊆ 𝑉, define 𝑢# such that 𝑢!# = 1 if 𝑖 ∈ 𝑆, else 0.
• Clearly these vectors are orthogonal, and since 𝐿𝑣 ! =
∑/: !,/ ∈3 𝑣! − 𝑣/ , we know that 𝐿 𝑢# = 0 𝑢#. So there are at least k
such eigenvectors.
• But any other eigenvector also has to take the same value on every

vertex of a connected component, so any other such vector is not
orthogonal to these. So there are just k such eigenvectors.

Laplacian Matrix

• Corollary. Given the eigenvectors of the graph Laplacian with
eigenvalue 0, one can read off the connected components of the graph.
• In particular, for each of these 0 eigenvalue eigenvectors, you just

have to pick the vertices for which the eigenvector has the same
value.

• So far then, we have built a purely algebraic way of computing the
connected components of a graph.
• But, of course, you learned how to do this (much more efficiently) with

depth first search last week. So who cares?

Laplacian and Spectral Clustering

• What we really care about for clustering and community detection:
finding low conductance cuts in the graph.

• Recall that 𝐿𝑣 ! = ∑/: !,/ ∈3 𝑣! − 𝑣/ . So if 𝑣 is an eigenvector
associated with a small (but positive) eigenvalue, it assigns very
similar values to neighboring vertices.

• Of course, if the graph is connected, we already know that the
eigenvector for the smallest eigenvalue (0) is just 1, so that isn’t very
helpful.

Laplacians and Spectral Clustering

• What if we take the eigenvalue associated with the second smallest
eigenvalue (for a connected graph)?

• Then we take a large subset of vertices to which this vector assigns
very similar values.

• Such a subset of vertices should be more likely to be neighbors.

• How do we formalize this idea? Can we prove anything about its
performance? (Stay tuned for next time!)

