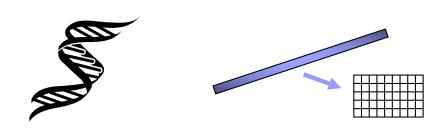
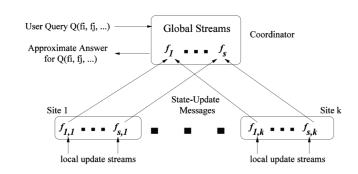
A Quick Introduction to Data Stream Algorithmics





Minos Garofalakis

Yahoo! Research & UC Berkeley

minos@acm.org

Streams - A Brave New World

- Traditional DBMS: data stored in finite, persistent data sets
- Data Streams: distributed, continuous, unbounded, rapid, time varying, noisy, . . .
- Data-Stream Management: variety of modern applications
 - Network monitoring and traffic engineering
 - Sensor networks
 - Telecom call-detail records
 - Network security
 - Financial applications
 - Manufacturing processes
 - Web logs and clickstreams
 - Other massive data sets…

Massive Data Streams

- Data is continuously growing faster than our ability to store or index it
- There are 3 Billion Telephone Calls in US each day, 30 Billion emails daily, 1 Billion SMS, IMs
- Scientific data: NASA's observation satellites generate billions of readings each per day
- IP Network Traffic: up to 1 Billion packets per hour per router. Each ISP has many (hundreds) routers!
- Whole genome sequences for many species now available: each megabytes to gigabytes in size

Massive Data Stream Analysis

Must analyze this massive data:

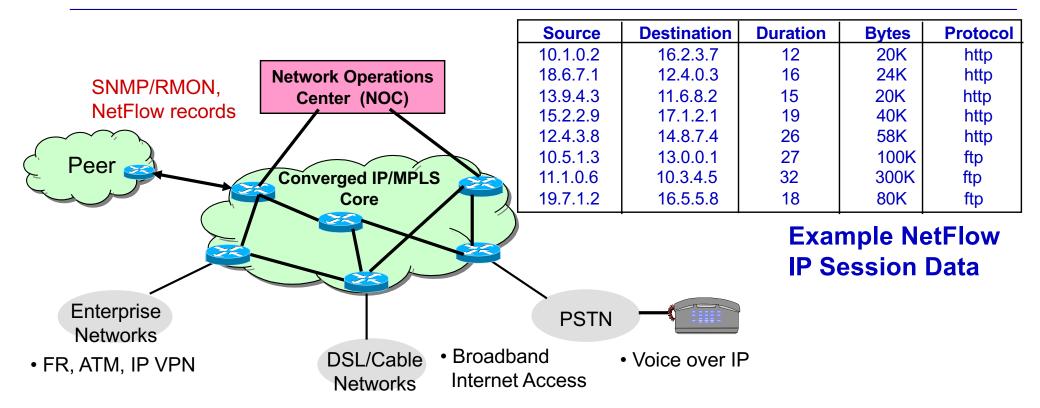
- Scientific research (monitor environment, species)
- System management (spot faults, drops, failures)
- Business intelligence (marketing rules, new offers)
- For revenue protection (phone fraud, service abuse)

Else, why even measure this data?

Example: IP Network Data

- Networks are sources of massive data: the metadata per hour per IP router is gigabytes
- Fundamental problem of data stream analysis:
 Too much information to store or transmit
- So process data as it arrives One pass, small space:
 the data stream approach
- Approximate answers to many questions are OK, if there are guarantees of result quality

