
Streaming Algorithms

NARMADA SAMBATURU
SUBHASREE BASU

ALOK KUMAR KESHRI
RAJIV RATN SHAH

VENKATA KIRAN YEDUGUNDLA
VU VINH AN

1

Overview

• Introduction to Streaming Algorithms
• Sampling Techniques
• Sketching Techniques

Break
• Counting Distinct Numbers
• Q&A

2

Overview

• Introduction to Streaming Algorithms
• Sampling Techniques
• Sketching Techniques

Break
• Counting Distinct Numbers
• Q&A

3

What are Streaming algorithms?

• Algorithms for processing data streams
• Input is presented as a sequence of items
• Can be examined in only a few passes (typically just

one)
• Limited working memory

4

Same as Online algorithms?

• Similarities
§ decisions to be made before all data are available
§ limited memory

• Differences
§ Streaming algorithms – can defer action until a group of

points arrive
§ Online algorithms - take action as soon as each point

arrives

5

Why Streaming algorithms
• Networks

§ Up to 1 Billion packets per hour per router. Each ISP has hundreds of routers
§ Spot faults, drops, failures

• Genomics
§ Whole genome sequences for many species now available, each megabytes to

gigabytes in size
§ Analyse genomes, detect functional regions, compare across species

• Telecommunications
§ There are 3 Billion Telephone Calls in US each day, 30 Billion emails daily, 1

Billion SMS, IMs
§ Generate call quality stats, number/frequency of dropped calls

• Infeasible to store all this data in random access memory for processing.
• Solution – process the data as a stream – streaming algorithms

6

Basic setup
• Data stream: a sequence A = <a1, a2,..., am>, where the elements of the sequence

(called tokens) are drawn from the universe [n]� = {1, 2, ..., n}
• Aim - compute a function over the stream, eg: median, number of distinct

elements, longest increasing sequence, etc.

• Target Space complexity
§ Since m and n are “huge,” we want to make s (bits of random access memory) much

smaller than these
§ Specifically, we want s to be sublinear in both m and n.

§ The best would be to achieve

7

Quality of Algorithm

8

Streaming Models - Cash Register Model

• Time-Series Model
Only x-th update is processed

i.e., A[x] = c[x]

• Cash-Register Model: Arrivals-Only Streams
c[x] is always > 0
Typically, c[x]=1

• Example: <x, 3>, <y, 2>, <x, 2> encodes the arrival of
3 copies of item x,
2 copies of y,
2 copies of x.
Could represent, packets in a network, power usage

9

Streaming Models – Turnstile Model

• Turnstile Model: Arrivals and Departures
Most general streaming model
c[x] can be >0 or <0

• Example:
<x, 3>, <y,2>, <x, -2> encodes final state of <x, 1>, <y, 2>.

Can represent fluctuating quantities, or measure differences between two
distributions

10

Overview

• Introduction to Streaming Algorithms
• Sampling Techniques
• Sketching Techniques
• Break
• Counting Distinct Numbers
• Q&A

11

Sampling

• Idea
A small random sample S of the data is often enough to represent all the data

• Example
To compute median packet size
Sample some packets
Present median size of sampled packets as true median

• Challenge
Don’t know how long the stream is

12

Reservoir Sampling - Idea

• We have a reservoir that can contain k samples
• Initially accept every incoming sample till reservoir fills up
• After reservoir is full, accept sample 𝑘 + 𝑖 with probability
𝑘/𝑘 + 𝑖

• This means as long as our reservoir has space, we sample
every item

• Then we replace items in our reservoir with gradually
decreasing probability

13

Reservoir Sampling - Algorithm

Probability Calculations

15

Probability of any element to be included
at round t

Observation:
Hence even though at the beginning a lot of elements get replaced, with the
increase in the stream size, the probability of a new record evicting the old one
drops.

