Streaming Algorithms

NARMADA SAMBATURU
SUBHASREE BASU
ALOK KUMAR KESHRI
RAJIV RATN SHAH
VENKATA KIRAN YEDUGUNDLA
VU VINH AN

Overview

- Introduction to Streaming Algorithms
- Sampling Techniques
- Sketching Techniques

Break

- Counting Distinct Numbers
- Q\&A

Overview

- Introduction to Streaming Algorithms
- Sampling Techniques
- Sketching Techniques

Break

- Counting Distinct Numbers
- Q\&A

What are Streaming algorithms?

- Algorithms for processing data streams
- Input is presented as a sequence of items
- Can be examined in only a few passes (typically just one)
- Limited working memory

Same as Online algorithms?

- Similarities
- decisions to be made before all data are available
- limited memory
- Differences
- Streaming algorithms - can defer action until a group of points arrive
- Online algorithms - take action as soon as each point arrives

Why Streaming algorithms

- Networks
- Up to 1 Billion packets per hour per router. Each ISP has hundreds of routers
- Spot faults, drops, failures
- Genomics
- Whole genome sequences for many species now available, each megabytes to gigabytes in size
- Analyse genomes, detect functional regions, compare across species
- Telecommunications
- There are 3 Billion Telephone Calls in US each day, 30 Billion emails daily, 1 Billion SMS, IMs
- Generate call quality stats, number/frequency of dropped calls
- Infeasible to store all this data in random access memory for processing.
- Solution - process the data as a stream - streaming algorithms

Basic setup

- Data stream: a sequence $A=<a_{1}, a_{2}, \ldots, a_{m}>$, where the elements of the sequence (called tokens) are drawn from the universe $[\mathrm{n}]=\{1,2, \ldots, n\}$
- Aim - compute a function over the stream, eg: median, number of distinct elements, longest increasing sequence, etc.
- Target Space complexity
- Since m and n are "huge," we want to make s (bits of random access memory) much smaller than these
- Specifically, we want s to be sublinear in both m and n .

$$
s=o(\min \{m, n\})
$$

- The best would be to achieve

$$
s=O(\log m+\log n)
$$

Quality of Algorithm

- Let $\mathcal{A}(\sigma)=$ output of a randomized streaming algorithm \mathcal{A} on input σ
- Let $\phi=$ function that \mathcal{A} is supposed to compute
- We say the algorithm (ε, δ)-approximates ϕ if

$$
\operatorname{Pr}\left[\left|\frac{\mathcal{A}(\sigma)}{\phi(\sigma)}-1\right|>\varepsilon\right] \leq \delta
$$

- This is sometimes too strong a condition if the value of $\phi(\sigma)$ is close to 0 . Then we relax the rule to expect

$$
\operatorname{Pr}[|\mathcal{A}(\sigma)-\phi(\sigma)|>\varepsilon] \leq \delta
$$

Streaming Models - Cash Register Model

- Time-Series Model

Only x-th update is processed

$$
\text { i.e., } A[x]=c[x]
$$

- Cash-Register Model: Arrivals-Only Streams
$c[x]$ is always >0
Typically, c[x]=1
- Example: <x, 3>, <y, 2>, <x, 2> encodes the arrival of 3 copies of item x,
2 copies of y,
2 copies of x.

Could represent, packets in a network, power usage

Streaming Models - Turnstile Model

- Turnstile Model: Arrivals and Departures

Most general streaming model
$\mathrm{c}[\mathrm{x}]$ can be >0 or <0

- Example:
$\langle x, 3\rangle,\langle y, 2\rangle,<x,-2>$ encodes final state of $\langle x, 1\rangle,\langle y, 2\rangle$.
Can represent fluctuating quantities, or measure differences between two distributions

Overview

- Introduction to Streaming Algorithms
- Sampling Techniques
- Sketching Techniques
- Break
- Counting Distinct Numbers
- Q\&A

Sampling

- Idea

A small random sample S of the data is often enough to represent all the data

- Example

To compute median packet size
Sample some packets
Present median size of sampled packets as true median

- Challenge

Don't know how long the stream is

Reservoir Sampling - Idea

- We have a reservoir that can contain k samples
- Initially accept every incoming sample till reservoir fills up
- After reservoir is full, accept sample $k+i$ with probability $k / k+i$
- This means as long as our reservoir has space, we sample every item
- Then we replace items in our reservoir with gradually decreasing probability

Reservoir Sampling - Algorithm

```
array R[k]; // result
integer i, j;
// fill the reservoir array
for each i in 1 to k do
    R[i] := S[i]
done;
// replace elements with gradually decreasing probability
for each i in k+1 to length(S) do
    j := random(1, i); // important: inclusive range
    if j <= k then
            R[j] := S[i]
    fi
done
```


Probability Calculations

Probability of any element to be included at round t

- Let us consider a time $\mathrm{t}>\mathrm{N}$.
- Let the number of elements that has arrived till now be N_{t}
- Since at each round, all the elements have equal probabilities, the probability of any element being included in the sample is $\mathrm{N} / \mathrm{N}_{\mathrm{t}}$

Observation:
Hence even though at the beginning a lot of elements get replaced, with the increase in the stream size, the probability of a new record evicting the old one drops.