IP Network Monitoring Application

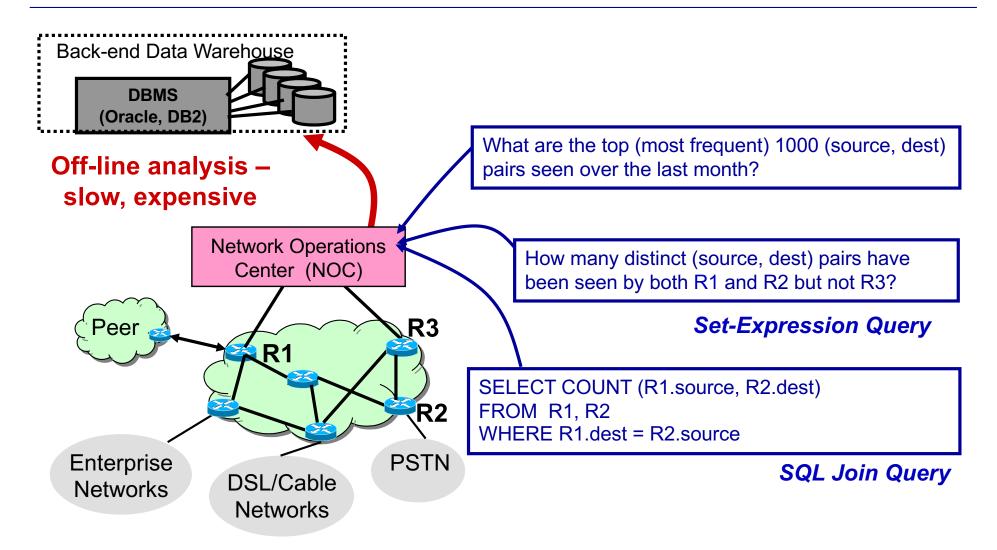


- 24x7 IP packet/flow data-streams at network elements
- Truly massive streams arriving at rapid rates
 - AT&T/Sprint collect ~1 Terabyte of NetFlow data each day
- Often shipped off-site to data warehouse for off-line analysis

Packet-Level Data Streams

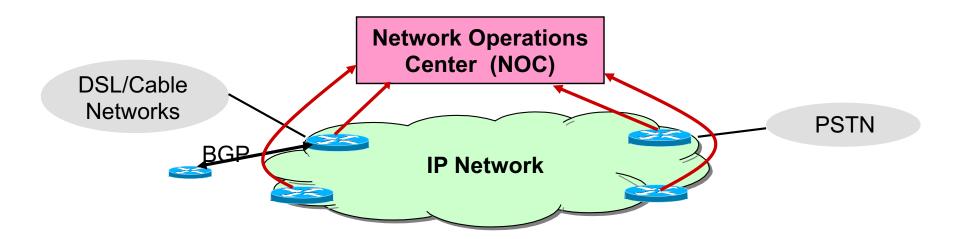
- Single 2Gb/sec link; say avg packet size is 50bytes
- Number of packets/sec = 5 million
- ■Time per packet = 0.2 microsec
- If we only capture header information per packet: src/dest IP, time, no. of bytes, etc. at least 10bytes.
 - Space per second is 50Mb
 - Space per day is 4.5Tb per link
 - -ISPs typically have hundreds of links!
- Analyzing packet content streams whole different ballgame!!

Network Monitoring Queries



- Extra complexity comes from limited space and time
- Solutions exist for these and other problems

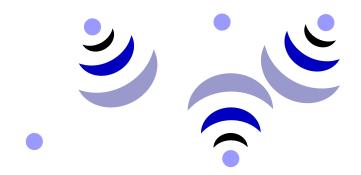
Real-Time Data-Stream Analysis



- Must process network streams in real-time and one pass
- Critical NM tasks: fraud, DoS attacks, SLA violations
 - Real-time traffic engineering to improve utilization
- Tradeoff result accuracy vs. space/time/communication
 - Fast responses, small space/time
 - Minimize use of communication resources

Sensor Networks

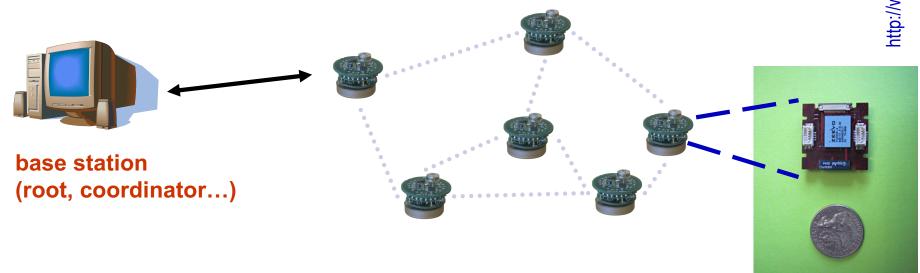
- Wireless sensor networks becoming ubiquitous in environmental monitoring, military applications, ...
- Many (100s, 10³, 10⁶?) sensors scattered over terrain
- Sensors observe and process a local stream of readings:
 - Measure light, temperature, pressure...
 - Detect signals, movement, radiation...
 - Record audio, images, motion...



