Introduction to Algorithms

Prof. Piotr Indyk

P vs NP (interconnectedness of all things)

A whole course by itself

Have seen so far

- Algorithms for many interesting problems:
 - Running times $O(nm^2)$, $O(n^2)$, $O(n \log n)$, O(n), ...
 - I.e., polynomial in the input size
- Can we solve all (or most of) interesting problems in polynomial time?
- Not really...

Example difficult problem

- Traveling Salesperson Problem (TSP)
 - Input: undirected graph with lengths on edges
 - Output: shortest tour that visits each vertex exactly once
- Best known algorithm:
 O(n 2ⁿ) time.

Set Covering

- Set Cover:
 - Input: subsets $S_1...S_n$ of X, $\bigcup_i S_i = X$, |X| = m
 - Output: $C \subseteq \{1...n\}$, such that $\bigcup_{i \in C} S_i = X$, and |C| minimal
- Best known algorithm:
 O(2ⁿ m) time(?)

Bank robbery problem:

- X={plan, shoot, safe, drive, scary}
- Sets:
 - $-S_{Joe} = \{plan, safe\}$
 - S_{Jim}={shoot, scary, drive}

—

Another difficult problem

- Clique:
 - Input: undirected graphG=(V,E)
 - Output: largest subset C
 of V such that every pair
 of vertices in C has an
 edge between them
- Best known algorithm:
 O(n 2ⁿ) time

Another difficult problem

Boolean Formula Satifiability Problem (SAT):

Given a Boolean formula F(X1, X2, ..., Xn) with n Boolean variables X1, X2, ..., Xn.

SAT Problem: Determine if there is an trueth assignment of the n Boolean variables to O(false) or I(true) that makes the formula F = I(true).

Example $F = (X1 V \neg X2 V X3) \wedge (X2 V \neg X3 V \neg X5)$

Dealing with Hard Problems

- What to do if:
 - Divide and conquer
 - Dynamic programming
 - Greedy
 - Linear Programming/Network Flows

— ...

does not give a polynomial time algorithm?

Dealing with Hard Problems

- Exponential time algorithms for small inputs. E.g., $(100/99)^n$ time is not bad for n < 1000.
- Polynomial time algorithms for some (e.g., average-case) inputs
- Polynomial time algorithms for all inputs, but which return approximate solutions

What can we do?

- Spend more time and money designing efficient algorithms for those problems
 - -People tried for a few decades, no luck
 - -Outstanding \$1000,000 prize for finding one
 - -It seems very likely that such algorithms do not exist
- Prove there is no polynomial time algorithm for those problems
 - Would be great
 - Seems really difficult
 - Best lower bounds for "natural" problems:
 - $\Omega(n^2)$ for restricted computational models
 - $\Omega(n)$ for unrestricted computational models

What else can we do?

- Show that those hard problems are essentially equivalent.
 - I.e., if we can solve one of them in poly time, then all others can be solved in poly time as well.
- Works for at least few thousand hard problems

The benefits of equivalence

- Combines research efforts
- If one problem has polytime solution, then all of them do

A more realistic scenario

- Once an exponential lower bound is shown for one problem, it holds for all of them
- But someone *is* happy...

Summing up

- If we show that a problem ∏ is equivalent to a few thousand other well studied problems without efficient algorithms, then we get a very strong evidence that ∏ is hard.
- We need to:
 - 1. Identify the class of problems of interest
 - 2. Define the notion of equivalence
 - 3. Prove the equivalence(s)

1. Class of problems (informally)

- Decision problems: answer YES or NO. E.g.,"is there a tour of length $\leq K$ "?
- Solvable in *non-deterministic polynomial* time:
 - Intuitively: the solution can be verified in polynomial time
 - E.g., if someone gives as a tour T, we can verify if T is a tour of length $\leq K$.
- Therefore, TSP is in NP.

1. Class of problems: NP

Deterministic Time (P):

• A problem \prod is solvable in poly time (or $\prod \in P$), if there is a poly time algorithm V(.) such that for any input x:

$$\prod(x)=YES \text{ iff } V(x)=YES$$

Nondeterministic Time (NP):

• A problem \prod is solvable in non-deterministic poly time (or $\prod \in NP$), if there is a poly time algorithm V(.,.) such that for any input x:

```
\prod(x)=YES iff there exists a certificate y of size poly(|x|) such that V(x,y)=YES
```


Examples of problems in NP

- Is "Does there exist a clique in G of size ≥K" in NP?
 Yes: V(x,y) interprets x as a graph G, y as a set C, and checks if all vertices in C are adjacent and if |C|≥K
- Is Sorting in NP?
 No, not a decision problem.
- Is "Sortedness" in NP?
 Yes: ignore y, and check if the input x is sorted.

2. Reductions: ∏' to ∏

A' for \prod '

ALGORITHMS

2. Reductions (formally)

Polynomial Time Reductions between Problem Classes:

• \prod ' is poly time reducible to $\prod (\prod' \leq \prod)$ iff there is a poly time function f that maps inputs x' to \prod ' into inputs x of \prod , such that for any x'

$$\prod'(x') = \prod(f(x'))$$

- Fact 1: if $\prod \in P$ and $\prod' \leq \prod$ then $\prod' \in P$
- Fact 2: if $\prod \in NP$ and $\prod' \leq \prod$ then $\prod' \in NP$
- Fact 3: if $\prod' \leq \prod$ and $\prod'' \leq \prod'$ then $\prod'' \leq \prod$

Summing up

Two Problems are Polynomial Time Equivalent:

if there Polynomial Time Reductions between the two problems

• If we show that a problem ∏ is equivalent to a few thousand other well studied problems without efficient algorithms, then we get a very strong evidence that ∏ is hard.

- Once an exponential lower bound is shown for one problem, it holds for all of them
- But someone *is* happy...

