
Complexity	Class	P	

•  Determinis2c	in	nature	
•  Solved	by	conven2onal	computers	in	
polynomial	2me	
– O(1) 	 	 	Constant	
– O(log	n) 	 	Sub-linear	
– O(n) 	 	 	Linear	
– O(n	log	n) 	 	Nearly	Linear	
– O(n2) 	 	 	Quadra2c	

•  Polynomial	upper	and	lower	bounds	



Decision	and	Op2miza2on	Problems	

•  Decision	Problem:	computa2onal	problem	
with	intended	output	of	“yes”	or	“no”,	1	or	0	

•  Op2miza2on	Problem:	computa2onal	problem	
where	we	try	to	maximize	or	minimize	some	
value	

•  Introduce	parameter	k	and	ask	if	the	op2mal	
value	for	the	problem	is	a	most	or	at	least	k.	
Turn	op2miza2on	into	decision	



Complexity	Class	NP	

•  Non-determinis2c	part	as	well	
•  choose(b):	choose	a	bit	in	a	non-determinis2c	way	
and	assign	to	b	

•  If	someone	tells	us	the	solu2on	to	a	problem,	we	can	
verify	it	in	polynomial	2me	

•  Two	Proper2es:	non-determinis2c	method	to	
generate	possible	solu2ons,	determinis2c	method	to	
verify	in	polynomial	2me	that	the	solu2on	is	correct.	
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•  Take	a	Boolean	circuit	with	a	single	output	node	and	
ask	whether	there	is	an	assignment	of	values	to	the	
circuit’s	inputs	so	that	the	output	is	“1”	



Knapsack	

•  Given	s	and	w	can	we	translate	a	subset	of	
rectangles	to	have	their	boVom	edges	on	L	so	
that	the	total	area	of	the	rectangles	touching	L	
is	at	least	w?	
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PTAS	

•  Polynomial-Time	Approxima2on	Schemes	
•  Much	faster,	but	not	guaranteed	to	find	the	
best	solu2on	

•  Come	as	close	to	the	op2mum	value	as	
possible	in	a	reasonable	amount	of	2me	

•  Take	advantage	of	rescalability	property	of	
some	hard	problems	



Backtracking	

•  Effec2ve	for	decision	problems	
•  Systema2cally	traverse	through	possible	paths	
to	locate	solu2ons	or	dead	ends	

•  At	the	end	of	the	path,	algorithm	is	lea	with	
(x,	y)	pair.	x	is	remaining	subproblem,	y	is	set	
of	choices	made	to	get	to	x	

•  Ini2ally	(x,	Ø)	passed	to	algorithm	



Algorithm	Backtrack(x):	
				Input:	A	problem	instance	x	for	a	hard	problem	
				Output:	A	solu2on	for	x	or	“no	solu2on”	if	none	exists	
				F	�	{(x,	Ø)}.	
				while	F	≠	Ø	do	
								select	from	F	the	most	“promising”	configura2on	(x,	y)	
								expand	(x,	y)	by	making	a	small	set	of	addi2onal	choices	
								let	(x1,	y1),	…,	(xk,	yk)	be	the	set	of	new	configura2ons.	
								for	each	new	configura2on	(xi,	yi)	do	
												perform	a	simple	consistency	check	on	(xi,	yi)	
												if	the	check	returns	“solu2on	found”	then	
																return	the	solu2on	derived	from	(xi,	yi)	
												if	the	check	returns	“dead	end”	then	
																discard	the	configura2on	(xi,	yi)	
												else	
																F	�	F	U	{(xi,	yi)}.	
				return	“no	solu2on”	



Branch-and-Bound	

•  Effec2ve	for	op2miza2on	problems	
•  Extended	Backtracking	Algorithm	

•  Instead	of	stopping	once	a	single	solu2on	is	
found,	con2nue	searching	un2l	the	best	
solu2on	is	found	

•  Has	a	scoring	mechanism	to	choose	most	
promising	configura2on	in	each	itera2on	



Algorithm	Branch-and-Bound(x):	
				Input:	A	problem	instance	x	for	a	hard	op2miza2on	problem	
				Output:	A	solu2on	for	x	or	“no	solu2on”	if	none	exists	
				F	�	{(x,	Ø)}.	
				b	�	{(+∞,	Ø)}.	
				while	F	≠	Ø	do	
								select	from	F	the	most	“promising”	configura2on	(x,	y)	
								expand	(x,	y),	yielding	new	configura2ons	(x1,	y1),	…,	(xk,	yk)	
								for	each	new	configura2on	(xi,	yi)	do	
												perform	a	simple	consistency	check	on	(xi,	yi)	
												if	the	check	returns	“solu2on	found”	then	
																if	the	cost	c	of	the	solu2on	for	(xi,	yi)	beats	b	then	
																				b	�	(c,	(xi,	yi))	
																else	
																				discard	the	configura2on	(xi,	yi)	
												if	the	check	returns	“dead	end”	then	
																discard	the	configura2on	(xi,	yi)	
												else	
																	if	lb(xi,	yi)	is	less	than	the	cost	of	b	then	
																					F	�	F	U	{(xi,	yi)}.	
																	else	
																					discard	the	configura2on	(xi,	yi)	
				return	b	



Polynomial-Time	Reducibility	

•  Language	L	is	polynomial-2me	reducible	to	
language	M	if	there	is	a	func2on	computable	
in	polynomial	2me	that	takes	an	input	x	of	L	
and	transforms	it	to	an	input	f(x)	of	M,	such	
that	x	is	a	member	of	L	if	and	only	if	f(x)	is	a	
member	of	M.	

•  Shorthand,	LpolyM	means	L	is	polynomial-2me	
reducible	to	M	 ¦	



NP-Hard	and	NP-Complete	

•  Language	M	is	NP-hard	if	every	other	language	
L	in	NP	is	polynomial-2me	reducible	to	M	

•  For	every	L	that	is	a	member	of	NP,	LpolyM	

•  If	language	M	is	NP-hard	and	also	in	the	class	
of	NP	itself,	then	M	is	NP-complete	¦	