http://www.intel.com/research/exploratory/motes.htm

Sensornet Querying Application

- Query sensornet through a (remote) base station
- Sensor nodes have severe resource constraints
 - Limited battery power, memory, processor, radio range...
 - Communication is the major source of battery drain
 - "transmitting a single bit of data is equivalent to 800 instructions" [Madden et al.'02]



Lecture Outline

- Motivation & Streaming Applications
- Centralized Stream Processing
 - Basic streaming models and tools
 - Stream synopses and applications
 - Sampling, sketches
- Conclusions

Data Streaming Model

- Underlying signal: One-dimensional array A[1...N] with values A[i] all initially zero
 - Multi-dimensional arrays as well (e.g., row-major)
- Signal is implicitly represented via a stream of update tuples
 - -j-th update is <x, c[j]> implying
 - A[x] := A[x] + c[j] (c[j] can be >0, <0)
- ■Goal: Compute functions on A[] subject to
 - -Small space
 - Fast processing of updates
 - Fast function computation

- . . .

 Complexity arises from massive length and domain size (N) of streams

Example IP Network Signals

- Number of bytes (packets) sent by a source IP address during the day
 - -2³² sized one-d array; increment only
- Number of flows between a source-IP, destination-IP address pair during the day
 - 264 sized two-d array; increment only, aggregate packets into flows
- Number of active flows per source-IP address
 - -2³² sized one-d array; increment and decrement

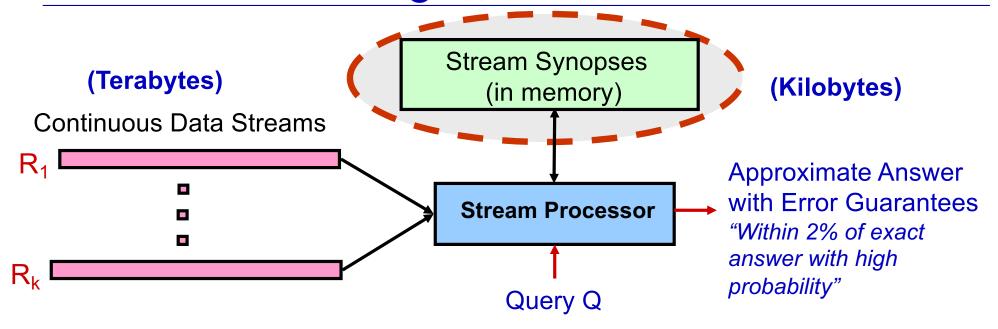
Streaming Model: Special Cases

- Time-Series Model
 - -Only x-th update updates A[x] (i.e., A[x] := c[x])
- Cash-Register Model: Arrivals-Only Streams
 - c[x] is always > 0
 - -Typically, c[x]=1, so we see a multi-set of items in one pass
 - Example: <x, 3>, <y, 2>, <x, 2> encodes
 the arrival of 3 copies of item x,
 2 copies of y, then 2 copies of x.
 - y O
 - Could represent, e.g., packets on a network; power usage

Streaming Model: Special Cases

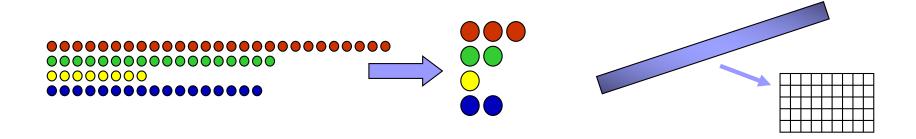
- Turnstile Model: Arrivals and Departures
 - Most general streaming model
 - -c[x] can be >0 or <0
- Arrivals and departures:
 - Example: <x, 3>, <y,2>, <x, -2> encodesfinal state of <x, 1>, <y, 2>.
- x O
- Can represent fluctuating quantities, or measure differences between two distributions
- Problem difficulty varies depending on the model
 - –E.g., MIN/MAX in Time-Series vs. Turnstile!

