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What are Streaming algorithms?

• Algorithms for processing data streams
• Input is presented as a sequence of items
• Can be examined in only a few passes (typically just 

one)
• Limited working memory
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Same as Online algorithms?

• Similarities
§ decisions to be made before all data are available
§ limited memory

• Differences
§ Streaming algorithms – can defer action until a group of 

points arrive
§ Online algorithms - take action as soon as each point 

arrives
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Why Streaming algorithms
• Networks

§ Up to 1 Billion packets per hour per router.  Each ISP has hundreds of routers
§ Spot faults, drops, failures

• Genomics
§ Whole genome sequences for many species now available, each megabytes to 

gigabytes in size
§ Analyse genomes, detect functional regions, compare across species

• Telecommunications
§ There are 3 Billion Telephone Calls in US each day, 30 Billion emails daily, 1 

Billion SMS, IMs 
§ Generate call quality stats, number/frequency of dropped calls

• Infeasible to store all this data in random access memory for processing.
• Solution – process the data as a stream – streaming algorithms
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Basic setup
• Data stream: a sequence  A = <a1, a2,..., am>, where the elements of the sequence 

(called tokens) are drawn from the universe [n]� = {1, 2, ..., n}
• Aim - compute a function over the stream, eg: median, number of distinct 

elements, longest increasing sequence, etc.

• Target Space complexity
§ Since m and n are “huge,” we want to make s (bits of random access memory) much 

smaller than these
§ Specifically, we want s to be sublinear in both m and n. 

§ The best would be to achieve
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Quality of Algorithm
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Streaming Models - Cash Register Model

• Time-Series Model
Only x-th update is processed 

i.e., A[x] = c[x]

• Cash-Register Model:  Arrivals-Only Streams
c[x] is always > 0  
Typically, c[x]=1

• Example: <x, 3>, <y, 2>, <x, 2> encodes the arrival of 
3 copies of item x, 
2 copies of y, 
2 copies of x.
Could represent, packets in a network, power usage
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Streaming Models – Turnstile Model

• Turnstile Model: Arrivals and Departures
Most general streaming model
c[x]  can be >0 or <0

• Example:
<x, 3>, <y,2>, <x, -2> encodes final state of  <x, 1>, <y, 2>.

Can represent fluctuating quantities, or measure differences between two 
distributions
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Sampling

• Idea 
A small random sample S of the data is often enough to represent all the data

• Example 
To compute median packet size
Sample some packets
Present median size of sampled packets as true median

• Challenge
Don’t know how long the stream is
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Reservoir Sampling - Idea

• We have a reservoir that can contain k samples
• Initially accept every incoming sample till reservoir fills up
• After reservoir is full, accept sample 𝑘 + 𝑖 with probability 
𝑘/𝑘 + 𝑖

• This means as long as our reservoir has space, we sample 
every item

• Then we replace items in our reservoir with gradually 
decreasing probability
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Reservoir Sampling - Algorithm



Probability Calculations
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Probability of any element to be included 
at round t 

Observation:
Hence even though at the beginning a lot of elements get replaced, with the 
increase in the stream size, the probability of a new record evicting the old one 
drops. 
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• Let us consider a time t > N.
• Let the number of elements that has arrived till now 

be Nt

• Since at each round, all the elements have equal 
probabilities, the probability of any element being 
included in the sample is N/ Nt



Probability of any element to be chosen 
for the final Sample

• Let the final stream be of size NT

• Claim:
The probability of any element to be in the sample is 

N/ NT
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Probability of survival of the initial N 
elements
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• Let us choose any particular element out of our 𝑁 initial elements.(𝑒𝑁 say)
• The eviction tournament starts after the arrival of the (𝑁 + 1)𝑠𝑡 element
• Probability that (𝑁 + 1)𝑠𝑡 element is chosen is 𝑁/(𝑁 + 1)
• Probability that if (𝑁 + 1)𝑠𝑡 element is chosen by evicting 𝑒𝑁 is 1/𝑁
• Hence probability of 𝑒𝑁 being evicted in this case is 

(1/𝑁) 𝑋 (𝑁/(𝑁 + 1)) = 1/𝑁 + 1
• Probability that 𝑒𝑁 survives = 1 − (1/(𝑁 + 1)) = 𝑁/(𝑁 + 1)
• Similarly the case eN survives when (N+2)nd element arrives = (N+1)/ (N+2)
• The probability of eN surviving two new records 

