Introduction to Algorithms 6.046J/18.401J

Lecture 15

Prof. Piotr Indyk

String Matching

- Input: Two strings T[1...n] and P[1...m], containing symbols from alphabet Σ.
- E.g.
- $-\Sigma = \{a,b,...,z\}$
- T[1...18]="to be or not to be"
- P[1..2]="be"
- Goals
 - Find all "shifts" $0 \le s \le n-m$ such that T[s+1...s+m]=P
 - Find one (e.g., the first) shift

(c) Piotr Indyk and Manolis Kellis

😽 Plan

- · Simple algorithm
 - Worst-case vs. average case
- Karp-Rabin algorithm
 - Randomized "Monte Carlo" algorithm
 - Efficient in the worst case
 - Small probability of error

(c) Piotr Indyk and Manolis Kellis

for $s \leftarrow 0$ to n-m

 $Match \leftarrow 1$

for $j \leftarrow 1$ to m

if $T[s+j] \neq P[j]$ then

if Match=1 then output

 $Match \leftarrow 0$

exit loop

Simple Algorithm

for $s \leftarrow 0$ to n-m $Match \leftarrow 1$ for $j \leftarrow 1$ to mif $T[s+j] \neq P[j]$ then $Match \leftarrow 0$ exit loop

if Match=1 then output s

(c) Piotr Indyk and Manolis Kellis

Results

- Running time of the simple algorithm:
 - Worst-case: O(nm)
 - Average-case (random text): O(n)
 - T_s= time spent on checking shift s

 Each text character matches pattern character with probability p=1/|∑|
 - T_s has a geometric distribution
 - $-E[T_s] = 1/(1-p) \le 2$
 - Expected total time:

$$E\left[\sum_{s}T_{s}\right] = \sum_{s}E[T_{s}] = O(n)$$

(c) Piotr Indyk and Manolis Kellis

Worst-case

- Is it possible to achieve O(n) for any input?
 - Knuth-Morris-Pratt'77: deterministic
 - Karp-Rabin'81: randomized Monte Carlo
 - Small probability of error

Karp-Rabin Algorithm

(c) Piotr Indyk and Manolis Kellis

🦏 Karp-Rabin Algorithm

A very elegant use of an idea that we have encountered before, namely...

HASHING!

- Idea:
 - Hash all substrings
 - T[1...m], T[2...m+1], ..., T[m-n+1...n]
 - Hash the pattern P[1...m]
 - Report the substrings that hash to the same value as P
- Problem: how to hash n-m substrings, each of length m, in

(c) Piotr Indyk and Manolis Kellis

S Digression

- · In previous lectures, we have seen
 - $h_a(x) = \sum_i a_i x_i \mod q$ where $a=(a_1,...,a_r)$, $x=(x_1,...,x_r)$
- To implement it, we would need to compute $h_a(T[s...s+m-1])=\sum_i a_i T[s+i] \mod q$ for s=0...n-m
- How to compute it in O(n) time?
- A big open problem! (see later lecture on FFT)

(c) Piotr Indvk and Manolis Kellis

Implementation

- Attempt I:
 - Assume $\Sigma = \{0,1\}$
 - Think about each $T_s=T[s+1...s+m]$ as a number in binary representation, i.e., $t_s = T[s+1]2^{m-1} + T[s+2]2^{m-2} + ... + T[s+m]2^0$
 - Find a fast way of computing t_{s+1} given t_s
 - Output all s such that t_s is equal to the number p represented by P

(c) Piotr Indyk and Manolis Kellis

🥽 The great formula

- · How to transform
 - $t_s = T[s+1]2^{m-1} + T[s+2]2^{m-2} + ... + T[s+m]2^0$ $t_{s+1}\!\!=\!\!T[s+2]2^{m\!-\!1}\!\!+\!\!T[s\!+\!3]2^{m\!-\!2}\!\!+\!\dots\!+\!T[s\!+\!m\!+\!1]2^0?$
- · Three steps:
 - Subtract T[s+1]2^{m-1}
 - Multiply by 2 (i.e., shift the bits by one
 - Add T[s+m+1]20
- Therefore: $t_{s+1} = (t_s T[s+1]2^{m-1})*2 + T[s+m+1]2^0$

(c) Piotr Indyk and Manolis Kellis

🥽 Algorithm

$$t_{s+1} = (t_s - T[s+1]2^{m-1})*2 + T[s+m+1]2^0$$

- Can compute t_{s+1} from t_s using 3 arithmetic operations
- Therefore, we can compute all $t_0, t_1, ..., t_{n-m}$ using O(n) arithmetic operations
- We can compute a number corresponding to P using O(m) arithmetic operations
- Are we done?

