
1

Introduction to Algorithms
6.046J/18.401J

Lecture 15
Prof. Piotr Indyk

(c) Piotr Indyk and Manolis Kellis

String Matching

• Input: Two strings T[1…n] and P[1…m], containing
symbols from alphabet Σ.
E.g. :
– Σ={a,b,…,z}
– T[1…18]=“to be or not to be”
– P[1..2]=“be”

• Goals:
– Find all “shifts” 0≤ s ≤n-m such that T[s+1…s+m]=P
– Find one (e.g., the first) shift

(c) Piotr Indyk and Manolis Kellis

Plan

• Simple algorithm
– Worst-case vs. average case

• Karp-Rabin algorithm
– Randomized “Monte Carlo” algorithm

• Efficient in the worst case
• Small probability of error

(c) Piotr Indyk and Manolis Kellis

Simple Algorithm

for s ← 0 to n-m
Match ← 1
for j ← 1 to m

if T[s+j] ≠P[j] then
Match ← 0
exit loop

if Match=1 then output s

(c) Piotr Indyk and Manolis Kellis

Results

• Running time of the simple algorithm:
– Worst-case: O(nm)
– Average-case (random text):

• Ts= time spent on checking shift s
– Each text character matches pattern

character with probability p=1/|Σ|
– Ts has a geometric distribution
– E[Ts] = 1/(1-p) ≤ 2

• Expected total time:
E [∑sTs] = ∑s E[Ts] = O(n)

for s ← 0 to n-m

Match ← 1
for j ← 1 to m

if T[s+j] ≠P[j] then
Match ← 0
exit loop

if Match=1 then output s

O(n)

(c) Piotr Indyk and Manolis Kellis

Worst-case

• Is it possible to achieve O(n) for any input ?
– Knuth-Morris-Pratt’77: deterministic
– Karp-Rabin’81: randomized Monte Carlo

• Small probability of error

2

(c) Piotr Indyk and Manolis Kellis

Karp-Rabin Algorithm

(c) Piotr Indyk and Manolis Kellis

Karp-Rabin Algorithm

• A very elegant use of an idea that we have encountered
before, namely…

HASHING !
• Idea:

– Hash all substrings
T[1…m], T[2…m+1], …, T[m-n+1…n]

– Hash the pattern P[1…m]
– Report the substrings that hash to the same value as P

• Problem: how to hash n-m substrings, each of length m, in
O(n) time ?

(c) Piotr Indyk and Manolis Kellis

Digression

• In previous lectures, we have seen
ha(x)=∑i aixi mod q

where a=(a1,…,ar) , x=(x1,…,xr)
• To implement it, we would need to compute

ha(T[s…s+m-1])=∑i ai T[s+i] mod q
for s=0…n-m

• How to compute it in O(n) time ?
• A big open problem! (see later lecture on FFT)

(c) Piotr Indyk and Manolis Kellis

Implementation

• Attempt I:
– Assume Σ={0,1}
– Think about each Ts=T[s+1…s+m] as a

number in binary representation, i.e.,
ts=T[s+1]2m-1+T[s+2]2m-2+…+T[s+m]20

– Find a fast way of computing ts+1 given ts
– Output all s such that ts is equal to the

number p represented by P

(c) Piotr Indyk and Manolis Kellis

The great formula

• How to transform
ts=T[s+1]2m-1+T[s+2]2m-2+…+T[s+m]20

into
ts+1=T[s+2]2m-1+T[s+3]2m-2+…+T[s+m+1]20 ?

• Three steps:
– Subtract T[s+1]2m-1

– Multiply by 2 (i.e., shift the bits by one
position)

– Add T[s+m+1]20

• Therefore: ts+1= (ts- T[s+1]2m-1)*2 + T[s+m+1]20

(c) Piotr Indyk and Manolis Kellis

Algorithm

ts+1= (ts- T[s+1]2m-1)*2 + T[s+m+1]20

• Can compute ts+1 from ts using 3 arithmetic
operations

• Therefore, we can compute all t0,t1,…,tn-m
using O(n) arithmetic operations

• We can compute a number corresponding to
P using O(m) arithmetic operations

• Are we done ?