Probability of any element to be chosen for the final Sample

- Let the final stream be of size N_{T}
- Claim:

The probability of any element to be in the sample is N / N_{T}

Probability of survival of the initial \mathbf{N} elements

- Let us choose any particular element out of our N initial elements.(e_{N} say)
- The eviction tournament starts after the arrival of the $(N+1)^{s t}$ element
- Probability that $(N+1)^{s t}$ element is chosen is $N /(N+1)$
- Probability that if $(N+1)^{s t}$ element is chosen by evicting e_{N} is $1 / N$
- Hence probability of e_{N} being evicted in this case is
$(1 / N) X(N /(N+1))=1 / N+1$
- Probability that e_{N} survives $=1-(1 /(N+1))=N /(N+1)$
- Similarly the case e_{N} survives when $(\mathrm{N}+2)^{\text {nd }}$ element arrives $=(\mathrm{N}+1) /(\mathrm{N}+2)$
- The probability of e_{N} surviving two new records

$$
=(N /(N+1)) \times((N+1) /(N+2))
$$

- The probability of e_{N} surviving till the end

$$
=(N /(N+1)) \times((N+1) /(N+2)) X \ldots \ldots . . X\left(\left(N_{T}-1\right) / N_{T}\right)=N / N_{T}
$$

Probability of survival of the elements after the initial \mathbf{N}

- For the last arriving element to be selected, the probability is $\mathrm{N} / \mathrm{N}_{\mathrm{T}}$
- For the element before the last, the probability of selection
- $=\mathrm{N} /\left(\mathrm{N}_{\mathrm{T}}-1\right)$
- The probability of the last element replacing the last but one element
$=\left(N / N_{T}\right) \times(1 / N)=1 / N_{T}$
- The probability that the last but one element survives $=1-1 / N_{T}=$ $\left(N_{T}-1\right) / N_{T}$
- The probability that the last but one survives till the end
$=\left(N /\left(N_{T}-1\right)\right) X\left(N_{T}-1\right) / N_{T}=N / N_{T}$

Similarly we can show that the probability of survival of any element in the sample is $\mathrm{N} / \mathrm{N}_{\mathrm{T}}$

Calculating the Maximum Reservoir Size

Some Observations

- Initially the reservoir contains N elements
- Hence the size of the reservoir space is also N
- New records are added to the reservoir only when it will replace any element present previously in the reservoir.
- If it is not replacing any element, then it is not added to the reservoir space and we move on to the next element.
- However we find that when an element is evicted from the reservoir, it still exists in the reservoir storage space.
- The position in the array that held its pointer, now holds some other element's pointer. But the element is still present in the reservoir space
- Hence the total number of elements in the reservoir space at any particular time $\geq \mathrm{N}$.

Maximum Size of the Reservoir

- The new elements are added to the reservoir with initial probability N/N+1
- This probability steadily drops to $\mathrm{N} / \mathrm{N}_{\mathrm{T}}$
- The statistical expectation of the size S of the reservoir space can thus be calculated as

$$
N+(N / N+1)+\ldots \ldots .+\left(N / N_{T}\right)
$$

- Overestimating it with an integral the reservoir size can be estimated as

$$
\int_{x=N}^{x=N T} \frac{N d x}{x}=N \ln (N T / N)
$$

- Thus, reservoir estimate is:

$$
\mathrm{S}=\mathrm{N}\left[1+\ln \left(\mathrm{N}_{\top} / \mathrm{N}\right)\right]
$$

- Hence we find that the space needed is $\mathrm{O}\left(\mathrm{N} \log \left(\mathrm{N}_{\mathrm{T}}\right)\right)$

Priority Sample for Sliding Window

Reservoir Sampling Vs Sliding Window

Reservoir Sampling

- Works well when we have only inserts into a sample
- The first element in the data stream can be retained in the final sample
- It does not consider the expiry of any record

Sliding Window

- Works well when we need to consider "timeliness" of the data
- Data is considered to be expired after a certain time interval
- "Sliding window" in essence is such a random sample of fixed size (say k) "moving" over the most recent elements in the data stream

Types of Sliding Window

- Sequence-based
-- they are windows of size k moving over the k mist recently arrived data. Example being chain-sample algorithm
- Time-stamp based
-- windows of duration t consist of elements whose arrival timestamp is within a time interval t of the current time. Example being Priority Sample for Sliding Window

Principles of the Priority Sampling algorithm

- As each element arrives, it is assigned a randomlychosen priority between 0 and 1
- An element is ineligible if there is another element with a later timestamp and higher priority
- The element selected for inclusion in the sample is thus the most active element with the highest priority
- If we have a sample size of k, we generate k priorities $p_{1}, p_{2}, \ldots \ldots p_{k}$ for each element. The element with the highest p_{i} is chosen for each i

Memory Usage for Priority Sampling

- We will be storing only the eligible elements in the memory
- These elements can be made to form right spine of the datastructure "treap"
- Therefore expected memory usage is $\mathrm{O}(\log \mathrm{n})$, or $\mathrm{O}(\mathrm{k}$ $\log \mathrm{n}$) for samples of size k

Ref:
$>C$. R. Argon and R.G. Seidel, Randomised Search Trees, Proc of the $30^{\text {th }}$ IEEE
Symp on Foundations of Computer Science, 1989, pp 540-545
$>$ K. Mulmuley, Computational Geometry: An Introduction through Ramdomised Algorithms, Prentice Hall

References

- Crash course - http://people.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf
- Notes
- http://www.cs.mcsill.ca/~denis/notes09.pdf
- http://www.cs.dartmouth.edu/~ac/Teach/CS49-Fall11/Notes/lecnotes.pdf
- http://en.wikipedia.org/wiki/Streaming algorithm
- Reservoir Sampling
- Original Paper - http://www.mathcs.emory.edu/~cheung/papers/StreamDB/RandomSampling/1985-Vitter-Random-sampling-with-reservior.pdf
- Notes and explanations
- http://en.wikipedia.org/wiki/Reservoir sampling
- http://blogs.msdn.com/b/spt/archive/2008/02/05/reservoir-sampling.aspx
- Paul F Hultquist, William R Mahoney and R.G. Seidel, Reservoir Sampling, Dr Dobb’s Journal, Jan 2001, pp 189-190
- B Babcock, M Datar, R Motwani, SODA '02: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, January 2002
- Zhang Longbo, Li Zhanhuai, Zhao Yiqiang, Yu Min, Zhang Yang, A priority random sampling algorithm for time-based sliding windows over weighted streaming data, SAC '07: Proceedings of the 2007 ACM symposium on Applied computing, May 2007