16

• Let us consider a time t > N.
• Let the number of elements that has arrived till now

be Nt

• Since at each round, all the elements have equal
probabilities, the probability of any element being
included in the sample is N/ Nt

Probability of any element to be chosen
for the final Sample

• Let the final stream be of size NT

• Claim:
The probability of any element to be in the sample is

N/ NT

17

Probability of survival of the initial N
elements

18

• Let us choose any particular element out of our 𝑁 initial elements.(𝑒𝑁 say)
• The eviction tournament starts after the arrival of the (𝑁 + 1)𝑠𝑡 element
• Probability that (𝑁 + 1)𝑠𝑡 element is chosen is 𝑁/(𝑁 + 1)
• Probability that if (𝑁 + 1)𝑠𝑡 element is chosen by evicting 𝑒𝑁 is 1/𝑁
• Hence probability of 𝑒𝑁 being evicted in this case is

(1/𝑁) 𝑋 (𝑁/(𝑁 + 1)) = 1/𝑁 + 1
• Probability that 𝑒𝑁 survives = 1 − (1/(𝑁 + 1)) = 𝑁/(𝑁 + 1)
• Similarly the case eN survives when (N+2)nd element arrives = (N+1)/ (N+2)
• The probability of eN surviving two new records

= (N/(N+1)) X ((N+1)/ (N+2))
• The probability of eN surviving till the end

= (N/(N+1)) X ((N+1)/ (N+2)) X ……. X ((NT -1)/ NT) = N/ NT

Probability of survival of the elements
after the initial N

19

• For the last arriving element to be selected, the probability is N/ NT
• For the element before the last, the probability of selection
• = N/ (NT -1)
• The probability of the last element replacing the last but one

element
= (N/ NT) X (1/N) = 1/ NT

• The probability that the last but one element survives = 1- 1/ NT =
(NT -1)/ NT

• The probability that the last but one survives till the end
= (N/(NT -1)) X (NT -1)/ NT = N/ NT

Similarly we can show that the probability of survival of any
element in the sample is N/ NT

Calculating the
Maximum Reservoir Size

20

Some Observations

21

• Initially the reservoir contains N elements
• Hence the size of the reservoir space is also N
• New records are added to the reservoir only when it will

replace any element present previously in the reservoir.
• If it is not replacing any element, then it is not added to the

reservoir space and we move on to the next element.
• However we find that when an element is evicted from the

reservoir, it still exists in the reservoir storage space.
• The position in the array that held its pointer, now holds

some other element’s pointer. But the element is still
present in the reservoir space

• Hence the total number of elements in the reservoir space
at any particular time ≥ N.

Maximum Size of the Reservoir

• The new elements are added to the reservoir with initial probability
N/N+1

• This probability steadily drops to N/ NT
• The statistical expectation of the size S of the reservoir space can

thus be calculated as
N + (N/N+1) + ……. + (N/ NT)

• Overestimating it with an integral the reservoir size can be
estimated as

!
!"#

!"#$𝑁 𝑑𝑥
𝑥

= 𝑁 ln(𝑁𝑇/𝑁)

• Thus, reservoir estimate is:
S = N[1 + ln (NT/N)]

• Hence we find that the space needed is O(N log(NT))

22

Priority Sample for Sliding Window

23

Reservoir Sampling Vs Sliding Window

• Works well when we have only inserts into a sample
• The first element in the data stream can be retained in

the final sample
• It does not consider the expiry of any record

Reservoir Sampling

Sliding Window
• Works well when we need to consider “timeliness” of the

data
• Data is considered to be expired after a certain time interval
• “Sliding window” in essence is such a random sample of

fixed size (say k) “moving” over the most recent elements in
the data stream

24

Types of Sliding Window

• Sequence-based
-- they are windows of size k moving over the

k mist recently arrived data. Example being
chain-sample algorithm

• Time-stamp based
-- windows of duration t consist of elements

whose arrival timestamp is within a time
interval t of the current time. Example being
Priority Sample for Sliding Window

25

Principles of the Priority Sampling algorithm

• As each element arrives, it is assigned a randomly-
chosen priority between 0 and 1

• An element is ineligible if there is another element
with a later timestamp and higher priority

• The element selected for inclusion in the sample is
thus the most active element with the highest
priority

• If we have a sample size of k, we generate k priorities
p1 , p2 , …… pk for each element. The element with
the highest pi is chosen for each i

26

Memory Usage for Priority Sampling

• We will be storing only the eligible elements in the
memory

• These elements can be made to form right spine of
the datastructure “treap”

• Therefore expected memory usage is O(log n), or O(k
log n) for samples of size k

Ref:
ØC. R. Argon and R.G. Seidel, Randomised Search Trees, Proc of the 30th IEEE
Symp on Foundations of Computer Science, 1989, pp 540-545
ØK. Mulmuley, Computational Geometry: An Introduction through Ramdomised
Algorithms, Prentice Hall