Data-Stream Algorithmics Model



- Approximate answers— e.g. trend analysis, anomaly detection
- Requirements for stream synopses
 - Single Pass: Each record is examined at most once
 - Small Space: Log or polylog in data stream size
 - Small-time: Low per-record processing time (maintain synopses)
 - Also: delete-proof, composable, ...

Sampling & Sketches



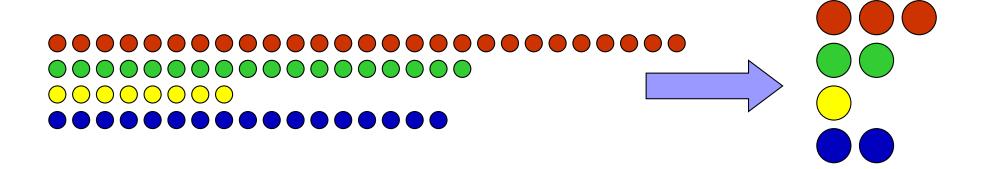
Sampling: Basics

- Idea: A small random sample S of the data often wellrepresents all the data
 - For a fast approx answer, apply "modified" query to S
 - Example: select agg from R where R.e is odd

- If agg is avg, return average of odd elements in S answer: 5

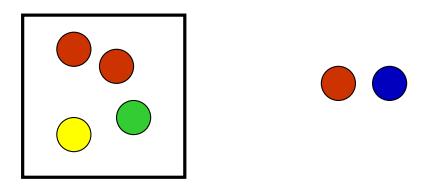
- If agg is count, return average over all elements e in S of
 - n if e is odd
 0 if e is even
- Unbiased Estimator (for count, avg, sum, etc.)
 - Bound error using Hoeffding (sum, avg) or Chernoff (count)

Sampling from a Data Stream



- Fundamental problem: sample m items uniformly from stream
 - Useful: approximate costly computation on small sample
- Challenge: don't know how long stream is
 - So when/how often to sample?
- Two solutions, apply to different situations:
 - Reservoir sampling (dates from 1980s?)
 - Min-wise sampling (dates from 1990s?)

Reservoir Sampling



- Sample first m items
- Choose to sample the i'th item (i>m) with probability m/i
- If sampled, randomly replace a previously sampled item
- Optimization: when i gets large, compute which item will be sampled next, skip over intervening items [Vitter'85]

Reservoir Sampling - Analysis

- Analyze simple case: sample size m = 1
- Probability i'th item is the sample from stream length n:
 - Prob. i is sampled on arrival × prob. i survives to end

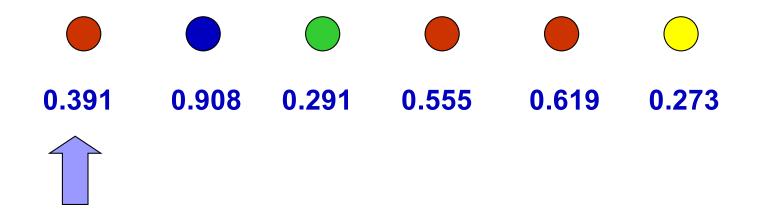
$$\frac{1}{n} \times \frac{1}{1+1} \times \frac{1}{1+2} \dots \frac{n^2}{n^2} \times \frac{n^4}{n}$$

$$= 1/n$$

- Case for m > 1 is similar, easy to show uniform probability
- Drawbacks of reservoir sampling: hard to parallelize

Min-wise Sampling

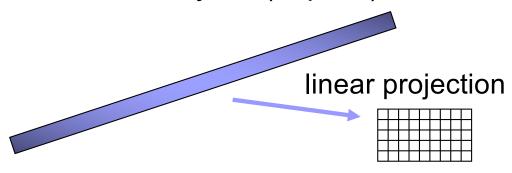
- For each item, pick a random fraction between 0 and 1
- Store item(s) with the smallest random tag [Nath et al.'04]



- Each item has same chance of least tag, so uniform
- Can run on multiple streams separately, then merge