= (N/(N+1)) X ((N+1)/ (N+2))
• The probability of eN surviving till the end 

= (N/(N+1)) X ((N+1)/ (N+2))  X ……. X ((NT -1)/ NT) = N/ NT



Probability of survival of the elements 
after the initial N
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• For the last arriving element to be selected, the probability is N/ NT
• For the element before the last, the probability of selection 
• = N/ (NT -1)
• The probability of the last element replacing the last but one 

element
= (N/ NT) X (1/N) = 1/ NT

• The probability that the last but one element survives = 1- 1/ NT = 
(NT -1)/ NT

• The probability that the last but one survives till the end
= (N/( NT -1)) X (NT -1)/ NT = N/ NT

Similarly we can show that the probability of survival of any 
element in the sample is N/ NT



Calculating the 
Maximum Reservoir Size
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Some Observations
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• Initially the reservoir contains N elements
• Hence the size of the reservoir space is also N
• New records are added to the reservoir only when it will 

replace any element present previously in the reservoir. 
• If it is not replacing any element, then it is not added to the 

reservoir space and we move on to the next element. 
• However we find that when an element is evicted from the 

reservoir, it still exists in the reservoir storage space. 
• The position in the array that held its pointer, now holds 

some other element’s pointer. But the element is still 
present in the reservoir space

• Hence the total number of elements in the reservoir space 
at any particular time ≥ N. 



Maximum Size of the Reservoir 

• The new elements are added to the reservoir with initial probability 
N/N+1

• This probability steadily drops to N/ NT
• The statistical expectation of the size S of the reservoir space can 

thus be calculated as
N + (N/N+1) + ……. + (N/ NT)

• Overestimating it with an integral the reservoir size can be 
estimated as  

!
!"#

!"#$𝑁 𝑑𝑥
𝑥

= 𝑁 ln(𝑁𝑇/𝑁)

• Thus, reservoir estimate is:
S = N[1 + ln (NT/N)] 

• Hence we find that the space needed is O(N log(NT))
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Priority Sample for Sliding Window
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Reservoir Sampling Vs Sliding Window

• Works well when we have only inserts into a sample
• The first element in the data stream can be retained in 

the final sample 
• It does not consider the expiry of any record

Reservoir Sampling

Sliding Window
• Works well when we need to consider “timeliness” of the 

data
• Data is considered to be expired after a certain time interval 
• “Sliding window” in essence is such a random sample of 

fixed size (say k) “moving” over the most recent elements in 
the data stream
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Types of Sliding Window

• Sequence-based
-- they are windows of size k moving over the 

k mist recently arrived data. Example being 
chain-sample algorithm

• Time-stamp based
-- windows of duration t consist of elements 

whose arrival timestamp is within a time 
interval  t of the current time. Example being 
Priority Sample for Sliding Window

25



Principles of the Priority Sampling algorithm

• As each element arrives, it is assigned a randomly-
chosen priority between 0 and 1

• An element is ineligible if there is another element 
with a later timestamp and higher priority

• The element selected for inclusion in the sample is 
thus the most active element with the highest 
priority

• If we have a sample size of k, we generate k priorities 
p1 , p2 , …… pk for each element. The element with 
the highest pi is chosen for each i
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Memory Usage for Priority Sampling

• We will be storing only the eligible elements in the 
memory

• These elements can be made to form right spine of 
the datastructure “treap”

• Therefore expected memory usage is O(log n), or O(k 
log n) for samples of size k

Ref:
ØC. R. Argon and R.G. Seidel, Randomised Search Trees, Proc of the 30th IEEE 
Symp on Foundations of Computer Science, 1989, pp 540-545
ØK. Mulmuley, Computational Geometry: An Introduction through Ramdomised
Algorithms, Prentice Hall
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Sketching

• Sketching is another general technique for 
processing stream

Fig: Schematic view of linear sketching
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How Sketching is different from Sampling

• Sample “sees” only those items which were 
selected to be in the sample whereas the 
sketch “sees” the entire input, but is restricted 
to retain only a small summary of it.