27

References
• Crash course - http://people.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf
• Notes

§ http://www.cs.mcgill.ca/~denis/notes09.pdf
§ http://www.cs.dartmouth.edu/~ac/Teach/CS49-Fall11/Notes/lecnotes.pdf

• http://en.wikipedia.org/wiki/Streaming_algorithm

• Reservoir Sampling
• Original Paper - http://www.mathcs.emory.edu/~cheung/papers/StreamDB/RandomSampling/1985-

Vitter-Random-sampling-with-reservior.pdf
• Notes and explanations

§ http://en.wikipedia.org/wiki/Reservoir_sampling
§ http://blogs.msdn.com/b/spt/archive/2008/02/05/reservoir-sampling.aspx

• Paul F Hultquist, William R Mahoney and R.G. Seidel, Reservoir Sampling, Dr Dobb’s Journal, Jan 2001, pp
189-190

• B Babcock, M Datar, R Motwani, SODA '02: Proceedings of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms, January 2002

• Zhang Longbo, Li Zhanhuai, Zhao Yiqiang, Yu Min, Zhang Yang , A priority random sampling algorithm for
time-based sliding windows over weighted streaming data , SAC '07: Proceedings of the 2007 ACM
symposium on Applied computing, May 2007

http://people.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf
http://www.cs.mcgill.ca/~denis/notes09.pdf
http://en.wikipedia.org/wiki/Streaming_algorithm
http://www.mathcs.emory.edu/~cheung/papers/StreamDB/RandomSampling/1985-Vitter-Random-sampling-with-reservior.pdf
http://en.wikipedia.org/wiki/Reservoir_sampling

Overview

• Introduction to Streaming Algorithms
• Sampling Techniques
• Sketching Techniques

Break
• Counting Distinct Numbers
• Q&A

Sketching

• Sketching is another general technique for
processing stream

Fig: Schematic view of linear sketching
30

How Sketching is different from Sampling

• Sample “sees” only those items which were
selected to be in the sample whereas the
sketch “sees” the entire input, but is restricted
to retain only a small summary of it.

• There are queries that can be approximated
well by sketches that are provably impossible
to compute from a sample.

31

Bloom Filter

32

Set Membership Task

• x: Element
• S: Set of elements
• Input: x, S
• Output:
– True (if x in S)
– False (if x not in S)

33

Bloom Filter

• Consists of
– vector of n Boolean values, initially all set false
– k independent hash functions, ℎ!, ℎ", … , ℎ#$",

each with range {0, 1, … , n-1}

F F F F F F F F F F

0 1 2 3 4 5 6 7 8 9

n = 10
34

Bloom Filter

• For each element s in S, the Boolean value
with positions ℎ! 𝑠 , ℎ" 𝑠 , … , ℎ#$" 𝑠 are
set true.

F T F F T F T F F F

0 1 2 3 4 5 6 7 8 9

𝑠"
ℎ$ 𝑠% = 1

ℎ% 𝑠% = 4
ℎ& 𝑠% = 6

k = 3
35

Bloom Filter

• For each element s in S, the Boolean value
with positions ℎ! 𝑠 , ℎ" 𝑠 , … , ℎ#$" 𝑠 are
set true.

F T F F T F T T F T

0 1 2 3 4 5 6 7 8 9

𝑠" 𝑠%ℎ$ 𝑠& = 4
ℎ% 𝑠& = 6 ℎ& 𝑠& = 9

k = 3
36

Error Types

• False Negative
– Never happens for Bloom Filter

• False Positive
– Answering “is there” on an element that is not in

the set

37

Probability of false positives

F T F T F F T F T F

A G

K
n = size of table
m = number of items
k = number of hash functions

Consider a particular bit 0 <= j <= n-1
Probability that ℎ' 𝑥 does not set bit j: 𝑃(!~* ℎ' 𝑥 ≠ 𝑗 = 1 − %

+

Probability that bit j is not set 𝑃("… (#~* 𝐵𝑖𝑡 𝑗 = 𝐹 ≤ 1 − %
+

-.

