
Data Structures for Disjoint Sets

Maintain a Dynamic collection of disjoint sets.

Each set has a unique representative (an arbitrary
member of the set).

Make-Set(x) - Create a new set with one member
x.

Union(x; y) - Combine the two sets, represented
by x and y into one set.

Find-Set(x) - Find the representative of the set
containing x.

1/18



Computing Connected Components

Given a graph G = (V;E) compute the connected
components of G.

Connected-Components(G)
1 for each vertex v 2 V [G]
2 do Make-Set(v)
3 for each edge (u; v) 2 E[G]
4 do if Find-Set(u) 6= Find-Set(v)
5 then Union(u; v)

2/18



Implementation: Disjoint-set forests

Represent each set with a rooted tree where the
root is the representative of the set.

� Make-Set: creates a tree with just one node.

� Find-Set: follows parent pointers to the root,
returns root.

� Union: makes the root of one tree point to the
root of another.

3/18



Performance

Under a naive implementation, a sequence of m
operations on n elements can take O(mn) time.

Using union by rank heuristic the above time can be
reduced to O(m lg n).

Using path compression heuristic the time can be
reduced even further to O(m lg� n) !

4/18



lg� function

Intuitively, lg�(n), or the iterated logarithm, is the
number of repeated lgs of n required to get a value
less than or equal to 1:

lg(i) n =

8><
>:

n : i = 0

lg(lg(i�1) n) : i > 0; lg(i�1) n > 0

unde�ned : i > 0; lg(i�1) n � 0 or unde�ned

lg� n = min
n
i � 0 : lg(i) n � 1

o

It is a very slow growing function:

lg� 2 = 1
lg� 4 = 2

lg� 16 = 3
lg� 65536 = 4
lg� 265536 = 5

lg� 2
:�
�
2
9=
;n

= n

5/18



Union by rank

When executing a Union operation, make the root of
the tree with fewer nodes point to the root of the tree
with more nodes.

Maintain a rank for each subtree which is an upper
bound on the height of the node.

Every node x then has variables rank[x], the rank of
x, and p[x], the parent of x.

6/18



Pseudocode

Make-Set(x)
1 p[x] x
2 rank[x] 0

Union(x; y)
1 Link(Find-Set(x);Find-Set(y))

Link(x; y)
1 if rank[x] > rank[y]
2 then p[y] x
3 else p[x] y
4 if rank[x] = rank[y]
5 then rank[y] rank[y] + 1

7/18



Path Compression

When executing a Find-Set operation, make each
node along the �nd-path point directly to the root.

We de�ne Find-Set recursively so that it updates
all the pointers along a �nd-path:

Find-Set(x)
1 if x 6= p[x]
2 then p[x] Find-Set(p[x])
3 return p[x]

8/18



Simple Lemmas on rank

Lemma 1.For all nodes x, rank[x] � rank[p[x]] with
strict inequality if x 6= p[x]. The value of rank[p[x]]
is monotonically increasing with time.

Lemma 2. For all tree roots x, size(x) � 2rank[x].

Lemma 3. For any integer r � 0, there are at most

n=2r nodes of rank r.

Proof. We can \identify" 2r nodes uniquely with each
node of rank r: these are the nodes belonging to the
subtree rooted at the node of rank r.

If there were more than n=2r nodes of rank r, then
the graph contains more than n=2r � 2r = n nodes, a
contradiction.

Corollary 1. Every node has rank at most blg nc.

9/18



Main Result

Theorem 1. A sequence of m Make-Set, Union,

and Find-Set operations, n of which are Make-

Set operations, con be performed on a disjoint-set

forest with union by rank and path compression in

worst-case time O(m lg� n).

10/18



Proof by Amortized Analysis

Proof. Assign a charge of 1 to each Make-Set and
Link operation.

Partition node ranks into blocks by putting rank r
into block lg� r for r = 0; 1; : : : ; blg nc. De�ne B(j)
as follows:

B(j) =

8>>>>><
>>>>>:

�1 if j = �1
1 if j = 0
2 if j = 1

2
:�
�
2
9=
;j

if j � 2

The jth block consists of the set of ranks

fB(j � 1) + 1; B(j � 1) + 2; : : : ; B(j)g

for j = 0; 1; : : : ; lg� n� 1.

11/18



Find-Set charges

We assign two types of charges for a Find-Set

operation.

block charge: Suppose the �nd-path is x0; x1; : : : ; xl
where xl be the root.

For each j = 0; 1; : : : ; lg� n � 1, we assess one block
charge to the last node with rank in block j on that
path.

One block charge is also assessed to xl�1.

path charge: Each node which does not receive a
block charge receives a path charge.

12/18



Counting block charges

Lemma 4. Once a node, other than xl and xl�1, is

assessed block charges, it will never again be assessed

path charges.

There is at most one block charge assessed for each
block number on the given �nd path, plus one block
charge for the child of the root, xl�1.

Since block numbers range from 0 to lg� n � 1, there
are at most lg� n + 1 block charges assessed for each
Find-Set operation.

Thus, there at mostm(lg� n+1) block charges assessed
over all Find-Set operations.

13/18



Path charges

Observations:

1. If a node xi is assessed a path charge, then p[xi] 6=
xl.
=) xi must be assigned a new parent during path
compression.

2. xi's new parent must have higher rank than its old
parent.

Lemma 5. A node can be assessed at most B(j) �
B(j�1)�1 path charges while its rank is in block j.

14/18



Counting path charges

We can bound the path charges using N(j), the
number of nodes with rank in block j:

N(j) �

B(j)X
r=B(j�1)+1

n

2r

for j = 0:

N(j) = n=20 + n=21

= 3n=2

= 3n=2B(0)

15/18



for j � 1,

N(j) �
n

2B(j�1)+1

B(j)�(B(j�1)+1)X
r=0

1

2r

<
n

2B(j�1)+1

1X
r=0

1

2r

=
n

2B(j�1)

=
n

B(j)
� 3n=2B(j)

So, for any j � 0, we have N(j) � 3n=2B(0).

16/18



Summing over all blocks to get P (n), the overall
number of path charges,

P (n) �

lg� n�1X
j=0

3n

2B(j)
(B(j)�B(j � 1)� 1)

�

lg� n�1X
j=0

3n

2B(j)
B(j)

=
3

2
n lg� n

17/18



Total runtime

Thus the total number of charges incurred by Find-
Set operations is

O(block charges + path charges) = O(m(lg� n+1)+n(lg� n))

which is O(m lg� n) since m � n.

Since there are O(n)Make-Set and Link operations,
each with 1 charge, the total time is

O(m lg� n+ n) = O(m lg� n)

18/18