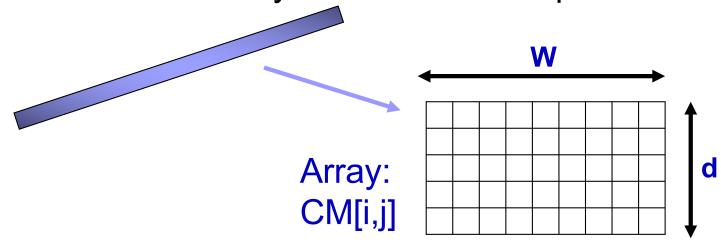
Sketches

- Not every problem can be solved with sampling
 - Example: counting how many distinct items in the stream
 - If a large fraction of items aren't sampled, don't know if they are all same or all different
- Other techniques take advantage that the algorithm can "see" all the data even if it can't "remember" it all
- "Sketch": essentially, a linear transform of the input
 - Model stream as defining a vector, sketch is result of multiplying stream vector by an (implicit) matrix

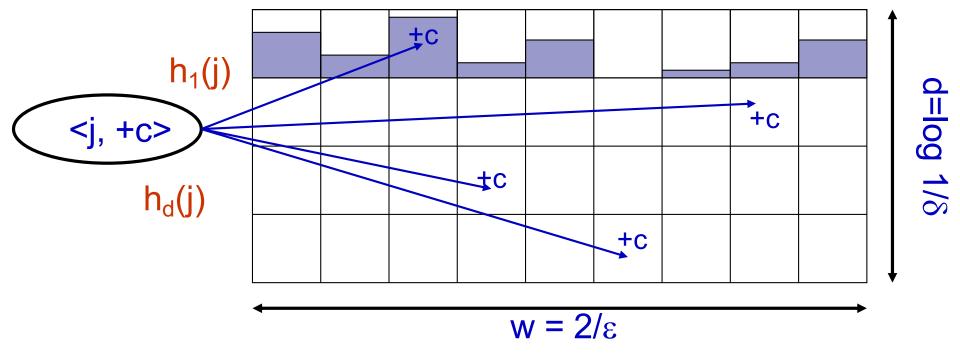


Count-Min Sketch [Cormode, Muthukrishnan'04]

- Simple sketch idea, can be used for as the basis of many different stream mining tasks
 - Join aggregates, range queries, moments, ...
- Model input stream as a vector A of dimension N
- Creates a small summary as an array of w x d in size
- Use d hash functions to map vector entries to [1..w]
- Works on arrivals only and arrivals & departures streams



CM Sketch Structure



- Each entry in input vector A[] is mapped to one bucket per row
 - h()'s are pairwise independent
- Merge two sketches by entry-wise summation
- Estimate A[j] by taking min_k { CM[k,h_k(j)] }

CM Sketch Guarantees

- [Cormode, Muthukrishnan'04] CM sketch guarantees approximation error on point queries less than ε||A||₁ in space O(1/ε log 1/δ)
 - Probability of more error is less than $1-\delta$
 - Similar guarantees for range queries, quantiles, join size,...

Hints

- Counts are biased (overestimates) due to collisions
 - Limit the expected amount of extra "mass" at each bucket?
- Use independence across rows to boost the confidence for the min{} estimate
 - Based on independence of row hashes

CM Sketch Analysis

Estimate A'[j] = $\min_{k} \{ CM[k,h_{k}(j)] \}$

- Analysis: In k'th row, CM[k,hk(j)] = A[j] + Xk,j
 - $X_{k,j} = \Sigma A[i] | h_k(i) = h_k(j)$
 - $E[X_{k,j}]$ = $\sum A[i]^*Pr[h_k(i)=h_k(j)]$ $\leq (\epsilon/2)^* \sum A[i] = \epsilon ||A||_1/2$ (pairwise independence of h)
 - $Pr[X_{k,j} \ge \varepsilon ||A||_1] = Pr[X_{k,j} \ge 2E[X_{k,j}]] \le 1/2$ by Markov inequality
- So, $Pr[A'[j] \ge A[j] + \varepsilon ||A||_1] = Pr[\forall k. X_{k,j} > \varepsilon ||A||_1] \le 1/2^{\log 1/\delta} = \delta$
- Final result: with certainty A[j] ≤ A'[j] and with probability at least 1-δ, A'[j] < A[j] + ε ||A||₁