😽 Problem

- To get O(n) time, we would need to perform each arithmetic operation in O(1) time
- However, the arguments are m-bit long!
- If m large, it is unreasonable to assume that operations on such big numbers can be done in O(1) time
- We need to reduce the number range to something easier to manage

(c) Piotr Indyk and Manolis Kellis

Attempt II

- We will instead compute $t'_s = T[s+1]2^{m-1} + T[s+2]2^{m-2} + ... + T[s+m]2^0 \mod q$ where q is an "appropriate" prime number
- One can still compute t'_{s+1} from t'_{s} : $t'_{s+1} = (t'_{s} - T[s+1]2^{m-1})*2 + T[s+m+1]2^{0} \mod q$
- If q is not large, e.g., has $O(\log n)$ bits, we can compute all t_s (and p') in O(n) time

(c) Piotr Indyk and Manolis Kellis

🤝 Problem

- Unfortunately, we can have false positives, i.e., $T_s \neq P$ but $t_s \mod q = p \mod q$
- Need to use a random q
- We will show that the probability of a false positive is small
 - → randomized Monte Carlo algorithm

(c) Piotr Indyk and Manolis Kellis

False positives: analysis

- Consider any $t \neq p$. We know that both numbers are in the range $\{0, 2^m-1\}$
- How many primes q are there such that $t_s \mod q = p \mod q \equiv (t_s - p) = 0 \mod q$?
- Such prime has to divide $x=(t_s-p) \le 2^m$
- Represent $x=p_1^{e_1}p_2^{e_2}...p_k^{e_k}$, p_i prime, $e_i \ge 1$ What is the largest possible value of k?
- Since $2 \le p_i$, we have $x \ge 2^k$
- At the same time, $x \le 2^m$
- Therefore $k \le m$
- There are $\leq m$ primes dividing x

(c) Piotr Indyk and Manolis Kellis

Algorithm + Analysis

- Algorithm:
 - Let ∏ be a set of 2nm primes

 - $\begin{array}{lll} & Choose \ q \ uniformly \ at \ random \ from \ \prod \\ & Compute \ t_0 \ mod \ q, \ t_1 \ mod \ q, \ \dots, \ and \ p \ mod \ q \\ & Report \ s \ such \ that \ t_s \ mod \ q = p \ mod \ q \end{array}$
- - For each s, the probability that $T_s \neq P$ but

 $t_s \mod q = p \mod q$ is at most m/(2nm) = 1/(2n)

- From previous slide, the probability of any false positive is at most
- Can replace 2 by any desired parameter

(c) Piotr Indyk and Manolis Kellis

"Details"

- Our algorithm uses a prime q chosen uniformly at random from a set \prod of 2nm primes
- Two questions:
 - How do we know that such ∏ exists? (That is, a set of 2nm primes, each having O(log n) bits)
 - How do we choose a random prime from \prod in $\mathrm{O}(n)$ time ?
- We will see only a "sketch" of an answer (details require pretty deep theory)
- In practice, just select "large enough" prime in advance

Optional material

(c) Piotr Indyk and Manolis Kellis

Prime density

• Primes are "dense". I.e., if PRIMES(N) is the set of primes smaller than N, then asymptotically

 $|PRIMES(N)|/N \sim 1/ln N$

• If N large enough, then

 $|PRIMES(N)| \ge N/(2\ln N)$

• Proof: Trust me.

(c) Piotr Indyk and Manolis Kellis

Rrime density continued

- Set N=C mn ln(mn)
- There exists C=O(1) such that

 $N/(2ln N) \ge 2mn$

C mn ln(mn) / [2 ln(C mn ln(mn))]

- $\geq C \operatorname{mn} \ln(\operatorname{mn}) / [2 \ln(C (\operatorname{mn})^2)]$
- $= C \operatorname{mn} \ln(\operatorname{mn}) / \left[4 \ln(C) + 4 \ln(\operatorname{mn})\right]$

which is greater than 2mn for C large enough

All elements of PRIMES(N) are $\log N = O(\log n)$ bits long

(c) Piotr Indyk and Manolis Kellis

Rrime selection

- Still need to find a random element of PRIMES(N)
- Solution:
 - Choose a random element from $\{1 \dots N\}$ Check if it is prime
 - If not, repeat
- - From prime density theorem, a random element q from {1...N} is prime with probability ~1/ln N
 We can check if q is prime in time polynomial in log N:
 Randomized: Rabin, Solovay-Strassen in 1976

 - - Deterministic: Agrawal et al in 2002
- Deterministic: Agrawal et al in 2002 Therefore, we can generate and verify a random prime q in $\log^{O(1)} n$ time

(c) Piotr Indyk and Manolis Kellis

Final Algorithm

- Set N=C mn ln(mn)
- Repeat
 - Choose q uniformly at random from $\{1...N\}$
- Until q is prime
- Compute t₀ mod q, t₁ mod q, ..., and p mod q
- Report s such that $t_s \mod q = p \mod q$