
Li Yang, UTC

Introduction to Cryptography

Summary

• Symmetric Encryption
• Public Encryption
• Digital Signature
• Key Distribution

Basic Terminology

• plaintext - the original message
• ciphertext - the coded message
• cipher - algorithm for transforming plaintext to ciphertext
• key - info used in cipher known only to sender/receiver
• encipher (encrypt) - converting plaintext to ciphertext
• decipher (decrypt) - recovering ciphertext from plaintext
• cryptography - study of encryption principles/methods
• cryptanalysis (codebreaking) - the study of principles/

methods of deciphering ciphertext without knowing key
• cryptology - the field of both cryptography and

cryptanalysis

The language of cryptography

symmetric key crypto: sender, receiver keys identical
public-key crypto: encryption key public, decryption key

secret (private)

plaintext plaintextciphertext

KA

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

KB

Cryptography

• can characterize by:
– type of encryption operations used

• substitution / transposition / product
– number of keys used

• single-key or private / two-key or public
– way in which plaintext is processed

• block / stream

More Definitions

• unconditional security
– no matter how much computer power is

available, the cipher cannot be broken since
the ciphertext provides insufficient information
to uniquely determine the corresponding
plaintext

• computational security
– given limited computing resources (eg time

needed for calculations is greater than age of
universe), the cipher cannot be broken

Symmetric Encryption

• or conventional / secret-key / single-key
• sender and recipient share a common key
• all classical encryption algorithms are

private-key
• was only type prior to invention of public-

key in 1970’s

Symmetric Cipher Model

Symmetric Key Cryptography

symmetric key crypto: Bob and Alice share know
same (symmetric) key: K

• e.g., key is knowing substitution pattern in mono
alphabetic substitution cipher

plaintextciphertext

KA-B

encryption
algorithm

decryption
algorithm

A-B

KA-B

plaintext
message, m

K (m)
A-B

K (m)
A-Bm = K ()A-B

Requirements

• two requirements for secure use of
symmetric encryption:
– a strong encryption algorithm
– a secret key known only to sender / receiver

Y = EK(X)
X = DK(Y)

• assume encryption algorithm is known
• implies a secure channel to distribute key

Simple Idea: One-Time Pad

= 10111101…

= 00110010…
10001111…Å

00110010…
Å

10111101…

Key is a never-repeating bit
sequence as long as plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext Å key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext Å key =
(plaintext Å key) Å key =
plaintext Å (key Å key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, and
every key is equally likely (Claude Shannon’s result)

Advantages of One-Time Pad
• Easy to compute

– Encryption and decryption are the same operation
– Bitwise XOR is very cheap to compute

• As secure as possible
– Given a ciphertext, all plaintexts are equally likely,

regardless of attacker’s computational resources
– …as long as the key sequence is truly random

• True randomness is expensive to obtain in large
quantities

– …as long as each key is same length as plaintext
• But how does the sender communicate the key to

receiver?

Problems with One-Time Pad

• Key must be as long as plaintext
– Impractical in most realistic scenarios
– Still used for diplomatic and intelligence traffic

• Does not guarantee integrity
– One-time pad only guarantees confidentiality
– Attacker cannot recover plaintext, but can

easily change it to something else
• Insecure if keys are reused

– Attacker can obtain XOR of plaintexts

Summary

• Symmetric encryption
• Public encryption
• Digital Signature
• Key distribution

Private-Key Cryptography

• traditional private/secret/single key
cryptography uses one key

• shared by both sender and receiver
• if this key is disclosed communications are

compromised
• also is symmetric, parties are equal
• hence does not protect sender from

receiver forging a message & claiming is
sent by sender

Public-Key Cryptography

• probably most significant advance in the
3000 year history of cryptography

• uses two keys – a public & a private key
• asymmetric since parties are not equal
• uses clever application of number

theoretic concepts to function
• complements rather than replaces private

key crypto

Public-Key Cryptography

• public-key/two-key/asymmetric cryptography
involves the use of two keys:
– a public-key, which may be known by anybody, and

can be used to encrypt messages, and verify
signatures

– a private-key, known only to the recipient, used to
decrypt messages, and sign (create) signatures

• is asymmetric because
– those who encrypt messages or verify signatures

cannot decrypt messages or create signatures

Public-Key Cryptography

Public-Key Characteristics

• Public-Key algorithms rely on two keys
with the characteristics that it is:
– computationally infeasible to find decryption

key knowing only algorithm & encryption key
– computationally easy to en/decrypt messages

when the relevant (en/decrypt) key is known
– either of the two related keys can be used for

encryption, with the other used for decryption
(in some schemes)

Public-Key Cryptosystems

Public-Key Applications

• can classify uses into 3 categories:
– encryption/decryption (provide secrecy)
– digital signatures (provide authentication)
– key exchange (of session keys)