Distinct Value Estimation

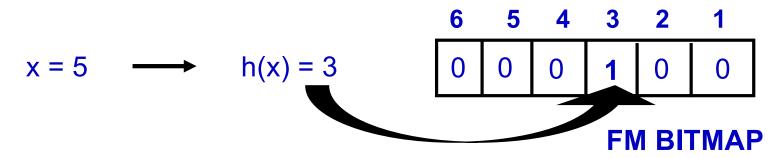
- Problem: Find the number of distinct values in a stream of values with domain [1,...,N]
 - Zeroth frequency moment F_0 , L0 (Hamming) stream norm
 - Statistics: number of species or classes in a population
 - Important for query optimizers
 - Network monitoring: distinct destination IP addresses, source/destination pairs, requested URLs, etc.
- Example (N=64)
 Data stream: 3 2 5 3 2 1 7 5 1 2 3 7

Number of distinct values: 5

- Hard problem for random sampling! [Charikar et al.'00]
 - Must sample almost the entire table to guarantee the estimate is within a factor of 10 with probability > 1/2, regardless of the estimator used!
- AMS and CM only good for multiset semantics

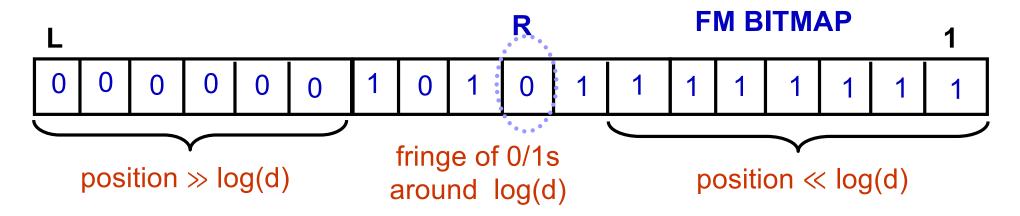
FM Sketch [Flajolet, Martin'85]

- Estimates number of distinct inputs (count distinct)
- Uses hash function mapping input items to i with prob 2⁻ⁱ
 - i.e. $Pr[h(x) = 1] = \frac{1}{2}$, $Pr[h(x) = 2] = \frac{1}{4}$, $Pr[h(x) = 3] = \frac{1}{8}$...
 - Easy to construct h() from a uniform hash function by counting trailing zeros
- Maintain FM Sketch = bitmap array of L = log N bits
 - Initialize bitmap to all 0s
 - For each incoming value x, set FM[h(x)] = 1



FM Sketch Analysis

If d distinct values, expect d/2 map to FM[1], d/4 to FM[2]...



- Let R = position of rightmost zero in FM, indicator of log(d)
- Basic estimate $d = c2^R$ for scaling constant c ≈ 1.3
- Average many copies (different hash fns) improves accuracy

FM Sketch Properties

- With O(1/ε² log 1/δ) copies, get (1±ε) accuracy with probability at least 1-δ [Bar-Yossef et al'02], [Ganguly et al.'04]
 - 10 copies gets ≈ 30% error, 100 copies < 10% error
- Delete-Proof: Use counters instead of bits in sketch locations
 - +1 for inserts, -1 for deletes
- Composable: Component-wise OR/add distributed sketches together

- Estimate $|S_1| \cdots |S_k| = set union cardinality$

Sketching and Sampling Summary

- Sampling and sketching ideas are at the heart of many stream mining algorithms
 - Moments/join aggregates, histograms, wavelets, top-k, frequent items, other mining problems, ...
- A sample is a quite general representative of the data set;
 sketches tend to be specific to a particular purpose
 - FM sketch for count distinct, CM/AMS sketch for joins / moment estimation, ...
- Traditional sampling does not work in the turnstile (arrivals & departures) model
 - BUT... see recent generalizations of distinct sampling [Ganguly et al.'04], [Cormode et al.'05]; as well as [Gemulla et al.'08]

