Complexity Class P

- Deterministic in nature
- Solved by conventional computers in polynomial time

\author{

- O(1) Constant
 - O(log n) Sub-linear
 - O(n) Linear
 - O(n log n) Nearly Linear
 - O(n^{2}) Quadratic
}
- Polynomial upper and lower bounds

Decision and Optimization Problems

- Decision Problem: computational problem with intended output of "yes" or "no", 1 or 0
- Optimization Problem: computational problem where we try to maximize or minimize some value
- Introduce parameter k and ask if the optimal value for the problem is a most or at least k. Turn optimization into decision

Complexity Class NP

- Non-deterministic part as well
- choose(b): choose a bit in a non-deterministic way and assign to b
- If someone tells us the solution to a problem, we can verify it in polynomial time
- Two Properties: non-deterministic method to generate possible solutions, deterministic method to verify in polynomial time that the solution is correct.

Circuit-SAT

- Take a Boolean circuit with a single output node and ask whether there is an assignment of values to the circuit's inputs so that the output is " 1 "

Knapsack

- Given s and w can we translate a subset of rectangles to have their bottom edges on L so that the total area of the rectangles touching L is at least w ?

PTAS

- Polynomial-Time Approximation Schemes
- Much faster, but not guaranteed to find the best solution
- Come as close to the optimum value as possible in a reasonable amount of time
- Take advantage of rescalability property of some hard problems

Backtracking

- Effective for decision problems
- Systematically traverse through possible paths to locate solutions or dead ends
- At the end of the path, algorithm is left with (x, y) pair. x is remaining subproblem, y is set of choices made to get to x
- Initially (x, \varnothing) passed to algorithm

Algorithm Backtrack(x):

Input: A problem instance x for a hard problem
Output: A solution for x or "no solution" if none exists
$F \leftarrow\{(x, \emptyset)\}$,
while $F \neq \emptyset$ do
select from F the most "promising" configuration (x, y)
expand (x, y) by making a small set of additional choices
let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$ be the set of new configurations.
for each new configuration $\left(x_{i}, y_{i}\right)$ do perform a simple consistency check on ($x_{i,}, y_{i}$)
if the check returns "solution found" then
return the solution derived from (x_{i}, y_{i})
if the check returns "dead end" then
discard the configuration (x_{i}, y_{i})
else
$F \leftarrow F U\left\{\left(x_{i j} y_{i}\right)\right\}$,
return "no solution"

Branch-and-Bound

- Effective for optimization problems
- Extended Backtracking Algorithm
- Instead of stopping once a single solution is found, continue searching until the best solution is found
- Has a scoring mechanism to choose most promising configuration in each iteration

```
Algorithm Branch-and-Bound(x):
    Imput: A problem instance x for a hard optimization problem
    Output: A solution for x or "no solution" if none exists
    F\leftharpoondown{(x, \varnothing)},
    b}\leftarrow{(+\infty,\emptyset)}
    while F F \emptyset do
        select from F the most "promising" configuration ( }x,y
        expand ( }x,y\mathrm{ ), yielding new configurations ( }\mp@subsup{x}{1}{\prime},\mp@subsup{y}{1}{\prime}),\ldots,( (\mp@subsup{x}{k}{\prime},\mp@subsup{y}{k}{}
        for each new configuration (}\mp@subsup{x}{i}{},\mp@subsup{y}{i}{})\mathrm{ ) do
            perform a simple consistency check on ( }\mp@subsup{x}{i}{
            if the check returns "solution found" then
            If the cost c of the solution for ( }\mp@subsup{x}{i}{\prime},\mp@subsup{y}{i}{})\mathrm{ ) beats b then
                b}\leftarrow(\mp@subsup{c}{n}{}(\mp@subsup{x}{i}{},\mp@subsup{y}{i}{\prime})
            else
                    discard the configuration ( }\mp@subsup{x}{i}{},\mp@subsup{y}{i}{}
            If the check returns "dead end" then
                    discard the configuration ( }\mp@subsup{x}{i}{},\mp@subsup{y}{i}{}\mathrm{ )
            else
                    if lb}(\mp@subsup{x}{i}{},\mp@subsup{y}{i}{})\mathrm{ ) is less than the cost of }b\mathrm{ then
                    F}\leftarrowF|{{(\mp@subsup{x}{i}{},\mp@subsup{y}{i}{})]
                    else
                    discard the configuration ( }\mp@subsup{x}{i}{},\mp@subsup{y}{i}{}
    return b
```


Polynomial-Time Reducibility

- Language L is polynomial-time reducible to language M if there is a function computable in polynomial time that takes an input x of L and transforms it to an input $f(x)$ of M, such that x is a member of L if and only if $f(x)$ is a member of M.
- Shorthand, $L^{\text {poly }} M$ means L is polynomial-time reducible to M

NP-Hard and NP-Complete

- Language M is NP-hard if every other language L in NP is polynomial-time reducible to M
- For every L that is a member of NP, Lpoly M
- If language M is NP-hard and also in the class of NP itself, then M is NP-complete