• some algorithms are suitable for all uses,
others are specific to one

Security of Public Key Schemes

• like private key schemes brute force exhaustive
search attack is always theoretically possible

• but keys used are too large (>512bits)
• security relies on a large enough difference in

difficulty between easy (en/decrypt) and hard
(cryptanalysis) problems

• more generally the hard problem is known, its
just made too hard to do in practise

• requires the use of very large numbers
• hence is slow compared to secret key schemes

Public key encryption algorithms

need K () and K () such thatB B
. .

given public key K , it should
be impossible to compute
private key K B

B

Requirements:

1

2

RSA: Rivest, Shamir, Adelson algorithm

+ -

K (K (m)) = m
BB

- +

+

-

RSA: Choosing keys

1. Choose two large prime numbers p, q.
(e.g., 1024 bits each)

2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
with z. (e, z are “relatively prime”).

4. Choose d such that ed-1 is exactly divisible by z.
(in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

KB
+ KB

-

RSA: Encryption, decryption

0. Given (n,e) and (n,d) as computed above

1. To encrypt bit pattern, m, compute
c = m mod ne (i.e., remainder when m is divided by n)e

2. To decrypt received bit pattern, c, compute
m = c mod nd (i.e., remainder when c is divided by n)d

m = (m mod n)e mod ndMagic
happens!

c

RSA example:

Bob chooses p=5, q=7. Then n=35, z=24.
e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z.

letter m me c = m mod ne

l 12 1524832 17

c m = c mod nd
17 481968572106750915091411825223071697 12

cd letter
l

encrypt:

decrypt:

RSA: Why is that m = (m mod n)e mod nd

(m mod n)e mod n = m mod nd ed

Useful number theory result: If p,q prime and
n = pq, then:

x mod n = x mod ny y mod (p-1)(q-1)

= m mod ned mod (p-1)(q-1)

= m mod n1

= m

(using number theory result above)

(since we chose ed to be divisible by
(p-1)(q-1) with remainder 1)

RSA: another important property

The following property will be very useful later:

K (K (m)) = m
BB

- +
K (K (m))BB

+ -
=

use public key
first, followed
by private key

use private key
first, followed
by public key

Result is the same!

Summary

• Symmetric encryption
• Public encryption
• Digital Signature
• Key distribution

Fall, 2005 CPSC499 Information Security Management

Digital Signatures

Cryptographic technique analogous to
hand-written signatures.

• sender (Bob) digitally signs document,
establishing he is document owner/creator.

• verifiable, nonforgeable: recipient (Alice) can
prove to someone that Bob, and no one else
(including Alice), must have signed document

Digital Signatures

Simple digital signature for message m:
• Bob signs m by encrypting with his private

key KB, creating “signed” message, KB(m)
--

Dear Alice
Oh, how I have missed
you. I think of you all the
time! …(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key

K B
-

Bob’s message,
m, signed

(encrypted) with
his private key

K B
-(m)

Digital Signatures (more)

• Suppose Alice receives msg m, digital signature KB(m)
• Alice verifies m signed by Bob by applying Bob’s public

key KB to KB(m) then checks KB(KB(m)) = m.
• If KB(KB(m)) = m, whoever signed m must have used

Bob’s private key.

+ +

-

-

- -

+

Alice thus verifies that:
ü Bob signed m.
ü No one else signed m.
ü Bob signed m and not m’.

Non-repudiation:
ü Alice can take m, and signature KB(m) to court

and prove that Bob signed m.

-

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash
function:

ü produces fixed length digest (16-bit sum) of
message

ü is many-to-one
But given message with given hash value, it is easy

to find another message with same hash value:

I O U 1
0 0 . 9
9 B O B

49 4F 55 31
30 30 2E 39
39 42 D2 42

message ASCII format

B2 C1 D2 AC

I O U 9
0 0 . 1
9 B O B

49 4F 55 39
30 30 2E 31
39 42 D2 42

message ASCII format

B2 C1 D2 ACdifferent messages
but identical checksums!

Message Digests

Computationally expensive
to public-key-encrypt long
messages

Goal: fixed-length, easy- to-
compute digital
“fingerprint”

• apply hash function H to
m, get fixed size message
digest, H(m).

Hash function
properties:

• many-to-1
• produces fixed-size msg digest

(fingerprint)
• given message digest x,

computationally infeasible to
find m such that x = H(m)

large
message

m

H: Hash
Function

H(m)

large
message

m
H: Hash
function H(m)

digital
signature
(encrypt)

Bob’s
private

key K B
-

+

Bob sends digitally signed
message:

Alice verifies signature and
integrity of digitally
signed message:

KB(H(m))-

encrypted
msg digest

KB(H(m))-

encrypted
msg digest

large
message

m

H: Hash
function

H(m)

digital
signature
(decrypt)

H(m)

Bob’s
public

key K B
+

equal
?

Digital signature = signed message digest