Practicality

- Algorithms discussed here are quite simple and very fast
 - Sketches can easily process millions of updates per second on standard hardware
 - Limiting factor in practice is often I/O related
- Implemented in several practical systems:
 - AT&T's Gigascope system on live network streams
 - Sprint's CMON system on live streams
 - Google's log analysis
- Sample implementations available on the web
 - http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
 - or web search for 'massdal'

Conclusions

- Data Streaming: Major departure from traditional persistent database paradigm
 - Fundamental re-thinking of models, assumptions, algorithms, system architectures, ...
- Many new streaming problems posed by developing technologies
- Simple tools from approximation and/or randomization play a critical role in effective solutions
 - Sampling, sketches (CM, FM, ...), ...
 - Simple, yet powerful, ideas with great reach
 - Can often "mix & match" for specific scenarios

Approximation and Randomization

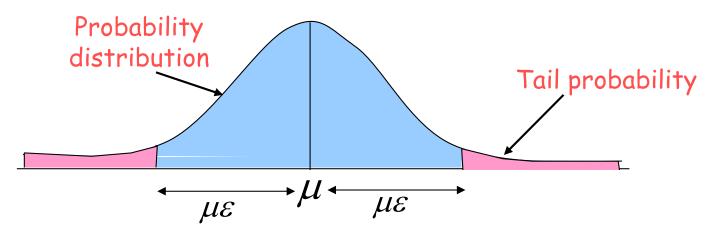
- Many things are hard to compute exactly over a stream
 - Is the count of all items the same in two different streams?
 - Requires linear space to compute exactly
- Approximation: find an answer correct within some factor
 - Find an answer that is within 10% of correct result
 - More generally, a $(1 \pm \varepsilon)$ factor approximation
- Randomization: allow a small probability of failure
 - Answer is correct, except with probability 1 in 10,000
 - More generally, success probability (1- δ)
- Approximation and Randomization: (ε, δ) -approximations

Probabilistic Guarantees

- User-tunable (ε, δ) -approximations
 - Example: Actual answer is within 5 ± 1 with prob ≥ 0.9
- Randomized algorithms: Answer returned is a speciallybuilt random variable
 - Unbiased (correct on expectation)
 - Combine several Independent Identically Distributed (iid) instantiations (average/median)
- Use Tail Inequalities to give probabilistic bounds on returned answer
 - Markov Inequality
 - Chebyshev Inequality
 - Chernoff Bound
 - Hoeffding Bound

Basic Tools: Tail Inequalities

General bounds on tail probability of a random variable (that is, probability that a random variable deviates far from its expectation)



Basic Inequalities: Let X be a random variable with expectation μ and variance Var[X]. Then, for any $\varepsilon > 0$

Markov:

$$Pr(X \ge (1+\epsilon)\mu) \le \frac{1}{1+\epsilon}$$

Chebyshev:
$$Pr(|X-\mu| \ge \mu\epsilon) \le \frac{Var[X]}{\mu^2 \epsilon^2}$$

Tail Inequalities for Sums

- Possible to derive stronger bounds on tail probabilities for the sum of independent random variables
- <u>Hoeffding Bound:</u> Let X1, ..., Xm be independent random variables with $0 \cdot Xi \cdot r$. Let $\bar{X} = \frac{1}{m} \sum_{i} X_i^2 nd$ be the expectation of \bar{X} . Then, for any $\varepsilon > 0$,

$$Pr(|\overline{X} - \mu| \ge \varepsilon) \le 2exp^{\frac{-2m\varepsilon^2}{r^2}}$$

- Application: Sample average ¼ population average
 - See below...

Tail Inequalities for Sums

- Possible to derive even stronger bounds on tail probabilities for the sum of independent Bernoulli trials
- Chernoff Bound: Let X1, ..., Xm be independent Bernoulli trials such that Pr[Xi=1] = p (Pr[Xi=0] = 1-p). Let $X = \sum_i X_i$ and $\mu = mp$ be the expectation of X. Then, for any $\varepsilon > 0$,

$$Pr(|X-\mu| \ge \mu\epsilon) \le 2exp^{\frac{-\mu\epsilon^2}{2}}$$

- Application: Sample selectivity ¼ population selectivity
 - See below…
- Remark: Chernoff bound results in tighter bounds for count queries compared to Hoeffding bound