We know that, 1 − %
+

+
≈ %

/
= 𝑒0%

⇒ 1 − %
+

-.
= 1 − %

+

+ - ⁄. +

≈ 𝑒0% - ⁄. + = 𝑒0- ⁄. +

38

Probability of false positives

F T F T F F T F T F

A G

K
n = size of table
m = number of items
k = number of hash functions

Probability of false positive = 1 − 𝑒0 - ⁄. + -

Note: All k bits of new element are already set

False positive probability can be minimized by choosing k = log2 2 ⋅ ⁄𝑛 𝑚

Upper Bound Probability would be 1 − 𝑒0 345$ & ⋅(⁄+ .) ⁄⋅(. +) 345$ & ⋅ ⁄+ .

⇒ 0 ⋅ 5 345$ & ⋅ ⁄+ .

39

Bloom Filters: cons

• Small false positive probability
• No deletions
• Can not store associated objects

40

References

• Graham Cormode, Sketch Techniques for
Approximate Query Processing, ATT Research

• Michael Mitzenmacher, Compressed Bloom Filters,
Harvard University, Cambridge

41

http://people.cs.umass.edu/~mcgregor/711S12/sketches1.pdf
http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/cbf2.pdf

Count Min Sketch
• The Count-Min sketch is a simple technique to summarize large amounts of frequency data.

• It was introduced in 2003 by G. Cormode and S. Muthukrishnan, and since then has inspired many
applications, extensions and variations.

• It can be used for as the basis of many different stream mining tasks
– Join aggregates, range queries, frequency moments, etc.

• Fk of the stream as åi (fi)k – the k’th Frequency Moment, where fi be the frequency of item i in the
stream
– F0 : count 1 if fi ¹ 0 – number of distinct items
– F1 : length of stream, easy
– F2 : sum the squares of the frequencies – self join size
– Fk : related to statistical moments of the distribution
– F¥ : dominated by the largest fk, finds the largest frequency
– The space complexity of approximating the frequency moments by Alon, Matias, Szegedy in STOC 1996 studied

this problem
– They presented AMS sketch estimate the value of F2

• Estimate a[i] by taking

• Guarantees error less than F1 in size O(*)
– Probability of more error is less than

• Count Min Sketch gives best known time and space bound for Quantiles and Heavy Hitters problems in
the Turnstile Model.

úú
ù

êê
é

d
1lnúú

ù
êê
é
e
e

)](,[minˆ ihjcounta jji =

)1(d-
e

42

http://www.tau.ac.il/~nogaa/PDFS/amsz4.pdf

Count Min Sketch
– Model input data stream as vector

Where initially
– The 𝑡%& update is

))(),(,),(()(1 tatatata ni !!
"

=
iai "= 0)0(

),(tt ci
)1()(-= ¢¢ tata ii tii ¹¢"

tii ctata
tt

+-=)1()(

• A Count-Min (CM) Sketch with parameters is represented by a two-dimensional array (a
small summary of input) counts with width and depth .

Given parameters , set and . Each entry of the array is initially zero.

hash functions are chosen uniformly at random from a pairwise independent family which map vector
entry to [1…w]. i.e.

),(de
w],[]1,1[: wdcountcountd !

),(de úú
ù

êê
é=
e
ew úú

ù
êê
é=

d
1lnd

d
}1{}1{:,,1 wnhh d !!! ®

� Update procedure :

43

Count Min Sketch Algorithm

44

Example

45

• point query
approx.

ia)(iQ

• range queries),(rlQ
approx.

å
=

r

li
ia

• inner product queries),(baQ
!!

approx.

å
=

=×
n

i
iibaba

1

!!

Approximate Query Answering

46

)(iQ)](,[minˆ ihjcounta jji =

• Non-negative case ()

Theorem 1 ii aa ˆ£ de £+>]ˆ[
1

aaaP ii
!

0)(>ta
ti

Point Query

PROOF : Introduce indicator variables

=kjiI ,, {))()(()(khihki jj =Ù¹1 if

0 otherwise

ew
khihIE jjkji

e
=£==

1)]()(Pr[)(,,

Define the variable å
=

=
n

k
kkjiji aIX

1
,,,

By construction, jiij Xaihjcount ,)](,[+= ij aihjcount ³)](,[min

47

For the other direction, observe that

])](,[.Pr[]ˆPr[
11

aaihjcountjaaa ijii
!! ee +>"=+>

].Pr[
1, aaXaj ijii
!e+>+"=

d£<>"= -d
jiji eXeEXj)](.Pr[,,

Markov inequality

0)(]Pr[>"£³ t
t
XEtX

■

åå
==

£=÷
ø

ö
ç
è

æ
=

n

k
kjik

n

k
kkjiji a

e
IEaaIEXE

1
1,,

1
,,,)()(!e

Analysis

48

• Dyadic range:]2)1(12[yy xx ++ ! for parameters yx,

• range query dyadic range queriesn2log2 single point query
(at most)

• For each set of dyadic ranges of length
a sketch is kept

n2log CM Sketches

1log0,2 2 -= nyy
!