Overview

- Introduction to Streaming Algorithms
- Sampling Techniques
- Sketching Techniques

Break

- Counting Distinct Numbers
- Q\&A

Sketching

- Sketching is another general technique for processing stream

Fig: Schematic view of linear sketching

How Sketching is different from Sampling

- Sample "sees" only those items which were selected to be in the sample whereas the sketch "sees" the entire input, but is restricted to retain only a small summary of it.
- There are queries that can be approximated well by sketches that are provably impossible to compute from a sample.

Bloom Filter

Set Membership Task

- x: Element
- S: Set of elements
- Input: x, S
- Output:
- True (if x in S)
- False (if x not in S)

Bloom Filter

- Consists of
- vector of n Boolean values, initially all set false
- k independent hash functions, $h_{0}, h_{1}, \ldots, h_{\mathrm{k}-1}$,
each with range $\{0,1, \ldots, n-1\}$

F	F	F	F	F	F	F	F	F	F
0	1	2	3	4	5	6	7	8	9

Bloom Filter

- For each element s in S, the Boolean value with positions $h_{0}(s), h_{1}(s), \ldots, h_{k-1}(s)$ are set true.

$k=3$

Bloom Filter

- For each element s in S, the Boolean value with positions $h_{0}(s), h_{1}(s), \ldots, h_{k-1}(s)$ are set true.

$k=3$

Error Types

- False Negative
- Never happens for Bloom Filter
- False Positive
- Answering "is there" on an element that is not in the set

Probability of false positives

Consider a particular bit $0<=\mathrm{j}<=\mathrm{n}-1$
Probability that $h_{i}(x)$ does not set bit j: $P_{h_{i} \sim H}\left(h_{i}(x) \neq j\right)=\left(1-\frac{1}{n}\right)$
Probability that bit j is not set $P_{h_{1} \ldots h_{\mathrm{k}} \sim H}(\operatorname{Bit}(j)=F) \leq\left(1-\frac{1}{n}\right)^{k m}$
We know that, $\left(1-\frac{1}{n}\right)^{n} \approx \frac{1}{\mathrm{e}}=e^{-1}$
$\Rightarrow\left(1-\frac{1}{n}\right)^{k m}=\left(\left(1-\frac{1}{n}\right)^{n}\right)^{k m / n} \approx\left(e^{-1}\right)^{k m / n}=e^{-k m / n}$

Probability of false positives

Probability of false positive $=\left(1-e^{-k m / n}\right)^{k}$
Note: All k bits of new element are already set

False positive probability can be minimized by choosing $\mathrm{k}=\log _{e}(2) \cdot n / m$ Upper Bound Probability would be $\left(1-e^{-\log _{e}(2) \cdot(n / m) \cdot(m / n)}\right)^{\log _{e}(2) \cdot n / m}$ $\Rightarrow(0 \cdot 5)^{\log _{e}(2) \cdot n / m}$

Bloom Filters: cons

- Small false positive probability
- No deletions
- Can not store associated objects

References

- Graham Cormode, Sketch Techniques for Approximate Query Processing, ATT Research
- Michael Mitzenmacher, Compressed Bloom Filters, Harvard University, Cambridge

Count Min Sketch

- The Count-Min sketch is a simple technique to summarize large amounts of frequency data.
- It was introduced in 2003 by G. Cormode and S. Muthukrishnan, and since then has inspired many applications, extensions and variations.
- It can be used for as the basis of many different stream mining tasks
- Join aggregates, range queries, frequency moments, etc.
- $\quad F_{k}$ of the stream as $\sum_{i}\left(f_{i}\right)^{k}$ - the k^{\prime} th Frequency Moment, where f_{i} be the frequency of item i in the stream
- F_{0} : count 1 if $f_{i} \neq 0$ - number of distinct items
- F_{1} : length of stream, easy
- $\quad F_{2}$: sum the squares of the frequencies - self join size
- F_{k} : related to statistical moments of the distribution
- $\quad F_{\infty}$: dominated by the largest f_{k}, finds the largest frequency
- The space complexity of approximating the frequency moments by Alon, Matias, Szegedy in STOC 1996 studied this problem
- They presented AMS sketch estimate the value of F_{2}
- Estimate a[i] by taking $\hat{a}_{i}=\min _{j} \operatorname{count}\left[j, h_{j}(i)\right]$
- Guarantees error less than $\boldsymbol{\mathcal { F }} 1$ in size $\mathrm{O}\left(\left[\frac{e}{\varepsilon}\right] \psi\left[\ln \frac{1}{\delta}\right)\right.$
- Probability of more error is less than $(1-\delta)$
- Count Min Sketch gives best known time and space bound for Quantiles and Heavy Hitters problems in the Turnstile Model.

