Introduction to Algorithms
6.0461/18.401J

ALGO lti'[' HMS

‘ '\)_"

Y

Lecture 15
Prof. Piotr Indyk

» Y Strlng Matching

» Input: Two strings T[1...n] and P[1...m], containing
symbols from alphabet >.

E.g.:

— X={a,b,.

- T[1. 18]* to be or not to be”
— P[1..2]=“be”

* Goals:
— Find all “shifts” 0< s <n-m such that T[s+1...s+m]=P

— Find one (e.g., the first) shift

(c) Piotr Indyk and Manolis Kellis

 Simple algorithm
— Worst-case vs. average case
» Karp-Rabin algorithm
—Randomized “Monte Carlo” algorithm
» Efficient in the worst case
* Small probability of error

(©) Piotr Indyk and Manolis Kellis

,‘,- Slmple Algorithm

for s <~ 0 to n-m
Match « 1
for j« 1tom
if T[s+]] #P[]] then
Match < 0
exit loop
if Match=1 then output s

(©) Piotr Indyk and Manolis Kellis

* Running time of the simple algorithm:

" <l 1 Results

fors« 0ton-m
— Worst-case: O(nm) Match < 1
— Average-case (random text): O(n) for j«ltom
* T~ time spent on checking shifts i T(s*l#Plithen

Match « 0
— Each text character matches pattern E.ml “
character with probability p=1/2 exit loop

— T, has a geometric distribution if Match=L then output s
7L[J=1/(1-p)<2
* Expected total time:
E [%,T,] =%, E[T,] = O(n)

(c) Piotr Indyk and Manolis Kellis

. .«* Worst -case

* Is it possible to achieve O(n) for any input ?
— Knuth-Morris-Pratt’77: deterministic
—Karp-Rabin’81: randomized Monte Carlo

* Small probability of error

(c) Piotr Indyk and Manolis Kellis

Karp-Rabin Algorithm

(c) Piotr Indyk and Manolis Kellis

"'!,-5 Karp-Rabin Algorithm

» A very elegant use of an idea that we have encountered
before, namely...

HASHING !
o Idea:
— Hash all substrings
T[1...m], T[2...m+1], ..., T[m-n+1...n]
— Hash the pattern P[1...m]
— Report the substrings that hash to the same value as P

» Problem: how to hash n-m substrings, each of length m, in
O(n) time ?

(c) Piotr Indyk and Manolis Kellis

— Digression

™

* In previous lectures, we have seen
h,(x)=2; a;x; mod q
where a=(a,,...,a,) , x=(X,....X,)
» To implement it, we would need to compute
h,(T[s...stm-1])=2, a, T[s+i] mod q
for s=0...n-m
* How to compute it in O(n) time ?
* A big open problem! (see later lecture on FFT)

(©) Piotr Indyk and Manolis Kellis

o Implementation

m

» Attempt [:
— Assume >={0,1}

— Think about each T =T[s+1...stm] as a
number in binary representation, i.e.,

t=T[s+1]2™ ! +T[s+2]2m2+.. . +T[s+m]2°
—Find a fast way of computing t_,, given t,

— Output all s such that t_ is equal to the
number p represented By P

(©) Piotr Indyk and Manolis Kellis

.;";:,-’- The great formula

* How to transform
t=T[s+1]2m1+T[s+2]2m-2+, . +T[s+m]20
into
te =T[s+2]2™1+T[s+3]2m2+.. +T[s+m+1]20?
 Three steps: -
— Subtract T[s+1]2m!

— Multiply by 2 (i.e., shift the bits by one
position)

— Add T[s+m+1]2°
* Therefore: t., = (t&- T[s+1]2™1)*2 + T[s+m+1]2°

(c) Piotr Indyk and Manolis Kellis

=57 Algorithm

Ll

to = (te- T[s+1]12mH)*2 + T[s+m+1]2°
* Can compute t_., from t, using 3 arithmetic
operations

* Therefore, we can compute all t,,t,,....t,
using O(n) arithmetic operations

* We can compute a number corresponding to
P using O(m) arithmetic operations

e Are we done ?

(c) Piotr Indyk and Manolis Kellis

.;“ 2 Problem

* To get O(n) time, we would need to perform
each arithmetic operation in O(1) time

» However, the arguments are m-bit long !