Range Query

Pose that many point queries
to the sketches

),(rlQ

Compute the dyadic ranges (at most)
which canonically cover the range

Sum of queries

],[ˆ rla=

n2log2

SELECT COUNT (*) FROM D
WHERE D.val >=l AND D.val <=h

49

Range Sum Example

• AMS approach to this, the error scales proportional to F2(𝑓) F2(𝑓′)
So here the error grows proportional to the square root of the length of the range.

• Using the Count-Min sketch approach, the error is proportional to F1(h−l +1), i.e. it
grows proportional to the length of the range

• Using the Count-Min sketch to approximate counts, the accuracy of the answer is
proportional to (F1 log n)/w. For large enough ranges, this is an exponential
improvement in the error.

e.g. To estimate the range sum of [2…8], it is decomposed
into the ranges [2…2], [3…4], [5…8], and the sum of the
corresponding nodes in the binary tree as the estimate.

50

Theorem 4],[ˆ],[rlarla £
de £+>]log2],[],[ˆPr[

1
anrlarla !

Proof : Theorem 1
ii aa ˆ£

],[ˆ],[rlarla £

E(Σ error for each estimator) nlog2= E(error for each estimator)

■

1
log2 a

e
n !e

£

d£<>- -deanrlarla]log2],[],[ˆPr[
1

!

51

Set å
=

Ù

*=×
w

k
baj kjcountkjcountba

1
],[],[)(!!

!!

),(baQ
!!

jj
baba

ÙÙ

×=×)(min)(
!!!!

Inner Product Query

Theorem 3
Ù

×£×)()(baba
!!!!

de £+×>×
Ù

])(Pr[
11

bababa
!!!!!!

Analysis Time to produce the estimate

Space used

Time for updates

)1log1(
de

O

)1log1(
de

O

)1(log
d

O

The application of inner-product computation to Join size estimationApplication

Corollary The Join size of two relations on a particular attribute can be approximated
up to with probability by keeping space

11
ba
!!e d-1 ÷

ø
ö

ç
è
æ

de
1log1O

52

Resources
Applications

– Compressed Sensing
– Networking
– Databases
– Eclectics (NLP, Security, Machine Learning, ...)

Details
– Extensions of the Count-Min Sketch
– Implementations and code

List of open problems in streaming
– Open problems in streaming

53

https://sites.google.com/site/countminsketch/compressed-sensing
https://sites.google.com/site/countminsketch/networking
https://sites.google.com/site/countminsketch/databases
https://sites.google.com/site/countminsketch/cm-eclectics
https://sites.google.com/site/countminsketch/extensions
https://sites.google.com/site/countminsketch/code
http://people.cs.umass.edu/~mcgregor/papers/07-openproblems.pdf

References for Count Min Sketch
• Basics

– G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. LATIN 2004, J. Algorithm 58-75 (2005) .
– G. Cormode and S. Muthukrishnan. Summarizing and mining skewed data streams. SDM 2005.
– G. Cormode and S. Muthukrishnan. Approximating data with the count-min data structure. IEEE Software, (2012).

• Journal
– Alon, Noga; Matias, Yossi; Szegedy, Mario (1999), "The space complexity of approximating the frequency moments", Journal of Computer and System

Sciences 58 (1): 137–147.

• Surveys
– Network Applications of Bloom Filters: A Survey. Andrei Broder and Michael Mitzenmacher. Internet Mathematics Volume 1, Number 4 (2003), 485-509.
– Article from "Encyclopedia of Database Systems" on Count-Min Sketch Graham Cormode 09. 5 page summary of the sketch and its applications.
– A survey of synopsis construction in data streams. Charu Aggarwal.