Count Min Sketch

- Model input data stream as vector

Where initially $a_{i}(0)=0 \quad \forall i$

- The $t^{t h}$ update is $\left(i_{t}, c_{t}\right)$

$$
\begin{aligned}
& a_{i^{\prime}}(t)=a_{i^{\prime}}(t-1) \quad \forall i^{\prime} \neq i_{t} \\
& a_{i_{t}}(t)=a_{i_{t}}(t-1)+c_{t}
\end{aligned}
$$

- A Count-Min (CM) Sketch with parameters (ε, δ) is represented by a two-dimensional array (a small summary of input) counts with width w and depth $d: \operatorname{count}[1,1] \ldots \operatorname{count}[d, w]$
Given parameters (ε, δ), set $w=\left\lceil\frac{e}{\varepsilon}\right\rceil$ and $d=\left\lceil\ln \frac{1}{\delta}\right\rceil$ Each entry of the array is initially zero.
d hash functions are chosen uniformly at random from a pairwise independent family which map vector entry to [1...w]. i.e. $h_{1}, \ldots, h_{d}:\{1 \ldots n\} \rightarrow\{1 \ldots w\}$

$$
\text { When } \quad\left(i_{t}, c_{t}\right) \text { arrives, set } \quad \forall 1 \leq j \leq d
$$

$$
\operatorname{count}\left[j, h_{j}\left(i_{t}\right)\right] \leftarrow \operatorname{count}\left[j, h_{j}\left(i_{t}\right)\right]+c_{t}
$$

Update procedure :

Count Min Sketch Algorithm

```
Initialize
\(1 \quad t \leftarrow \log (1 / \delta)\);
\(2 \quad k \leftarrow 2 / \varepsilon\);
\(3 \quad C[1 \ldots t][1 \ldots k] \leftarrow \overrightarrow{0}\);
4 Pick \(t\) independent hash functions \(h_{1}, h_{2}, \ldots, h_{t}:[n] \rightarrow[k]\), each from a 2-universal family;
    Process \((j, c)\) :
    for \(i=1\) to \(t\) do
    \(C[i]\left[h_{i}(j)\right] \leftarrow C[i]\left[h_{i}(j)\right]+c ;\)
Output : On query \(a\), report \(\hat{f_{a}}=\min _{1 \leq i \leq t} C[i]\left[h_{i}(a)\right]\)
```


Analysis

Time to produce the estimate $\quad O\left(\ln \frac{1}{\delta}\right)$

Space used

$$
O\left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right)
$$

Time for updates

$$
O\left(\ln \frac{1}{\delta}\right)
$$

Example

```
x: next element in data stream
Data Stream
3
for each hash function (h}\mp@subsup{h}{k}{}\mathrm{ ) 145
    v}=\mp@subsup{h}{k}{*}(x
99
    update table }\mp@subsup{e}{k}{[v] +1
                                84
12
```


Initialize

$1 \quad t \leftarrow \log (1 / \delta)$;
$2 k+2 / \varepsilon ;$
$3 C[1 \ldots t][1 \ldots k]+\overrightarrow{0}$;
4 Pick tindependent hash functions $h_{1}, h_{2}, \ldots, h_{t}:[n] \rightarrow[k]$, each from a 2-universad family;
Count-Min sketch
Process (j, c):
; for $i=1$ to t do
$\left.6 \quad C[i]\left[h_{i}(j)\right] \leftarrow C[i] \mid h_{i}(j)\right]+c$;
Output :On query a, report $\hat{f}_{a}=\min _{\leq \leq i \leq \leq} C[i]\left[h_{i}(a)\right]$

h_{1}	0	0	0	0	0	0	0	0	0	0
	$\mathrm{~h}_{2}$	0	0	0	0	0	0	0	0	0
$\mathrm{~h}_{3}$	0	0	0	0	0	0	0	0	0	0
	$\mathrm{~h}_{4}$	0	0	0	0	0	0	0	0	0
	0									

Approximate Query Answering

- point query $Q(i) \stackrel{\text { approx. }}{\longmapsto} a_{i}$
- range queries $Q(l, r) \stackrel{\text { approx. }}{\longleftrightarrow} \sum_{i=l}^{r} a_{i}$
- inner product queries $Q(\vec{a}, \vec{b}) \stackrel{\text { approx. }}{ } \vec{a} \cdot \vec{b}=\sum_{i=1}^{n} a_{i} b_{i}$

Point Query

- Non-negative case ($\left.a_{i_{t}}(t)>0\right)$

$$
Q(i) \longleftrightarrow \hat{a}_{i}=\min _{j} \operatorname{count}\left[j, h_{j}(i)\right]
$$

Theorem $1 \quad a_{i} \leq \hat{a}_{i} \quad P\left[\hat{a}_{i}>a_{i}+\varepsilon\|\vec{a}\|_{1}\right] \leq \delta$

PROOF : Introduce indicator variables

$$
\begin{aligned}
& I_{i, j, k}= \begin{cases}1 & \text { if } \quad(i \neq k) \wedge\left(h_{j}(i)=h_{j}(k)\right) \\
0 & \text { otherwise }\end{cases} \\
& E\left(I_{i, j, k}\right)=\operatorname{Pr}\left[h_{j}(i)=h_{j}(k)\right] \leq \frac{1}{w}=\frac{\varepsilon}{e}
\end{aligned}
$$

Define the variable $\quad X_{i, j}=\sum_{k=1}^{n} I_{i, j, k} a_{k}$

By construction,

$$
\operatorname{count}\left[j, h_{j}(i)\right]=a_{i}+X_{i, j} \Longleftrightarrow \min \operatorname{count}\left[j, h_{j}(i)\right] \geq a_{i}
$$

For the other direction, observe that

$$
E\left(X_{i, j}\right)=E\left(\sum_{k=1}^{n} I_{i, j, k} a_{k}\right)=\sum_{k=1}^{n} a_{k} E\left(I_{i, j, k}\right) \leq \frac{\varepsilon}{e}\|\vec{a}\|_{1}
$$

$$
\operatorname{Pr}\left[\hat{a}_{i}>a_{i}+\varepsilon\|\vec{a}\|_{1}\right]=\operatorname{Pr}\left[\forall j . \operatorname{count}\left[j, h_{j}(i)\right]>a_{i}+\varepsilon\|\vec{a}\|_{1}\right]
$$

$$
\begin{aligned}
& =\operatorname{Pr}\left[\forall j \cdot a_{i}+X_{i, j}>a_{i}+\varepsilon\|\vec{a}\|_{1}\right] \\
& =\operatorname{Pr}\left[\forall j . X_{i, j}>e E\left(X_{i, j}\right)\right]<e^{-d} \leq \delta
\end{aligned}
$$