• There are queries that can be approximated 
well by sketches that are provably impossible 
to compute from a sample.
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Bloom Filter
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Set Membership Task

• x: Element
• S: Set of elements
• Input: x, S
• Output:
– True (if x in S)
– False (if x not in S)
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Bloom Filter

• Consists of 
– vector of n Boolean values, initially all set false
– k independent hash functions, ℎ!, ℎ", … , ℎ#$",

each with range {0, 1, … , n-1}

F F F F F F F F F F

0 1 2 3 4 5 6 7 8 9

n = 10
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Bloom Filter

• For each element s in S, the Boolean value 
with positions ℎ! 𝑠 , ℎ" 𝑠 , … , ℎ#$" 𝑠 are 
set true. 

F T F F T F T F F F

0 1 2 3 4 5 6 7 8 9

𝑠"
ℎ$ 𝑠% = 1

ℎ% 𝑠% = 4
ℎ& 𝑠% = 6

k = 3
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Bloom Filter

• For each element s in S, the Boolean value 
with positions ℎ! 𝑠 , ℎ" 𝑠 , … , ℎ#$" 𝑠 are 
set true. 

F T F F T F T T F T

0 1 2 3 4 5 6 7 8 9

𝑠" 𝑠%ℎ$ 𝑠& = 4
ℎ% 𝑠& = 6 ℎ& 𝑠& = 9

k = 3
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Error Types

• False Negative
– Never happens for Bloom Filter

• False Positive
– Answering “is there” on an element that is not in 

the set
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Probability of false positives

F T F T F F T F T F

A G

K
n = size of table
m = number of items
k = number of hash functions

Consider a particular bit 0 <= j <= n-1
Probability that ℎ' 𝑥 does not set bit j: 𝑃(!~* ℎ' 𝑥 ≠ 𝑗 = 1 − %

+

Probability that bit j is not set 𝑃("… (#~* 𝐵𝑖𝑡 𝑗 = 𝐹 ≤ 1 − %
+

-.

We know that, 1 − %
+

+
≈ %

/
= 𝑒0%

⇒ 1 − %
+

-.
= 1 − %

+

+ - ⁄. +

≈ 𝑒0% - ⁄. + = 𝑒0- ⁄. +
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Probability of false positives

F T F T F F T F T F

A G

K
n = size of table
m = number of items
k = number of hash functions

Probability of false positive = 1 − 𝑒0 - ⁄. + -

Note: All k bits of new element are already set

False positive probability can be minimized by choosing k =  log2 2 ⋅ ⁄𝑛 𝑚

Upper Bound Probability would be 1 − 𝑒0 345$ & ⋅( ⁄+ .) ⁄⋅(. +) 345$ & ⋅ ⁄+ .

⇒ 0 ⋅ 5 345$ & ⋅ ⁄+ .
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Bloom Filters: cons 

• Small false positive probability
• No deletions
• Can not store associated objects
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Count Min Sketch
• The Count-Min sketch is a simple technique to summarize large amounts of frequency data.

• It was introduced in 2003 by G. Cormode and S. Muthukrishnan, and since then has inspired many 
applications, extensions and variations.

• It can be used for as the basis of many different stream mining tasks
– Join aggregates, range queries, frequency moments, etc.

• Fk of the stream as åi (fi)k – the k’th Frequency Moment, where fi be the frequency of item i in the 
stream
– F0 : count 1 if fi ¹ 0 – number of distinct items
– F1 : length of stream, easy
– F2 : sum the squares of the frequencies – self join size
– Fk : related to statistical moments of the distribution
– F¥ : dominated by the largest fk, finds the largest frequency
– The space complexity of approximating the frequency moments by Alon, Matias, Szegedy in STOC 1996 studied 

this problem
– They presented AMS sketch estimate the value of F2 

• Estimate a[i] by taking

• Guarantees error less than     F1 in size O(        *         ) 
– Probability of more error is less than

• Count Min Sketch gives best known time and space bound for Quantiles and Heavy Hitters problems in 
the Turnstile Model.
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Count Min Sketch
– Model input data stream as vector                                                                                            

Where initially 
– The 𝑡%& update is  

))(),(,),(()( 1 tatatata ni !!
"

=
iai "= 0)0(

),( tt ci
)1()( -= ¢¢ tata ii tii ¹¢"

tii ctata
tt

+-= )1()(

• A Count-Min (CM) Sketch with parameters               is  represented by a two-dimensional array (a 
small summary of input)  counts with width       and depth                                           .    

