Introduction to Cryptography

Li Yang, UTC

Summary

- Symmetric Encryption
- Public Encryption
- Digital Signature
- Key Distribution

Basic Terminology

- plaintext - the original message
- ciphertext - the coded message
- cipher - algorithm for transforming plaintext to ciphertext
- key - info used in cipher known only to sender/receiver
- encipher (encrypt) - converting plaintext to ciphertext
- decipher (decrypt) - recovering ciphertext from plaintext
- cryptography - study of encryption principles/methods
- cryptanalysis (codebreaking) - the study of principles/ methods of deciphering ciphertext without knowing key
- cryptology - the field of both cryptography and cryptanalysis

The language of cryptography

symmetric key crypto: sender, receiver keys identical public-key crypto: encryption key public, decryption key secret (private)

Cryptography

- can characterize by:
- type of encryption operations used
- substitution / transposition / product
- number of keys used
- single-key or private / two-key or public
- way in which plaintext is processed
- block / stream

More Definitions

- unconditional security
- no matter how much computer power is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext
- computational security
- given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Symmetric Encryption

- or conventional / secret-key / single-key
- sender and recipient share a common key
- all classical encryption algorithms are private-key
- was only type prior to invention of publickey in 1970's

Symmetric Cipher Model

Secret key shared by sender and recipient

Symmetric Key Cryptography

symmetric key crypto: Bob and Alice share know same (symmetric) key: $\mathrm{K}_{\mathrm{A}-\mathrm{B}}$

- e.g., key is knowing substitution pattern in mono alphabetic substitution cipher

Requirements

- two requirements for secure use of symmetric encryption:
- a strong encryption algorithm
- a secret key known only to sender / receiver $Y=E_{\kappa}(X)$
$X=D_{k}(Y)$
- assume encryption algorithm is known
- implies a secure channel to distribute key

Simple Idea: One-Time Pad

Encrypt by bitwise XOR of plaintext and key: ciphertext = plaintext \oplus key

Decrypt by bitwise XOR of ciphertext and key: ciphertext \oplus key $=$ (plaintext \oplus key) \oplus key = plaintext $\oplus($ key \oplus key $)=$ plaintext

Cipher achieves perfect secrecy if and only if there are as many possible keys as possible plaintexts, and every key is equally likely (Claude Shannon's result)

Advantages of One-Time Pad

- Easy to compute
- Encryption and decryption are the same operation
- Bitwise XOR is very cheap to compute
- As secure as possible
- Given a ciphertext, all plaintexts are equally likely, regardless of attacker's computational resources
- ...as long as the key sequence is truly random
- True randomness is expensive to obtain in large quantities
- ...as long as each key is same length as plaintext
- But how does the sender communicate the key to receiver?

Problems with One-Time Pad

- Key must be as long as plaintext
- Impractical in most realistic scenarios
- Still used for diplomatic and intelligence traffic
- Does not guarantee integrity
- One-time pad only guarantees confidentiality
- Attacker cannot recover plaintext, but can easily change it to something else
- Insecure if keys are reused
- Attacker can obtain XOR of plaintexts

Summary

- Symmetric encryption
- Public encryption
- Digital Signature
- Key distribution

Private-Key Cryptography

- traditional private/secret/single key cryptography uses one key
- shared by both sender and receiver
- if this key is disclosed communications are compromised
- also is symmetric, parties are equal
- hence does not protect sender from receiver forging a message \& claiming is sent by sender

Public-Key Cryptography

- probably most significant advance in the 3000 year history of cryptography
- uses two keys - a public \& a private key
- asymmetric since parties are not equal
- uses clever application of number theoretic concepts to function
- complements rather than replaces private key crypto

Public-Key Cryptography

- public-key/two-key/asymmetric cryptography involves the use of two keys:
- a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
- a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- is asymmetric because
- those who encrypt messages or verify signatures cannot decrypt messages or create signatures

Public-Key Cryptography

Public-Key Characteristics

- Public-Key algorithms rely on two keys with the characteristics that it is:
- computationally infeasible to find decryption key knowing only algorithm \& encryption key
- computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
- either of the two related keys can be used for encryption, with the other used for decryption (in some schemes)

Public-Key Cryptosystems

Figure 9.4 Public-Key Cryptosystem: Secrecy and Authentication

Public-Key Applications

- can classify uses into 3 categories:
- encryption/decryption (provide secrecy)
- digital signatures (provide authentication)
- key exchange (of session keys)
- some algorithms are suitable for all uses, others are specific to one

Security of Public Key Schemes

- like private key schemes brute force exhaustive search attack is always theoretically possible
- but keys used are too large (>512bits)
- security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalysis) problems
- more generally the hard problem is known, its just made too hard to do in practise
- requires the use of very large numbers
- hence is slow compared to secret key schemes