Markov inequality

$$
\operatorname{Pr}[X \geq t] \leq \frac{E(X)}{t} \quad \forall t>0
$$

Analysis

Time to produce the estimate $O\left(\ln \frac{1}{\delta}\right)$

Space used

$$
O\left(\frac{1}{\varepsilon} \ln \frac{1}{\delta}\right)
$$

Time for updates

$$
O\left(\ln \frac{1}{\delta}\right)
$$

Remark: The constant e is used here to minimize the space used.

Range Query

- Dyadic range: $\left[x 2^{y}+1 \ldots(x+1) 2^{y}\right]$ for parameters x, y
- range query $\stackrel{\text { (at most) }}{ } 2 \log _{2} n$ dyadic range queries $~ \longrightarrow$ single point query
- For each set of dyadic ranges of length $2^{y}, \quad y=0 \ldots \log _{2} n-1$ a sketch is kept
$\square \log _{2} n \quad \mathrm{CM}$ Sketches
$\square \overbrace{}^{Q(l, r)}$

SELECT COUNT (*) FROM D WHERE D.val >=| AND D.val <=h

Compute the dyadic ranges (at most $2 \log _{2} n$) which canonically cover the range

Sum of queries

$$
=\hat{a}[l, r]
$$

Range Sum Example

- AMS approach to this, the error scales proportional to $\sqrt{\mathrm{F}_{2}(f) \mathrm{F}_{2}\left(f^{\prime}\right)}$

So here the error grows proportional to the square root of the length of the range.

- Using the Count-Min sketch approach, the error is proportional to $F_{1}(h-I+1)$, i.e. it grows proportional to the length of the range
- Using the Count-Min sketch to approximate counts, the accuracy of the answer is proportional to $\left(F_{1} \log n\right) / w$. For large enough ranges, this is an exponential improvement in the error.
e.g. To estimate the range sum of [2...8], it is decomposed into the ranges [2...2], [3...4], [5...8], and the sum of the corresponding nodes in the binary tree as the estimate.

Theorem $4 a[l, r] \leq \hat{a}[l, r]$ $\operatorname{Pr}\left[\hat{a}[l, r]>a[l, r]+2 \varepsilon \log n\|\vec{a}\|_{1}\right] \leq \delta$

Proof :

$$
\text { Theorem } 1 \stackrel{a_{i} \leq \hat{a}_{i}}{ } a[l, r] \leq \hat{a}[l, r]
$$

$\mathrm{E}(\Sigma$ error for each estimator $)=2 \log n \quad \mathrm{E}($ error for each estimator $)$

$$
\leq 2 \log n \frac{\varepsilon}{e}\|\vec{a}\|_{1}
$$

$\operatorname{Pr}\left[\hat{a}[l, r]-a[l, r]>2 \log n\|\vec{a}\|_{1}\right]<e^{-d} \leq \delta$

Analysis

Time to produce the estimate $O\left(\log (n) \log \frac{1}{\delta}\right)$
Space used

$$
\begin{aligned}
& o\left(\frac{\log (n)}{\varepsilon} \log \frac{1}{\delta}\right) \\
& O\left(\log (n) \log \frac{1}{\delta}\right)
\end{aligned}
$$

Remark: the guarantee will be more useful when stated without terms of $\log n$ In the approximation bound.

Inner Product Query

Set $\quad(\vec{a} \cdot \vec{b})_{j}=\sum_{k=1}^{w} \operatorname{count}_{\vec{a}}[j, k] * \operatorname{count}_{\vec{b}}[j, k]$
$Q(\vec{a}, \vec{b})$

$$
(\hat{a} \cdot \vec{b})=\min _{j}(\vec{a} \cdot \vec{b})_{j}
$$

Theorem $3 \quad(\vec{a} \cdot \vec{b}) \leq(\vec{a} \cdot \vec{b}) \quad \operatorname{Pr}\left[(\vec{a} \cdot \vec{b})>\vec{a} \cdot \vec{b}+\varepsilon\|\vec{a}\|_{1}\|\vec{b}\|_{1}\right] \leq \delta$
Analysis Time to produce the estimate $O\left(\frac{1}{\varepsilon} \log \frac{1}{\delta}\right)$
Space used $\quad O\left(\frac{1}{\varepsilon} \log \frac{1}{\delta}\right)$
Time for updates $\quad O\left(\log \frac{1}{\delta}\right)$
Application The application of inner-product computation to Join size estimation
Corollary The Join size of two relations on a particular attribute can be approximated up to $\varepsilon\|\vec{a}\|_{1}\|\vec{b}\|_{1} \quad$ with probability $1-\delta$ by keeping space $O\left(\frac{1}{\varepsilon} \log \frac{1}{\delta}\right)$

Resources

Applications

- Compressed Sensing
- Networking
- Databases
- Eclectics (NLP, Security, Machine Learning, ...)

Details

- Extensions of the Count-Min Sketch
- Implementations and code

List of open problems in streaming

- Open problems in streaming

References for Count Min Sketch

- Basics
- G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. LATIN 2004, J. Algorithm 58-75 (2005)
- G. Cormode and S. Muthukrishnan. Summarizing and mining skewed data streams. SDM 2005.
- G. Cormode and S. Muthukrishnan. Approximating data with the count-min data structure. IEEE Software, (2012).
- Journal
- Alon, Noga; Matias, Yossi; Szegedy, Mario (1999), "The space complexity of approximating the frequency moments", Journal of Computer and System Sciences 58 (1): 137-147.
- Surveys
- Network Applications of Bloom Filters: A Survey. Andrei Broder and Michael Mitzenmacher. Internet Mathematics Volume 1, Number 4 (2003), 485-509.
- Article from "Encyclopedia of Database Systems" on Count-Min Sketch Graham Cormode 09. 5 page summary of the sketch and its applications.
- A survey of synopsis construction in data streams. Charu Aggarwal.
- Coverage in Textbooks
- Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Michael Mitzenmacher, Eli Upfal. Cambridge University Press, 2005. Describes Count-Min sketch over pages 329--332
- Internet Measurement: Infrastructure, Traffic and Applications. Mark Crovella, Bala Krishnamurthy. Wiley 2006.
- Tutorials
- Advanced statistical approaches for network anomaly detection. Christian Callegari. ICIMP 10 Tutorial.
- Video explaining sketch data structures with emphasis on CM sketch Graham Cormode.
- Lectures
- Data Stream Algorithms. Notes from a series of lectures by S. Muthu Muthukrishnan.
- Data Stream Algorithms. Lecture notes, Chapter 3. Amit Chakrabarti. Fall 09.
- Probabilistic inequalities and CM sketch. John Byers. Fall 2007.

Overview

- Introduction to Streaming Algorithms
- Sampling Techniques
- Sketching Techniques

Break

- Counting Distinct Numbers
- Q\&A

Overview

- Introduction to Streaming Algorithms
- Sampling Techniques
- Sketching Techniques

Break

- Counting Distinct Numbers
- Q\&A

Stream Model of Computation

Counting Distinct Elements -Motivation

- Motivation: Various applications
- Port Scanning
- DDoS Attacks

- Traffic

Accounting

- Traffic

Engineering

- Quality of Service

Packet Filtering:
No of Packets - 6 (n)
No of Distinct Packets - 3 (m)

Counting Distinct Elements - Problem

- Problem: Given a stream $X=<x_{1}, x_{2}, \ldots \ldots ., x_{m}>\in[n]^{m}$ of values. Let $F 0$ be the number of distinct elements in X. Find $F 0$ under the constraints for algorithms on data streams.
- Constraints:
- Elements in stream are presented sequentially and single pass is allowed.
- Limited space to operate. Expected space complexity $O(\log (\min (n, m))$ or smaller.
- Estimation Guarantees : With Error $\varepsilon<\mathbb{1}$ and high proability

Naïve Approach

- Counter C(i) for each domain value in [n]
- Initialize counters $\mathrm{C}(\mathrm{i}) \leftarrow 0$
- Scan X incrementing appropriate counters
- Solution: Distinct Values $=$ Number of $C(i)>0$
- Problem
- Memory size M << n
- Space $O(n)$ - possibly $n \gg m$
(e.g., when counting distinct words in web crawl)
- Time O(n)

Algorithm History

- Flajolet and Martin introduced problem
- O(logn) space for fixed ε in random oracle model
- Alon, Matias and Szegedy
- O(log n) space/update time for fixed ε with no oracle
- Gibbons and Tirthapura
- $O\left(\varepsilon^{-2} \log n\right)$ space and $O\left(\varepsilon^{-2}\right)$ update time
- Bar-Yossef et al
- $O\left(\varepsilon^{-2} \log n\right)$ space and $O(\log 1 / \varepsilon)$ update time
- $O\left(\varepsilon^{-2} \log \log n+\log n\right)$ space and $O\left(\varepsilon^{-2}\right)$ update time, essentially
- Similar space bound also obtained by Flajolet et al in the random oracle model
- Kane, Nelson and Woodruff
- $\mathrm{O}\left(\varepsilon^{-2}+\log n\right)$ space and $O(1)$ update and reporting time
- All time complexities are in unit-cost RAM model

Flajolet-Martin Approach

- Hash function h : map n elements to $L=\log _{2} n$ bits (uniformly distributed over the set of binary strings of length L)
- For y any non-negative integer, define $\operatorname{bit}(y, k)=k^{\text {th }}$ bit in the binary representation of y

$$
\begin{array}{ll}
y=\sum_{k \geq 0} \operatorname{bit}(y, k) .2^{k} & \\
\rho(y)=\min _{k \geq 0}[\operatorname{bit}(y, k)] \neq 0 & \text { if } y>0 \\
\rho(y)=L & \text { if } y=0
\end{array}
$$

$\rho(y)$ represents the position of the least significant bit in the binary representation of y

Flajolet-Martin Approach

for ($i:=0$ to $L-1$) do BITMAP $[i]:=0$;
for (all x in M) do begin
index:= $\rho(h(x))$;
if BITMAP[index]=0 then
BITMAP[index]:=1;
end
R := the largest index in BITMAP whose value equals to 1
Estimate := $\mathbf{2}^{R}$

Examples of $\operatorname{bit}(y, k) \& \rho(y)$

- $y=10=(1010)_{2}$
$-\operatorname{bit}(y, 0)=0 \operatorname{bit}(y, 1)=1$ $\operatorname{bit}(y, 2)=0 \operatorname{bit}(y, 3)=1$
$-y=\sum_{k \geq 0} b i t(y, k) \cdot 2^{k}$

int y	binary format	$\rho(y)$
0	0000	$4(=L)$
1	0001	0
2	0010	1
3	0011	0
4	0100	2
5	0101	0
6	0110	1
7	0111	0
8	1000	3

Flajolet-Martin Approach - Estimate Example

- Part of a Unix manual file M of size 26692 lines is loaded of which 16405 are distinct.
- If the final BITMAP looks like this:

$$
0000,0000,1100,1111,1111,1111
$$

- The left most 1 appears at position 15
- We say there are around 2^{15} distinct elements in the stream. But $2^{14}=16384$.
- Estimate $F 0 \approx \log _{2} \varphi n$ where $\varphi=0.77351$ is the correction factor.

Flajolet-Martin* Approach

- Pick a hash function h that maps each of the n elements to at least $\log _{2} n$ bits.
- For each stream element a, let $r(a)$ be the number of trailing 0's in $h(a)$.
- Record $R=$ the maximum $r(a)$ seen.
- Estimate $=2^{R}$.
* Really based on a variant due to AMS (Alon, Matias, and Szegedy)

Why It Works

- The probability that a given $h(a)$ ends in at least $r 0^{\prime}$ s is 2^{-r}.
- If there are m different elements, the probability that $R \geq r$ is end in fewer than r O's.

Probability any
given $h(a)$ ends in fewer than r O's.

Why It Works (2)

- Since 2^{-r} is small, $1-\left(1-2^{-r}\right)^{m} \approx 1-e^{-m 2^{-r}}$.
- If $2^{r} \gg m, 1-\left(1-2^{-r}\right)^{m} \approx 1-\left(1-m 2^{-r}\right)$
$\approx m / 2^{r} \approx 0$.
First 2 terms of the
Taylor expansion of e^{x}
- If $2^{r} \ll m, 1-\left(1-2^{-r}\right)^{m} \approx 1-e^{-m 2^{-r}} \approx 1$.
- Thus, 2^{R} will almost always be around m.

Algorithm History

- Flajolet and Martin introduced problem
- O(logn) space for fixed ε in random oracle model
- Alon, Matias and Szegedy
- O(log n) space/update time for fixed ε with no oracle
- Gibbons and Tirthapura
- $O\left(\varepsilon^{-2} \log n\right)$ space and $O\left(\varepsilon^{-2}\right)$ update time
- Bar-Yossef et al
- $O\left(\varepsilon^{-2} \log n\right)$ space and $O(\log 1 / \varepsilon)$ update time
- $O\left(\varepsilon^{-2} \log \log n+\log n\right)$ space and $O\left(\varepsilon^{-2}\right)$ update time, essentially
- Similar space bound also obtained by Flajolet et al in the random oracle model
- Kane, Nelson and Woodruff
- $\mathrm{O}\left(\varepsilon^{-2}+\log n\right)$ space and $O(1)$ update and reporting time
- All time complexities are in unit-cost RAM model

An Optimal Algorithm for the Distinct Elements Problem

Daniel M. Kane, Jelani Nelson, David P. Woodruff

Overview

- Computes a $(1 \pm \varepsilon)$ approximation using an optimal $\Theta\left(\varepsilon^{-2}+\log n\right)$ bits of space with $2 / 3$ success probability, where $0<\varepsilon<1$ is given
- Process each stream update in Θ (1) worstcase time

Foundation technique 1

- If it is known that $\mathrm{R}=\Theta\left(\mathrm{F}_{0}\right)$ then $(1 \pm \varepsilon)$ estimation becomes easier
- Run a constant-factor estimation at the end of the stream to achieve R before the main estimation algorithm \rightarrow ROUGH ESTIMATOR

Foundation technique 2

- Balls and Bins Approach: use truly random function f to $\operatorname{map} A$ balls into K bins and count the number of nonempty bins X

$$
E[X]=K\left(1-\left(1-\frac{1}{K}\right)^{A}\right)
$$

- Instead of using f, use $0\left(\frac{\log \frac{K}{\varepsilon}}{\log \log \frac{K}{\varepsilon}}\right)$ - wise independent mapping g then the expected númber of non-empty bins under g is the same as under f, up to a factor of ($1 \pm \varepsilon$)

Rough Estimator (RE)

1. Set $K_{\mathrm{RE}}=\max \{8, \log (n) / \log \log (n)\}$.
2. Initialize $3 K_{\mathrm{RE}}$ counters $C_{1}^{j}, \ldots, C_{K_{\mathrm{RE}}}^{j}$ to -1 for $j \in[3]$.
3. Pick random $h_{1}^{j} \in \mathcal{H}_{2}([n],[0, n-1]), h_{2}^{j} \in \mathcal{H}_{2}\left([n],\left[K_{\mathrm{RE}^{3}}{ }^{3}\right]\right), h_{3}^{j} \in \mathcal{H}_{2 K_{\mathrm{RE}}}\left(\left[K_{\mathrm{RE}}{ }^{3}\right],\left[K_{\mathrm{RE}}\right]\right)$ for $j \in[3]$.
4. Update(i): For each $j \in[3]$, set $C_{h_{3}^{j}\left(h_{2}^{j}(i)\right)}^{j} \leftarrow \max \left\{C_{h_{3}^{j}\left(h_{2}^{j}(i)\right)}^{j}, \operatorname{lsb}\left(h_{1}^{j}(i)\right)\right\}$.
5. Estimator: For integer $r \geq 0$, define $T_{r}^{j}=\left|\left\{i: C_{i}^{j} \geq r\right\}\right|$.

For the largest $r=r^{*}$ with $T_{r}^{j} \geq \rho K_{\mathrm{RE}}$, set $\tilde{F}_{0}^{j}=2^{r^{*}} K_{\mathrm{RE}}$. If no such r exists, $\tilde{F}_{0}^{j}=-1$.
Output $\tilde{F}_{0}=\operatorname{median}\left\{\tilde{F}_{0}^{1}, \tilde{F}_{0}^{2}, \tilde{F}_{0}^{3}\right\}$.

- With probability $1-\mathrm{o}(1)$, the output $\widetilde{F_{0}}$ of RE satisfies

$$
F_{0}(t) \leq \widetilde{F_{0}}(t) \leq 8 F_{0}(t)
$$

for every $t \in[\mathrm{~m}]$ with $F_{0}(t) \geq K_{R E}$ simultaneously

- The space used is $O(\log (n))$
- Can be implemented with O(1) worst-case update and reporting times

Main Algorithm(1)

1. Set $K=1 / \varepsilon^{2}$.
2. Initialize K counters C_{1}, \ldots, C_{K} to -1 .
3. Pick random $h_{1} \in \mathcal{H}_{2}([n],[0, n-1]), h_{2} \in \mathcal{H}_{2}\left([n],\left[K^{3}\right]\right), h_{3} \in \mathcal{H}_{k}\left(\left[K^{3}\right],[K]\right)$ for $k=\Omega(\log (1 / \varepsilon) / \log \log (1 / \varepsilon))$.
4. Initialize A, b, est $=0$.
5. Run an instantiation RE of Roughestimator.
6. Update(i): \quad Set $x \leftarrow \max \left\{C_{h_{3}\left(h_{2}(i)\right)}, \operatorname{lsb}\left(h_{1}(i)\right)-b\right\}$.

Set $A \leftarrow A-\left\lceil\log \left(2+C_{h_{3}\left(h_{2}(i)\right)}\right)\right\rceil+\lceil\log (2+x)\rceil$.
If $A>3 K$, Output FAIL.
Set $C_{h_{3}\left(h_{2}(i)\right)} \leftarrow x$. Also feed i to RE.
Let R be the output of RE.
if $R>2^{\text {est }}$:
(a) est $\leftarrow \log (R), b_{\text {new }} \leftarrow \max \{0$, est $-\log (K / 32)\}$.
(b) For each $j \in[K]$, set $C_{j} \leftarrow \max \left\{-1, C_{j}+b-b_{\text {new }}\right\}$
(c) $b \leftarrow b_{\text {new }}, A \leftarrow \sum_{j=1}^{K}\left\lceil\log \left(C_{j}+2\right)\right\rceil$.
7. Estimator: Define $T=\left|\left\{j: C_{j} \geq 0\right\}\right|$. Output $\widetilde{F}_{0}=2^{b} \cdot \frac{\ln \left(1-\frac{T}{K}\right)}{\ln \left(1-\frac{1}{K}\right)}$.

- The algorithm outputs a value which is $(1 \pm \varepsilon) F_{0}$ with probability at least $11 / 20$ as long as $F_{0} \geq \frac{K}{32}$

Main Algorithm (2)

- A: keeps track of the amount of storage required to store all the C_{i}
- est: is such that $2^{e s t}$ is a $\Theta(1)$-approximation to F_{0}, and is obtained via Rough Estimator
- b : is such that we expect $F_{0}(t) / 2^{b}$ to be $\Theta(K)$ at all points t in the stream.

Main Algorithm (3)

- Subsample the stream at geometrically decreasing rates
- Perform balls and bins at each level
- When i appears in stream, put a ball in cell [g(i), h(i)]
- For each column, store the largest row containing a ball
- Estimate based on these numbers

Prove Space Complexity

- The hash functions h1, h2 each require $0(\log n)$ bits to store
- The hash function h3 takes $0(k \log K)=O\left(\log ^{2}\left(\frac{1}{\varepsilon}\right)\right)$ bits to store
- The value b takes $O(\log \log n)$ bits
- The value A never exceeds the total number of bits to store all counters, which is $O\left(\varepsilon^{-2} \log n\right)$, and thus A can be represented in $\mathrm{O}\left(\log \left(\frac{1}{\varepsilon}\right)+\log \log n\right)$ bits
- The counters C_{j} never in total consume more than $\mathrm{O}\left(\frac{1}{\varepsilon^{2}}\right)$ bits by construction, since we output FAIL if they ever would
- The Rough Estimator and est use $\mathrm{O}(\log (\mathrm{n}))$ bits
\rightarrow Total space complexity: $\mathrm{O}\left(\varepsilon^{-2}+\log n\right)$

Prove Time Complexity

- Use high-performance hash functions (Siegel, Pagh and Pagh) which can be evaluated in O(1) time
- Store column array in Variable-Length Array (Blandford and Blelloch). In column array, store offset from the base row and not absolute index \rightarrow giving O (1) update time for a fixed base level
- Occasionally we need to update the base level and decrement offsets by 1
- Show base level only increases after $\Theta\left(\varepsilon^{-2}\right)$ updates, so can spread this work across these updates, so O(1) worst-case update time (Use deamortization)
- Copy the data structure, use it for performing this additional work so it doesn't interfere with reporting the correct answer
- When base level changes, switch to copy
- For reporting time, we can maintain T during updates, and thus the reporting time is the time to compute a natural logarithm, which can be made O(1) via a small lookup table

References

- Blandford, Blelloch. Compact dictionaries for variablelength keys and data with applications. ACM Transactions on Algorithms. 2008.
- D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for the distinct elements problem. In Proc. 29th ACM Symposium on Principles of Database Systems, pages 41-52. 2010.
- Pagh, Pagh. Uniform Hashing in Constant Time and Optimal Space. SICOMP 2008.
- Siegel. On Universal Classes of Uniformly Random Constant-Time Hash Functions. SICOMP 2004.

Summary

- We introduced Streaming Algorithms
- Sampling Algorithms
- Reservoir Sampling
- Priority Sampling
- Sketch Algorithms
- Bloom Filter
- Count-Min Sketch
- Counting Distinct Elements
- Flajolet-Martin Algorithm
- Optimal Algorithm

Q \& A

