## Probabilistic Inequalifies

- For Random Variable A

$$
\begin{aligned}
& \text { mean } \quad \mu=\overline{\mathrm{A}} \\
& \text { variance } \quad \sigma^{2}=\overline{\mathrm{A}^{2}}-(\overline{\mathrm{A}})^{2}
\end{aligned}
$$



## Markov and Chebychev Probabilistic Inequalities

- Markov Inequality (uses only mean)

$$
\operatorname{Prob}(\mathrm{A} \geq \mathrm{x}) \leq \frac{\mu}{\mathrm{x}}
$$

- Chebychev Inequality
(uses mean and variance)

$$
\operatorname{Prob}(|\mathrm{A}-\mu| \geq \Delta) \leq \frac{\sigma^{2}}{\Delta^{2}}
$$