Public key encryption algorithms
Requirements:
(1) need $K_{B}^{+} \cdot()$ and $K_{B}^{-}()$such that

$$
K_{B}^{-}\left(K_{B}^{+}(m)\right)=m
$$

(2) given public key K_{B}^{+}, it should be impossible to compute private key $\mathrm{K}_{\mathrm{B}}^{-}$

RSA: Rivest, Shamir, Adelson algorithm

RSA: Choosing keys

1. Choose two large prime numbers p, q. (e.g., 1024 bits each)
2. Compute $n=p q, z=(p-1)(q-1)$
3. Choose e (with e<n) that has no common factors with z. (e, z are "relatively prime").
4. Choose d such that ed-1 is exactly divisible by z. (in other words: $e d \bmod z=1$).
5. Public key is $\underbrace{(n, e)}_{\mathrm{K}_{\mathrm{B}}^{+}}$. Private key is $\underbrace{(n, d)}_{\mathrm{K}_{\mathrm{B}}^{-}}$.

RSA: Encryption, decryption

0 . Given (n, e) and (n, d) as computed above

1. To encrypt bit pattern, m, compute $c=m^{e} \bmod n$ (i.e., remainder when m^{e} is divided by n)
2. To decrypt received bit pattern, c, compute $m=c^{d} \bmod n$ (i.e., remainder when c^{d} is divided by n)

$$
\begin{gathered}
\text { Magic } \\
\text { happens! }
\end{gathered} m=(\underbrace{m^{e} \bmod n}_{c})^{d} \bmod n
$$

RSA example:

Bob chooses $p=5, q=7$. Then $n=35, z=24$.
$e=5$ (so e, z relatively prime). $d=29$ (so ed-1 exactly divisible by z.

RSA: Why is that $\quad m=\left(m^{e} \bmod n\right)^{d} \bmod n$

Useful number theory result: If p, q prime and $n=p q$, then:

$$
x^{y} \bmod n=x^{y \bmod (p-1)(q-1)} \bmod n
$$

$\left(m^{e} \bmod n\right)^{d} \bmod n=m^{e d} \bmod n$
$=m^{e d} \bmod (p-1)(q-1) \bmod n$
(using number theory result above)
$=m^{1} \bmod n$
(since we chose ed to be divisible by ($p-1)(q-1)$ with remainder 1)
$=m$

RSA: another important property

The following property will be very useful later:

$$
K_{B}^{-}\left(K_{B}^{+}(m)\right)=m=K_{B}^{+}\left(K_{B}^{-}(m)\right)
$$

use public key use private key first, followed first, followed by private key by public key

Result is the same!

Summary

- Symmetric encryption
- Public encryption
- Digital Signature
- Key distribution

Digital Signatures

Cryptographic technique analogous to hand-written signatures.

- sender (Bob) digitally signs document, establishing he is document owner/creator.
- verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

Digital Signatures

Simple digital signature for message m:

- Bob signs m by encrypting with his private key K_{B}, creating "signed" message, $K_{B}(m)$

Bob's message, m

Dear Alice
Oh, how I have missed
you. I think of you all the
time! ...(blah blah blah)
Bob

$K_{B}^{-}(m)$
Bob's message, m, signed
(encrypted) with his private key

Digital Signatures (more)

- Suppose Alice receives msg m, digital signature $\mathrm{K}_{\mathrm{B}}^{-}(\mathrm{m})$
- Alice verifies m signed by Bob by applying Bob's public key K_{B}^{+}to $K_{B}^{-}(m)$ then checks $K_{B}^{+}\left(K_{B}^{-}(m)\right)=m$.
- If $K_{B}^{+}\left(K_{B}^{-}(m)\right)=m$, whoever signed m must have used Bob's private key. Alice thus verifies that:
\checkmark Bob signed m.
\checkmark No one else signed m.
\checkmark Bob signed m and not m '.
Non-repudiation:
\checkmark Alice can take m, and signature $K_{B}^{-}(m)$ to court and prove that Bob signed m .

Internet checksum: poor crypto hash function
Internet checksum has some properties of hash function:
\checkmark produces fixed length digest (16-bit sum) of message
\checkmark is many-to-one
But given message with given hash value, it is easy to find another message with same hash value:

message	ASCII format	message	ASCII format
I O U 1	49 4F 5531	I O U 9	$4945 \quad 5539$
00.9	30302 E 39	00.1	$30 \quad 302 \mathrm{E} 31$
9 B O B	3942 D2 42	9 B O B	3942 D2 42
	B2 C1 D2 AC	essages hecksum	2 C 1 D 2 AC

Message Digests

Computationally expensive to public-key-encrypt long messages
Goal: fixed-length, easy- tocompute digital "fingerprint"

- apply hash function H to m, get fixed size message digest, $H(m)$.

Hash function

 properties:- many-to-1
- produces fixed-size msg digest (fingerprint)
- given message digest x, computationally infeasible to find m such that $x=H(m)$

Digital signature $=$ signed message digest

Bob sends digitally signed message:

Alice verifies signature and integrity of digitally signed message:

