Introduction to Algorithms

6.046J/18.401J

Lecture 15
Prof. Piotr Indyk

String Matching

- Input: Two strings $\mathrm{T}[1 \ldots \mathrm{n}]$ and $\mathrm{P}[1 \ldots \mathrm{~m}]$, containing symbols from alphabet Σ.
E.g. :
$-\Sigma=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$
$-\mathrm{T}[1 \ldots 18]=$ "to be or not to be"
$-\mathrm{P}[1 . .2]=$ "be"
- Goals:
- Find all "shifts" $0 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{m}$ such that $\mathrm{T}[\mathrm{s}+1 \ldots \mathrm{~s}+\mathrm{m}]=\mathrm{P}$
- Find one (e.g., the first) shift

Plan

- Simple algorithm
- Worst-case vs. average case
- Karp-Rabin algorithm
- Randomized "Monte Carlo" algorithm
- Efficient in the worst case
- Small probability of error

Simple Algorithm

for $s \leftarrow 0$ to $n-m$
Match $\leftarrow 1$
for $j \leftarrow 1$ to m
if $\mathrm{T}[s+j] \neq \mathrm{P}[j]$ then
Match $\leftarrow 0$
exit loop
if Match= 1 then output s
(c) Piotr Indyk and Manolis Kellis

Results

Running time of the simple algorithm:

- Worst-case: O(nm)
- Average-case (random text): O(n)
- $\mathrm{T}_{\mathrm{s}}=$ time spent on checking shift s
- Each text character matches pattern character with probability $\mathrm{p}=1 / \Sigma \Sigma$
$-\mathrm{T}_{\mathrm{s}}$ has a geometric distribution
or $s \leftarrow 0$ to $n-m$
Match $\leftarrow 1$
for $j \leftarrow 1$ to m if $\mathrm{T}[s+j] \neq \mathrm{P}[j]$ then Match $\leftarrow 0$ exit loop
if Match $=1$ then output s $-\mathrm{E}\left[\mathrm{T}_{\mathrm{s}}\right]=1 /(1-\mathrm{p}) \leq 2$
- Expected total time:

$$
\mathrm{E}\left[\sum_{\mathrm{s}} \mathrm{~T}_{\mathrm{s}}\right]=\sum_{\mathrm{s}} \mathrm{E}\left[\mathrm{~T}_{\mathrm{s}}\right]=\mathrm{O}(\mathrm{n})
$$

Worst-case

- Is it possible to achieve $\mathrm{O}(\mathrm{n})$ for any input?
- Knuth-Morris-Pratt'77: deterministic
- Karp-Rabin'81: randomized Monte Carlo
- Small probability of error

Karp-Rabin Algorithm

Karp-Rabin Algorithm

- A very elegant use of an idea that we have encountered before, namely..

HASHING!

- Idea:
- Hash all substrings

$$
\mathrm{T}[1 \ldots \mathrm{~m}], \mathrm{T}[2 \ldots \mathrm{~m}+1], \ldots, \mathrm{T}[\mathrm{~m}-\mathrm{n}+1 \ldots \mathrm{n}]
$$

- Hash the pattern $\mathrm{P}[1 \ldots \mathrm{~m}]$
- Report the substrings that hash to the same value as P
- Problem: how to hash n-m substrings, each of length m, in $\mathrm{O}(\mathrm{n})$ time?

Digression

Implementation

- Attempt I:
- Assume $\Sigma=\{0,1\}$
- Think about each $\mathrm{T}_{\mathrm{s}}=\mathrm{T}[\mathrm{s}+1 \ldots \mathrm{~s}+\mathrm{m}]$ as a number in binary representation, i.e., $\mathrm{t}_{\mathrm{s}}=\mathrm{T}[\mathrm{s}+1] 2^{\mathrm{m}-1}+\mathrm{T}[\mathrm{s}+2] 2^{\mathrm{m}-2+}+\ldots+\mathrm{T}[\mathrm{s}+\mathrm{m}] 2^{0}$
- Find a fast way of computing t_{s+1} given t_{s}
- Output all s such that t_{s} is equal to the number p represented by P
- A big open problem! (see later lecture on FFT)

The great formula

- How to transform

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}=\mathrm{T}[\mathrm{~s}+1] 2^{\mathrm{m}-1}+\mathrm{T}[\mathrm{~s}+2] 2^{\mathrm{m}-2}+\ldots+\mathrm{T}[\mathrm{~s}+\mathrm{m}] 2^{0} \\
& \text { into } \\
& \mathrm{t}_{\mathrm{s}+1}=\mathrm{T}[\mathrm{~s}+2] 2^{\mathrm{m}-1}+\mathrm{T}[\mathrm{~s}+3] 2^{\mathrm{m}-2}+\ldots+\mathrm{T}[\mathrm{~s}+\mathrm{m}+1] 2^{0} ?
\end{aligned}
$$

- Three steps:
- Subtract T[s+1]2 $2^{\mathrm{m}-1}$
- Multiply by 2 (i.e., shift the bits by one position)
- Add T[s+m+1]20
- Therefore: $\mathrm{t}_{\mathrm{s}+1}=\left(\mathrm{t}_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] 2^{\mathrm{m}-1}\right) * 2+\mathrm{T}[\mathrm{s}+\mathrm{m}+1] 2^{0}$

Algorithm

$\mathrm{t}_{\mathrm{s}+1}=\left(\mathrm{t}_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] 2^{\mathrm{m}-1}\right)^{*} 2+\mathrm{T}[\mathrm{s}+\mathrm{m}+1] 2^{0}$

- Can compute t_{s+1} from t_{s} using 3 arithmetic operations
- Therefore, we can compute all $\mathrm{t}_{0}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}-\mathrm{m}}$ using $\mathrm{O}(\mathrm{n})$ arithmetic operations
- We can compute a number corresponding to P using $\mathrm{O}(\mathrm{m})$ arithmetic operations
- Are we done ?

Problem

- To get $\mathrm{O}(\mathrm{n})$ time, we would need to perform each arithmetic operation in $\mathrm{O}(1)$ time
- However, the arguments are m-bit long !
- If m large, it is unreasonable to assume that operations on such big numbers can be done in $\mathrm{O}(1)$ time
- We need to reduce the number range to something easier to manage

Problem

- Unfortunately, we can have false positives, i.e., $\mathrm{T}_{\mathrm{s}} \neq \mathrm{P}$ but $\mathrm{t}_{\mathrm{s}} \bmod \mathrm{q}=\mathrm{p} \bmod \mathrm{q}$
- Need to use a random q
- We will show that the probability of a false positive is small
\rightarrow randomized Monte Carlo algorithm

Algorithm + Analysis

- Algorithm:
- Let Π be a set of 2 nm primes
- Choose q uniformly at random from Π
- Compute $\mathrm{t}_{0} \bmod \mathrm{q}, \mathrm{t}_{1} \operatorname{modq}, \ldots$, and $\mathrm{p} \bmod \mathrm{q}$
- Report s such that $\mathrm{t}_{\mathrm{s}} \bmod \mathrm{q}=\mathrm{p} \bmod \mathrm{q}$
- Analysis:
- For each s , the probability that $\mathrm{T}_{\mathrm{s}} \neq \mathrm{P}$ but
$\mathrm{t}_{\mathrm{s}} \bmod \mathrm{q}=\mathrm{p} \bmod \mathrm{q}$
is at most $\mathrm{m} /(2 \mathrm{~nm})=1 /(2 \mathrm{n})$
- From previous slide, the probability of any false positive is at most $(n-m) /(2 n) \leq 1 / 2$
- Can replace 2 by any desired parameter

Attempt II

- We will instead compute $\mathrm{t}_{\mathrm{s}}=\mathrm{T}[\mathrm{s}+1] 2^{\mathrm{m}-1}+\mathrm{T}[\mathrm{s}+2] 2^{\mathrm{m}-2}+\ldots+\mathrm{T}[\mathrm{s}+\mathrm{m}] 2^{0} \bmod \mathrm{q}$ where q is an "appropriate" prime number
- One can still compute t ' ${ }_{s+1}$ from t^{\prime} :
$\mathrm{t}^{\prime}{ }_{\mathrm{s}+1}=\left(\mathrm{t}^{\prime}{ }_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] 2^{\mathrm{m}-1}\right)^{*} 2+\mathrm{T}[\mathrm{s}+\mathrm{m}+1] 2^{0} \bmod \mathrm{q}$
- If q is not large, e.g., has $O(\log n)$ bits, we can compute all t_{s} (and p') in O(n) time

False positives: analysis

- Consider any $\mathrm{t}_{\mathrm{s}} \neq \mathrm{p}$. We know that both numbers are in the range $\left\{0 \ldots 2^{\mathrm{m}}-1\right\}$
- How many primes q are there such that $\mathrm{t}_{\mathrm{s}} \bmod \mathrm{q}=\mathrm{p} \bmod \mathrm{q} \equiv\left(\mathrm{t}_{\mathrm{s}}-\mathrm{p}\right)=0 \bmod \mathrm{q} ?$
- Such prime has to divide $x=\left(\mathrm{t}_{\mathrm{s}}-\mathrm{p}\right) \leq 2^{\mathrm{m}}$
- Represent $x=p_{1}{ }^{\text {el }} p_{2}{ }^{\mathrm{e} 2} \ldots p_{k}{ }^{\text {ek }}, p_{i}$ prime, $e_{i} \geq 1$

What is the largest possible value of k ?

- Since $2 \leq p_{i}$, we have $x \geq 2^{k}$
- At the same time, $x \leq 2^{m}$
- Therefore $\mathrm{k} \leq \mathrm{m}$
- There are $\leq m$ primes dividing x

"Details"

- Our algorithm uses a prime q chosen uniformly at random from a set \| of 2 nm primes
- Two questions:
- How do we know that such Π exists ?
(That is, a set of 2 nm primes, each having $\mathrm{O}(\log \mathrm{n})$ bits)
- How do we choose a random prime from Π in $O(n)$ time?
- We will see only a "sketch" of an answer (details require pretty deep theory)
- In practice, just select "large enough" prime in advance

Prime density

- Primes are "dense". I.e., if PRIMES(N) is the set of primes smaller than N , then asymptotically
\mid PRIMES(N) $\mid / \mathrm{N} \sim 1 / \ln \mathrm{N}$

Optional material

Prime density continued

Prime selection

- Still need to find a random element of PRIMES(N)
- Solution:
- Choose a random element from $\{1 \ldots \mathrm{~N}\}$
- Check if it is prime

If not, repeat

- Analysis:

From prime density theorem, a random element q from $\{1 \ldots \mathrm{~N}\}$ is prime with probability $\sim 1 / \ln \mathrm{N}$

- We can check if q is prime in time polynomial in $\log \mathrm{N}$.
- Randomized: Rabin, Solovay-Strassen in 1976
- Deterministic: Agrawal et al in 2002

Therefore, we can generate and verify a random prime q in $\log ^{\mathrm{O}(1)} \mathrm{n}$
time

Final Algorithm

- Set $\mathrm{N}=\mathrm{C}$ mn $\ln (\mathrm{mn})$
- Repeat
- Choose q uniformly at random from $\{1 \ldots \mathrm{~N}\}$
- Until q is prime
- Compute $\mathrm{t}_{0} \bmod \mathrm{q}, \mathrm{t}_{1} \bmod \mathrm{q}, \ldots .$, and $\mathrm{p} \bmod \mathrm{q}$
- Report s such that $\mathrm{t}_{\mathrm{s}} \bmod \mathrm{q}=\mathrm{p} \bmod \mathrm{q}$