• Coverage in Textbooks
– Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Michael Mitzenmacher, Eli Upfal. Cambridge University Press,

2005. Describes Count-Min sketch over pages 329--332
– Internet Measurement: Infrastructure, Traffic and Applications. Mark Crovella, Bala Krishnamurthy. Wiley 2006.

• Tutorials
– Advanced statistical approaches for network anomaly detection. Christian Callegari. ICIMP 10 Tutorial.
– Video explaining sketch data structures with emphasis on CM sketch Graham Cormode.

• Lectures
– Data Stream Algorithms. Notes from a series of lectures by S. Muthu Muthukrishnan.
– Data Stream Algorithms. Lecture notes, Chapter 3. Amit Chakrabarti. Fall 09.
– Probabilistic inequalities and CM sketch. John Byers. Fall 2007.

54

https://sites.google.com/site/countminsketch/cm-latin.pdf?attredirects=0
https://sites.google.com/site/countminsketch/cmz-sdm.pdf?attredirects=0
http://dimacs.rutgers.edu/~graham/pubs/papers/cmsoft.pdf
http://en.wikipedia.org/wiki/Noga_Alon
http://en.wikipedia.org/wiki/Mario_Szegedy
http://www.tau.ac.il/~nogaa/PDFS/amsz4.pdf
http://en.wikipedia.org/wiki/Journal_of_Computer_and_System_Sciences
http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/BloomFilterSurvey.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/cmencyc.pdf
http://www.charuaggarwal.net/synopsis.pdf
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521835402
http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP001029.html
http://www.iaria.org/conferences2010/filesICIMP10/ICIMP_Tutorial_Christian_Callegari.pdf
http://www.cs.bris.ac.uk/probtcs08/videos/cormode2.mp4
http://www.cs.mcgill.ca/~denis/notes09.pdf
http://www.cs.dartmouth.edu/~ac/Teach/CS85-Fall09/Notes/lecnotes.pdf
http://www.cs.bu.edu/fac/byers/courses/559/F07/SCRIBE/scribe-notes-10-3.pdf

Overview

• Introduction to Streaming Algorithms
• Sampling Techniques
• Sketching Techniques

Break
• Counting Distinct Numbers
• Q&A

Overview

• Introduction to Streaming Algorithms
• Sampling Techniques
• Sketching Techniques

Break
• Counting Distinct Numbers
• Q&A

57

Stream Model of Computation

1
0
1

1
1
0

1

0
0
1

1

Increasing tim
e

Main Memory
(Synopsis Data Structures)

Data Stream

Memory: poly(1/ε, log N)

Query/Update Time: poly(1/ε, log N)

N: # items so far, or window size

ε: error parameter

Counting Distinct Elements -Motivation

• Motivation: Various applications

40 Gbps

8MB
SRAM

• Port Scanning
• DDoS Attacks
• Traffic

Accounting
• Traffic

Engineering
• Quality of

Service

IP1 IP2 IP1 IP3 IP1 IP2

Packet Filtering:
No of Packets – 6 (n)
No of Distinct Packets – 3 (m) 58

Counting Distinct Elements - Problem

• Problem: Given a stream 𝑋 =< 𝑥1, 𝑥2, … … . , 𝑥𝑚 >∈ 𝑛 𝑚 of
values. Let 𝐹0 be the number of distinct elements in 𝑋. Find
𝐹0 under the constraints for algorithms on data streams.

• Constraints:
– Elements in stream are presented sequentially and single pass is

allowed.
– Limited space to operate. Expected space complexity
𝑂(log(min(𝑛,𝑚)) or smaller.

– Estimation Guarantees : With Error 𝜺 < 𝟏 and high proability

59

60

Naïve Approach

• Counter C(i) for each domain value i in [n]
• Initialize counters C(i)ß 0
• Scan X incrementing appropriate counters
• Solution: Distinct Values = Number of C(i) > 0
• Problem

– Memory size M << n
– Space O(n) – possibly n >> m

(e.g., when counting distinct words in web crawl)
– Time O(n)

Algorithm History

• Flajolet and Martin introduced problem
– O(log n) space for fixed ε in random oracle model

• Alon, Matias and Szegedy
– O(log n) space/update time for fixed ε with no oracle