3

(c) Piotr Indyk and Manolis Kellis

Problem

• To get O(n) time, we would need to perform
each arithmetic operation in O(1) time

• However, the arguments are m-bit long !
• If m large, it is unreasonable to assume that

operations on such big numbers can be done
in O(1) time

• We need to reduce the number range to
something easier to manage

(c) Piotr Indyk and Manolis Kellis

Attempt II

• We will instead compute
t’s=T[s+1]2m-1+T[s+2]2m-2+…+T[s+m]20 mod q
where q is an “appropriate” prime number

• One can still compute t’s+1 from t’s :
t’s+1= (t’s- T[s+1]2m-1)*2 +T[s+m+1]20 mod q

• If q is not large, e.g., has O(log n) bits, we
can compute all t’s (and p’) in O(n) time

(c) Piotr Indyk and Manolis Kellis

Problem

• Unfortunately, we can have false positives,
i.e., Ts≠P but ts mod q = p mod q

• Need to use a random q
• We will show that the probability of a false

positive is small
→ randomized Monte Carlo algorithm

(c) Piotr Indyk and Manolis Kellis

False positives: analysis

• Consider any ts≠p. We know that both numbers are in the
range {0…2m-1}

• How many primes q are there such that
ts mod q = p mod q ≡ (ts-p) =0 mod q ?

• Such prime has to divide x=(ts-p) ≤ 2m

• Represent x=p1
e1p2

e2…pk
ek, pi prime, ei≥1

What is the largest possible value of k ?
– Since 2 ≤ pi , we have x ≥ 2k

– At the same time, x ≤ 2m

– Therefore k ≤ m
• There are ≤ m primes dividing x

(c) Piotr Indyk and Manolis Kellis

Algorithm + Analysis

• Algorithm:
– Let ∏ be a set of 2nm primes
– Choose q uniformly at random from ∏
– Compute t0 mod q, t1 mod q, …., and p mod q
– Report s such that ts mod q = p mod q

• Analysis:
– For each s, the probability that Ts≠P but

ts mod q =p mod q
is at most m/(2nm) = 1/(2n)

– From previous slide, the probability of any false positive is at most
(n-m)/(2n) ≤ 1/2

– Can replace 2 by any desired parameter

(c) Piotr Indyk and Manolis Kellis

“Details”

• Our algorithm uses a prime q chosen uniformly at random
from a set ∏ of 2nm primes

• Two questions:
– How do we know that such ∏ exists ?

(That is, a set of 2nm primes, each having O(log n) bits)

– How do we choose a random prime from ∏ in O(n)
time ?

• We will see only a “sketch” of an answer
(details require pretty deep theory)

• In practice, just select “large enough” prime in advance

4

(c) Piotr Indyk and Manolis Kellis

Optional material

(c) Piotr Indyk and Manolis Kellis

Prime density

• Primes are “dense”. I.e., if PRIMES(N) is
the set of primes smaller than N, then
asymptotically

|PRIMES(N)|/N ~ 1/ln N
• If N large enough, then

|PRIMES(N)| ≥ N/(2ln N)

• Proof: Trust me.

(c) Piotr Indyk and Manolis Kellis

Prime density continued

• Set N=C mn ln(mn)
• There exists C=O(1) such that

N/(2ln N) ≥ 2mn
• Proof:

C mn ln(mn) / [2 ln(C mn ln(mn))]
≥ C mn ln(mn) / [2 ln(C (mn)2)]
= C mn ln(mn) / [4 ln(C) + 4 ln(mn)]

which is greater than 2mn for C large enough
• All elements of PRIMES(N) are log N = O(log n)

bits long

(c) Piotr Indyk and Manolis Kellis

Prime selection

• Still need to find a random element of PRIMES(N)
• Solution:

– Choose a random element from {1 … N}
– Check if it is prime
– If not, repeat

• Analysis:
– From prime density theorem, a random element q from {1…N} is

prime with probability ~1/ln N
– We can check if q is prime in time polynomial in log N :

• Randomized: Rabin, Solovay-Strassen in 1976
• Deterministic: Agrawal et al in 2002

• Therefore, we can generate and verify a random prime q in logO(1) n
time

(c) Piotr Indyk and Manolis Kellis

Final Algorithm

• Set N=C mn ln(mn)
• Repeat

– Choose q uniformly at random from {1…N}
• Until q is prime
• Compute t0 mod q, t1 mod q, …., and p mod q
• Report s such that ts mod q = p mod q