» If m large, it is unreasonable to assume that
operations on such big numbers can be done
in O(1) time

* We need to reduce the number range to
something easier to manage

(c) Piotr Indyk and Manolis Kellis

;“ . Attempt I

* We will instead compute
' =T[s+1]2™ 1+ T[s+2]2m2+. . +T[s+m]2°mod q
where q is an “appropriate” prime number

* One can still compute t’_,, from t° :
t' = (€ T[s+112mH*2 +T[s+m+1]2°mod q

* If q is not large, e.g., has O(log n) bits, we
can compute all t’_ (and p’) in O(n) time

(c) Piotr Indyk and Manolis Kellis

.'-"“, Y Problem

™

 Unfortunately, we can have false positives,
i.e., T#P but t, mod q=p mod q

* Need to use a random q

* We will show that the probability of a false
positive is small

— randomized Monte Carlo algorithm

(©) Piotr Indyk and Manolis Kellis

= False positives: analysis

w

» Consider any t ip We know that both numbers are in the
range {0...2M- 1}

» How many primes q are there such that
tymodq=pmodq = (t-p) =0 mod q?
* Such prime has to divide x=(t,-p) < 2™
» Represent x=p,*'p,<...p, %, p; prime, ¢>1
What is the largest possible value of k ?

— Since 2 < p,, we have x > 2k

— At the same time, x < 2™

— Therefore k <m
* There are < m primes dividing x

(©) Piotr Indyk and Manolis Kellis

.;“ . Algorlthm + Analysis

* Algorithm:
— Let [] be a set of 2nm primes
— Choose q uniformly at random from [

— Compute t,mod g, t; mod g,, and p mod q
— Report s such that t, mod q = p mod q
* Analysis:

— For each s, the probability that T #P but
t,mod q=p mod q
is at most m/(2nm) = 1/(2n)
— From previous slide, the probability of any false positive is at most
(n-m)/(2n) < 1/2
— Can replace 2 by any desired parameter

(c) Piotr Indyk and Manolis Kellis

51 “Details”

* Our algorithm uses a prime q chosen uniformly at random
from a'set [] of 2nm primes

» Two questions:
— How do we know that such [] exists ?
(That is, a set of 2nm primes, each having O(log n) bits)

— How ;‘]0 we choose a random prime from [] in O(n)
time

» We will see only a “sketch” of an answer
(details require pretty deep theory)
» In practice, just select “large enough” prime in advance

(c) Piotr Indyk and Manolis Kellis

Optional material

(c) Piotr Indyk and Manolis Kellis

" - 1 Prime density

* Primes are “dense”. L.e., if PRIMES(N) is
the set of primes smaller than N, then
asymptotically

[PRIMES(N)|/N ~ 1/In N
* If N large enough, then
[PRIMES(N)| > N/(2In N)

e Proof: Trust me.

(c) Piotr Indyk and Manolis Kellis

'!“,5 Prime density continued

* Set N=C mn In(mn)
* There exists C=0O(1) such that
N/(2In N) > 2mn

* Proof:

C mn In(mn) / [2 In(C mn In(mn)) |
> C mn In(mn) / [2 In(C (mn)?)]
=Cmn In(mn) / [4 + 4 In(mn)]

which is greater than 2mn for C large enough

 All elements of PRIMES(N) are log N = O(log n)
bits long

(©) Piotr Indyk and Manolis Kellis

.'!"?- Prime selection

« Still need to find a random element of PRIMES(N)
* Solution:

— Choose a random element from {1 ... N}

— Check if it is prime

— Ifnot, repeat
e Analysis:

— From prime density theorem, a random element q from {1...N} is
prime with probability ~1/In

— We can check if q is prime in time polynomial in log N :
« Randomized: Rabin, Solovay-Strassen in 1976
* Deterministic: Agrawal et al in 2002

+ Therefore, we can generate and verify a random prime q in log®") n
time

(©) Piotr Indyk and Manolis Kellis

.«* Final Algorithm

* Set N=C mn In(mn)
* Repeat
— Choose q uniformly at random from {1...N}
* Until q is prime
» Compute tymod g, t; mod q,, and p mod q
* Report s such that t, mod q = p mod q

(c) Piotr Indyk and Manolis Kellis