• Gibbons and Tirthapura
– O(ε-2 log n) space and O(ε-2) update time

• Bar-Yossef et al
– O(ε-2 log n) space and O(log 1/ε) update time
– O(ε-2 log log n + log n) space and O(ε-2) update time, essentially
– Similar space bound also obtained by Flajolet et al in the random

oracle model
• Kane, Nelson and Woodruff

– O(ε-2 + log n) space and O(1) update and reporting time
– All time complexities are in unit-cost RAM model

61

Flajolet-Martin Approach

• Hash function h: map n elements to 𝐿 = log2𝑛 bits (uniformly
distributed over the set of binary strings of length L)

• For y any non-negative integer, define bit(y, k) = kth bit in the binary
representation of y

𝑦 = ∑"#$ 𝑏𝑖𝑡 𝑦, 𝑘 . 2"

𝜌 𝑦 = min
+,-

𝑏𝑖𝑡 𝑦, 𝑘 ≠ 0 if y >0

𝜌 𝑦 = 𝐿 if y = 0

𝜌(𝑦) represents the position of the least significant –
bit in the binary representation of y

62

Flajolet-Martin Approach

for (i:=0 to L-1) do BITMAP[i]:=0;
for (all x in M) do

begin
index:=ρ(h(x));
if BITMAP[index]=0 then

BITMAP[index]:=1;
end

R := the largest index in BITMAP whose value equals to 1
Estimate := 2R

63

Examples of bit(y, k) & ρ(y)

• y=10=(1010)2
– bit(y,0)=0 bit(y,1)=1

bit(y,2)=0 bit(y,3)=1
–

int y binary
format

ρ(y)

0 0000 4 (=L)
1 0001 0
2 0010 1
3 0011 0
4 0100 2
5 0101 0
6 0110 1
7 0111 0
8 1000 3

k

k
kybity 2),(

0
×=å

³

64

Flajolet-Martin Approach – Estimate Example

• Part of a Unix manual file M of size 26692 lines is
loaded of which 16405 are distinct.

• If the final BITMAP looks like this:
0000,0000,1100,1111,1111,1111

• The left most 1 appears at position 15
• We say there are around 215 distinct elements in the

stream. But 214 = 16384.
• Estimate 𝐹0 ≈ log% 𝜑𝑛 where 𝜑 = 0.77351 is the

correction factor.

65

66

Flajolet-Martin* Approach

• Pick a hash function h that maps each of the
n elements to at least log2n bits.

• For each stream element a, let r (a) be the
number of trailing 0’s in h (a).

• Record R = the maximum r (a) seen.
• Estimate = 2R.

* Really based on a variant due to AMS (Alon, Matias, and Szegedy)

67

Why It Works

• The probability that a given h (a) ends in at
least r 0’s is 2-r.

• If there are m different elements, the
probability that R≥ r is 1 – (1 - 2-r)m.

Probability any
given h(a) ends in
fewer than r 0’s.

Prob. all h(a)’s
end in fewer than
r 0’s.

68

Why It Works (2)

• Since 2-r is small, 1 - (1-2-r)m≈ 1 - e -m2 .
• If 2r >> m, 1 - (1 - 2-r)m≈ 1 - (1 - m2-r)
≈m /2r ≈ 0.

• If 2r << m, 1 - (1 - 2-r)m≈ 1 - e -m2 ≈ 1.
• Thus, 2R will almost always be around m.

-r

-r

First 2 terms of the
Taylor expansion of e x

Algorithm History

• Flajolet and Martin introduced problem
– O(log n) space for fixed ε in random oracle model

• Alon, Matias and Szegedy
– O(log n) space/update time for fixed ε with no oracle

• Gibbons and Tirthapura
– O(ε-2 log n) space and O(ε-2) update time

• Bar-Yossef et al
– O(ε-2 log n) space and O(log 1/ε) update time
– O(ε-2 log log n + log n) space and O(ε-2) update time, essentially
– Similar space bound also obtained by Flajolet et al in the random

oracle model
• Kane, Nelson and Woodruff

– O(ε-2 + log n) space and O(1) update and reporting time
– All time complexities are in unit-cost RAM model

69

An Optimal Algorithm for the
Distinct Elements Problem

Daniel M. Kane, Jelani Nelson, David P. Woodruff

70

Overview

• Computes a (1 ± 𝜀) approximation using an
optimal Θ(ε-2 + log n) bits of space with 2/3
success probability, where 0 < ε < 1 is given

• Process each stream update in Θ(1) worst-
case time

71

Foundation technique 1

• If it is known that R=Θ(F0) then (1 ± 𝜀)
estimation becomes easier

• Run a constant-factor estimation at the end of
the stream to achieve R before the main
estimation algorithm à ROUGH ESTIMATOR

72

Foundation technique 2

• Balls and Bins Approach: use truly random function f to
map A balls into K bins and count the number of non-
empty bins X

𝐸 𝑋 = 𝐾(1 − 1 −
1
𝐾

!