Given parameters                 , set                         and                    .  Each entry of the array is initially zero.

hash functions are chosen uniformly at random from a pairwise independent family which map vector 
entry to [1…w].  i.e. 
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Count Min Sketch Algorithm
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Example
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• point query
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Approximate Query Answering
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For the other direction, observe that
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• Dyadic range: ]2)1(12[ yy xx ++ ! for parameters yx,

• range query dyadic range queriesn2log2 single point query
(at most)

• For each set of dyadic ranges of length                                 
a sketch is kept 

n2log CM Sketches

1log0,2 2 -= nyy
!

Range Query

Pose that many point queries
to the sketches

),( rlQ

Compute the dyadic ranges (at most                )    
which  canonically cover the range   

Sum of queries

],[ˆ rla=

n2log2

SELECT COUNT (*) FROM D
WHERE D.val >=l AND D.val <=h
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Range Sum Example

• AMS approach to this, the error scales proportional to F2(𝑓) F2(𝑓′)
So here the error grows proportional to the square root of the length of the range.

• Using the Count-Min sketch approach, the error is proportional to F1(h−l +1), i.e. it 
grows proportional to the length of the range

• Using the Count-Min sketch to approximate counts, the accuracy of the answer is 
proportional to (F1 log n)/w. For large enough ranges, this is an exponential 
improvement in the error.

e.g. To estimate the range sum of [2…8], it is decomposed 
into the ranges [2…2], [3…4], [5…8], and the sum of the 
corresponding nodes in the binary tree as the estimate.
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The application of inner-product computation to Join size estimationApplication

Corollary The Join size of two relations on a particular attribute can  be approximated 
up to                         with probability                 by  keeping space 
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Resources
Applications

– Compressed Sensing
– Networking
– Databases
– Eclectics (NLP, Security, Machine Learning, ...)

Details
– Extensions of the Count-Min Sketch
– Implementations and code

List of open problems in streaming
– Open problems in streaming
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References for Count Min Sketch
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• Journal
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– Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Michael Mitzenmacher, Eli Upfal. Cambridge University Press, 

2005. Describes Count-Min sketch over pages 329--332
– Internet Measurement: Infrastructure, Traffic and Applications. Mark Crovella, Bala Krishnamurthy. Wiley 2006.

• Tutorials
– Advanced statistical approaches for network anomaly detection. Christian Callegari. ICIMP 10 Tutorial.
– Video explaining sketch data structures with emphasis on CM sketch Graham Cormode. 
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– Data Stream Algorithms. Notes from a series of lectures by S. Muthu Muthukrishnan. 
– Data Stream Algorithms. Lecture notes, Chapter 3. Amit Chakrabarti. Fall 09.
– Probabilistic inequalities and CM sketch. John Byers. Fall 2007.
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Stream Model of Computation

1
0
1

1
1
0

1

0
0
1

1

Increasing tim
e

Main Memory 
(Synopsis Data Structures)

Data Stream

Memory: poly(1/ε, log N)

Query/Update Time: poly(1/ε, log N)

N: # items so far, or window size

ε: error parameter



Counting Distinct Elements -Motivation

• Motivation: Various applications

40 Gbps

8MB 
SRAM

• Port Scanning
• DDoS Attacks
• Traffic 

Accounting
• Traffic 

Engineering
• Quality of 

Service

IP1 IP2 IP1 IP3 IP1 IP2

Packet Filtering:
No of Packets – 6 (n)
No of Distinct Packets – 3 (m) 58



Counting Distinct Elements - Problem

• Problem: Given a stream 𝑋 =< 𝑥1, 𝑥2, … … . , 𝑥𝑚 >∈ 𝑛 𝑚 of 
values. Let 𝐹0 be the number of distinct elements in 𝑋. Find 
𝐹0 under the constraints for algorithms on data streams. 

• Constraints: 
– Elements in stream are presented sequentially and single pass is 

allowed.
– Limited space to operate. Expected space complexity 
𝑂(log(min(𝑛,𝑚)) or smaller.

– Estimation Guarantees :  With Error 𝜺 < 𝟏 and high proability
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Naïve Approach

• Counter C(i) for each domain value i in [n]
• Initialize counters C(i)ß 0
• Scan X incrementing appropriate counters
• Solution:  Distinct Values = Number of C(i) > 0
• Problem

– Memory size M << n
– Space O(n) – possibly n >> m

(e.g., when counting distinct words in web crawl)
– Time O(n)



Algorithm History

• Flajolet and Martin introduced problem
– O(log n) space for fixed ε in random oracle model

• Alon, Matias and Szegedy
– O(log n) space/update time for fixed ε with no oracle

• Gibbons and Tirthapura
– O(ε-2 log n) space and O(ε-2) update time

• Bar-Yossef et al
– O(ε-2 log n) space and O(log 1/ε) update time
– O(ε-2 log log n + log n) space and O(ε-2) update time, essentially
– Similar space bound also obtained by Flajolet et al in the random 

oracle model
• Kane, Nelson and Woodruff

– O(ε-2 + log n) space and O(1) update and reporting time
– All time complexities are in unit-cost RAM model
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Flajolet-Martin Approach

• Hash function h: map n elements to 𝐿 = log2𝑛 bits (uniformly 
distributed over the set of binary strings of length L)

• For y any non-negative integer, define bit(y, k) = kth bit in the binary 
representation of y

𝑦 = ∑"#$ 𝑏𝑖𝑡 𝑦, 𝑘 . 2"

𝜌 𝑦 = min
+,-

𝑏𝑖𝑡 𝑦, 𝑘 ≠ 0 if y >0

𝜌 𝑦 = 𝐿 if y = 0

𝜌(𝑦) represents the position of the least significant –
bit in the binary representation of y
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Flajolet-Martin Approach

for (i:=0 to L-1) do BITMAP[i]:=0;
for (all x in M) do

begin
index:=ρ(h(x));
if BITMAP[index]=0 then 

BITMAP[index]:=1;
end

R := the largest index in BITMAP whose value equals to 1
Estimate := 2R
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Examples of bit(y, k) & ρ(y)

• y=10=(1010)2
– bit(y,0)=0 bit(y,1)=1

bit(y,2)=0 bit(y,3)=1
–

int y binary 
format

ρ(y)

0 0000 4 (=L)
1 0001 0
2 0010 1
3 0011 0
4 0100 2
5 0101 0
6 0110 1
7 0111 0
8 1000 3

k

k
kybity 2),(

0
×=å

³
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Flajolet-Martin Approach – Estimate Example

• Part of a Unix manual file M of size 26692 lines is 
loaded of which 16405 are distinct.

• If the final BITMAP looks like this:
0000,0000,1100,1111,1111,1111

• The left most 1 appears at position 15
• We say there are around 215 distinct elements in the 

stream. But 214 = 16384.
• Estimate 𝐹0 ≈ log% 𝜑𝑛 where 𝜑 = 0.77351 is the 

correction factor.
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Flajolet-Martin* Approach

• Pick a hash function h that maps each of the 
n elements to at least log2n bits.

• For each stream element a, let r (a ) be the 
number of trailing 0’s in h (a ).

• Record R = the maximum r (a ) seen.
• Estimate = 2R.

* Really based on a variant due to AMS (Alon, Matias, and Szegedy) 
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Why It Works

• The probability that a given h (a ) ends in at 
least r  0’s is 2-r.

• If there are m different elements, the 
probability that R≥ r is 1 – (1 - 2-r )m.

Probability any
given h(a) ends in
fewer than r 0’s.

Prob. all h(a)’s
end in fewer than
r 0’s.
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Why It Works (2)

• Since 2-r is small, 1 - (1-2-r)m≈ 1 - e -m2   .
• If 2r >> m, 1 - (1 - 2-r)m≈ 1 - (1 - m2-r)
≈m /2r ≈ 0.

• If 2r << m, 1 - (1 - 2-r)m≈ 1 - e -m2   ≈ 1.
• Thus, 2R will almost always be around m.

-r

-r

First 2 terms of the
Taylor expansion of e x



Algorithm History
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– O(log n) space for fixed ε in random oracle model

• Alon, Matias and Szegedy
– O(log n) space/update time for fixed ε with no oracle

• Gibbons and Tirthapura
– O(ε-2 log n) space and O(ε-2) update time

• Bar-Yossef et al
– O(ε-2 log n) space and O(log 1/ε) update time
– O(ε-2 log log n + log n) space and O(ε-2) update time, essentially
– Similar space bound also obtained by Flajolet et al in the random 

oracle model
• Kane, Nelson and Woodruff

– O(ε-2 + log n) space and O(1) update and reporting time
– All time complexities are in unit-cost RAM model
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An Optimal Algorithm for the 
Distinct Elements Problem

Daniel M. Kane, Jelani Nelson, David P. Woodruff
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Overview

• Computes a (1 ± 𝜀) approximation using an 
optimal Θ(ε-2 + log n) bits of space with 2/3 
success probability, where 0 < ε < 1 is given

• Process each stream update in Θ(1)  worst-
case time     
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Foundation technique 1

• If it is known that R=Θ(F0) then (1 ± 𝜀)
estimation becomes easier

• Run a constant-factor estimation at the end of 
the stream to achieve R before the main 
estimation algorithm à ROUGH ESTIMATOR
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Foundation technique 2

• Balls and Bins Approach: use truly random function f to 
map A balls into K bins and count the number of non-
empty bins X

𝐸 𝑋 = 𝐾(1 − 1 −
1
𝐾

!

)

• Instead of using f, use Ο
"#$./

"#$"#$./
- wise independent 

mapping g then the expected number of non-empty bins 
under g is the same as under f, up to a factor of (1 ± ε)
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Rough Estimator (RE)

• With probability 1 - o(1), the output ?𝐹! of RE satisfies
𝐹! 𝑡 ≤ ?𝐹! 𝑡 ≤ 8𝐹!(𝑡)

for every t ∈ [m] with 𝐹!(𝑡) ≥ 𝐾"# simultaneously
• The space used is O(log(n))
• Can be implemented with O(1) worst-case update and reporting times
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Main Algorithm(1)

• The algorithm outputs a value which is 1 ± 𝜀 𝐹!
with probability at least 11/20 as long as 𝐹! ≥

&
'% 75



Main Algorithm (2)

• A: keeps track of the amount of storage 
required to store all the 𝐶!

• est: is such that 2"#$ is a Θ(1)-approximation 
to 𝐹%, and is obtained via Rough Estimator

• b: is such that we expect 𝐹%(𝑡)/2& to be Θ(𝐾)
at all points t in the stream.
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Main Algorithm (3)

• Subsample the stream at geometrically decreasing rates 
• Perform balls and bins at each level
• When i appears in stream, put a ball in cell [g(i), h(i)]
• For each column, store the largest row containing a ball
• Estimate based on these numbers
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Prove Space Complexity

• The hash functions h1, h2 each require Ο(log 𝑛) bits to store
• The hash function h3 takes Ο(𝑘𝑙𝑜𝑔𝐾)= O(𝑙𝑜𝑔0(1

2
)) bits to store

• The value b takes Ο(𝑙𝑜𝑔𝑙𝑜𝑔𝑛) bits
• The value A never exceeds the total number of bits to store all 

counters, which is Ο(𝜀30𝑙𝑜𝑔𝑛), and thus A can be represented in 
Ο(log 1

2
+ 𝑙𝑜𝑔𝑙𝑜𝑔𝑛) bits

• The counters 𝐶4 never in total consume more than Ο( 1
29
) bits by 

construction, since we output FAIL if they ever would
• The Rough Estimator and est use O(log(n)) bits

à Total space complexity: Ο(𝜀30 + 𝑙𝑜𝑔𝑛)
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Prove Time Complexity

• Use high-performance hash functions (Siegel, Pagh and Pagh) which can 
be evaluated in O(1) time

• Store column array in Variable-Length Array (Blandford and Blelloch). In 
column array, store offset from the base row and not absolute index à
giving O(1) update time for a fixed base level

• Occasionally we need to update the base level and decrement offsets by 1
– Show base level only increases after Θ(ε-2) updates, so can spread this work 

across these updates, so O(1) worst-case update time (Use deamortization)
– Copy the data structure, use it for performing this additional work so it 

doesn’t interfere with reporting the correct answer
– When base level changes, switch to copy

• For reporting time, we can maintain T during updates, and thus the 
reporting time is the time to compute a natural logarithm, which can be 
made O(1) via a small lookup table
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Summary
• We introduced Streaming Algorithms
• Sampling Algorithms 
– Reservoir Sampling 
– Priority Sampling

• Sketch Algorithms
– Bloom Filter
– Count-Min Sketch

• Counting Distinct Elements
– Flajolet-Martin Algorithm
– Optimal Algorithm
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Q & A
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