Introduction to Algorithms

ALGORITHMS
-

oy
| h |
TN -

NN

Prof. Piotr Indyk

—:- P vs NP
«*' " (interconnectedness of all things)

* A whole course by 1tself

A OR
Oy D
v
-
g

~* Have seen so far

 Algorithms for many interesting problems:

— Running times O(nm?),0(n?) ,O(n log n),
O(n), ...

—I.e., polynomial in the 1nput size

» Can we solve all (or most of) interesting
problems 1n polynomial time ?

* Not really...

: Example ditficult problem

» Traveling Salesperson
Problem (TSP)

— Input: undirected graph
with lengths on edges

— Output: shortest tour that
visits each vertex exactly
once

» Best known algorithm:
O(n 2") time.

ALGORITHM

~

“o" Set Covering

w

e Set Cover: Bank robbery problem:
— Input: subsets S,...S_of X, ' fﬁ:jg 122;5;1}0% safe,
U; S, =X, [X[Fm « Sets:
— QOutput: C <{1...n} , such — Sjo. —tplan, safe}
that U._~S. = X, and |C] — Syi,={shoot, scary,
minimal drive}

* Best known algorithm:
O(2" m) time(?)

: Another ditficult problem

» Chque:

— Input: undirected graph
G=(V.E)

— QOutput: largest subset C
of V such that every pair
of vertices 1n C has an
edge between them

* Best known algorithm:
O(n 2") time

v
.

: Another ditficult problem

"

Boolean Formula Satifiability Problem (SAT):

Given a Boolean formula F(X1, X2, ..., Xn)
with n Boolean variables X1, X2, ..., Xn.

SAT Problem: Determine if there is an trueth assignment
of the n Boolean variables to O(false) or 1(true)
that makes the formula F =1(true).

Example F = (X1 V 7X2V X3) A (X2 V 7X3 V 71X5)

-
~

u-w.-sg- . .
“<" Dealing with Hard Problems

* What to do if:
— Divide and conquer
— Dynamic programming
— Greedy
— Linear Programming/Network Flows

does not give a polynomial time algorithm?

ALGO
W

~

“ o Dealing with Hard Problems

ny

» Exponential time algorithms for small
inputs. E.g., (100/99)" time 1s not bad for
n < 1000.

* Polynomial time algorithms for some (e.g.,
average-case) mnputs

* Polynomial time algorithms for all inputs,
but which return approximate solutions

\LGOKRKITHM
"—

-
~

“ <" What can we do ?

* Spend more time and money designing efficient
algorithms for those problems
—People tried for a few decades, no luck
—Qutstanding $1000,000 prize for finding one
—It seems very likely that such algorithms do not exist

* Prove there 1s no polynomial time algorithm for
those problems

— Would be great
— Seems really difficult

— Best lower bounds for “natural” problems:
* Q(n?) for restricted computational models

 (O(n) for unrestricted computational models
© Piotr Indyk Introduction to Algorithms May 6,2008 1.20.6

“ <" What else can we do ?

* Show that those hard problems are
essentially equivalent.

I.e., 1f we can solve one of them in poly
time, then all others can be solved 1n poly
time as well.

 Works for at least few thousand hard
problems

“ <~ The benefits of equivalence

* Combines research
efforts
* If one problem has

polytime solution,
then all of them do

ALGORITHN
-

~ &+ A more realistic scenario

* Once an exponential
lower bound 1s shown

for one problem, 1t

holds for all of them
* But someone is
happy...

Ron Rivest

I'_’
-

5 Summing up

"

* If we show that a problem | | 1s equivalent to a
few thousand other well studied problems
without efficient algorithms, then we get a very
strong evidence that | | 1s hard.

* We need to:
1. Identify the class of problems of interest

2. Define the notion of equivalence

3. Prove the equivalence(s)

o= 1. Class of problems

o
L

«" (informally)

* Decision problems: answer YES or NO. E.g.,”1s
there a tour of length < K ?

* Solvable 1n non-deterministic polynomial time:

— Intuitively: the solution can be verified 1n
polynomial time

— E.g., 1f someone gives as a tour T, we can
verify 1f T 1s a tour of length < K.

e Therefore, TSP 1s in NP.

Al K

-

“ 4~ 1. Class of problems: NP

\\\‘

Deterministic Time (P):

* A problem || 1s solvable 1n poly time (or | |EP), 1f
there 1s a poly time algorithm V(.) such that for
any input x:

[1(x)=YES 1iff V(x)=YES

Nondeterministic Time (NP):
* A problem || 1s solvable in non-deterministic poly
time (or | [ENP), 1f there 1s a poly time algorithm
V(. ,.) such that for any input x:

| [(x)=YES 1ff there exists a certificate y of size
poly(|x|) such that V(x,y)=YES

IS

v

-
~

" +* Examples of problems in NP

"

* Is “Does there exist a clique in G of size >K” 1n NP ?

Yes: V(x,y) interprets x as a graph G, y as a set C, and
checks if all vertices in C are adjacent and 1f |C|=K

* Is Sorting in NP ?
No, not a decision problem.
* Is “Sortedness” in NP ?
Yes: ignore y, and check if the input x 1s sorted.

A\
)

A\LGORI THMS

“ " 2.Reductions: [|’ to |]

f(x")=x_

A for |]

<

YES

NO

—YES

A’ for [T’

Sy

-

.‘;“‘;‘ . 2. Reductions (formally)

Polynomial Time Reductions

between Problem Classes:
* []” is poly time reducible to || (|[|” <[]) iff there

1s a poly time function { that maps mputs x’ to | |’
into mputs x of | |, such that for any x’

[)= X))

 Factl:if [|[€P and ||" <[] then | |'EP
 Fact2:1f [|[ENP and ||” < || then | |TENP
 Fact3:1f [|"<|]and |["<[[then |[]|" <]

_: Summing up

Two Problems are Polynomial Time Equivalent:
if there Polynomial Time Reductions between the two problems

\
-

"

* If we show that a problem | | 1s equivalent to a
few thousand other well studied problems
without efficient algorithms, then we get a very
strong evidence that | | 1s hard.

ALGORITHMS

* Once an exponential
lower bound 1s shown

for one problem, it
holds for all of them

 But someone is
happy...

Ron Rivest