)

• Instead of using f, use Ο
"#$./

"#$"#$./
- wise independent

mapping g then the expected number of non-empty bins
under g is the same as under f, up to a factor of (1 ± ε)

73

Rough Estimator (RE)

• With probability 1 - o(1), the output ?𝐹! of RE satisfies
𝐹! 𝑡 ≤ ?𝐹! 𝑡 ≤ 8𝐹!(𝑡)

for every t ∈ [m] with 𝐹!(𝑡) ≥ 𝐾"# simultaneously
• The space used is O(log(n))
• Can be implemented with O(1) worst-case update and reporting times

74

Main Algorithm(1)

• The algorithm outputs a value which is 1 ± 𝜀 𝐹!
with probability at least 11/20 as long as 𝐹! ≥

&
'% 75

Main Algorithm (2)

• A: keeps track of the amount of storage
required to store all the 𝐶!

• est: is such that 2"#$ is a Θ(1)-approximation
to 𝐹%, and is obtained via Rough Estimator

• b: is such that we expect 𝐹%(𝑡)/2& to be Θ(𝐾)
at all points t in the stream.

76

Main Algorithm (3)

• Subsample the stream at geometrically decreasing rates
• Perform balls and bins at each level
• When i appears in stream, put a ball in cell [g(i), h(i)]
• For each column, store the largest row containing a ball
• Estimate based on these numbers

77

Prove Space Complexity

• The hash functions h1, h2 each require Ο(log 𝑛) bits to store
• The hash function h3 takes Ο(𝑘𝑙𝑜𝑔𝐾)= O(𝑙𝑜𝑔0(1

2
)) bits to store

• The value b takes Ο(𝑙𝑜𝑔𝑙𝑜𝑔𝑛) bits
• The value A never exceeds the total number of bits to store all

counters, which is Ο(𝜀30𝑙𝑜𝑔𝑛), and thus A can be represented in
Ο(log 1

2
+ 𝑙𝑜𝑔𝑙𝑜𝑔𝑛) bits

• The counters 𝐶4 never in total consume more than Ο(1
29
) bits by

construction, since we output FAIL if they ever would
• The Rough Estimator and est use O(log(n)) bits

à Total space complexity: Ο(𝜀30 + 𝑙𝑜𝑔𝑛)

78

Prove Time Complexity

• Use high-performance hash functions (Siegel, Pagh and Pagh) which can
be evaluated in O(1) time

• Store column array in Variable-Length Array (Blandford and Blelloch). In
column array, store offset from the base row and not absolute index à
giving O(1) update time for a fixed base level

• Occasionally we need to update the base level and decrement offsets by 1
– Show base level only increases after Θ(ε-2) updates, so can spread this work

across these updates, so O(1) worst-case update time (Use deamortization)
– Copy the data structure, use it for performing this additional work so it

doesn’t interfere with reporting the correct answer
– When base level changes, switch to copy

• For reporting time, we can maintain T during updates, and thus the
reporting time is the time to compute a natural logarithm, which can be
made O(1) via a small lookup table

79

References

• Blandford, Blelloch. Compact dictionaries for variable-
length keys and data with applications. ACM Transactions
on Algorithms. 2008.

• D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal
algorithm for the distinct elements problem. In Proc. 29th
ACM Symposium on Principles of Database Systems,
pages 41-52. 2010.

• Pagh, Pagh. Uniform Hashing in Constant Time and
Optimal Space. SICOMP 2008.

• Siegel. On Universal Classes of Uniformly Random
Constant-Time Hash Functions. SICOMP 2004.

80

Summary
• We introduced Streaming Algorithms
• Sampling Algorithms
– Reservoir Sampling
– Priority Sampling

• Sketch Algorithms
– Bloom Filter
– Count-Min Sketch

• Counting Distinct Elements
– Flajolet-Martin Algorithm
– Optimal Algorithm

81

Q & A

82

