
Computing with Chemical
Reaction Networks

Nikhil Gopalkrishnan

(From presenta-on of Chen, Doty, Soloveichik, Determinis-c Func-on Computa-on with Chemical Reac-on Networks.)

 2

The programming language of
chemical kinetics

Use the language of coupled chemical
reactions prescriptively as a “programming
language” for engineering new systems (rather
than descriptively as a modeling language for
existing systems)

These gloves came
free with my toilet
brush!

 4

Chemical Reaction Networks (CRN)

syntax:

we use only
stochastic CRNs
in this talk

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

 25

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

 26

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

 3

Cells are smart: controlled by
signaling and regulatory networks

source: David Rogers, Vanderbilt University

Human neutrophil
chasing a bacterium
through red blood
cells

Want to understand principles of chemical computation

Engineer embedded controllers for biochemical systems, “wet
robots”, smart drugs, etc.

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

7

 9

Are CRNs an “implementable”
programming language?

● “I don't believe that every crazy CRN you write down actually
describes real chemicals!”

● Response to objection: Soloveichik, Seelig, Winfree [PNAS
2010] found a physical implementation (high-accuracy
approximation) of any CRN, using nucleic-acid strand
displacement cascades

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

8

Formal Defini-on of
Discrete (Stochas-c) CRN Model

● Finite set of species {X, Y, Z, …}
● A state is a nonnegative integer vector c

indicating the count (number of molecules) of
each species: write counts as #cX, #cY, …

● Finite set of reactions: e.g.
X → W + Y + Z
A + B → C

● (assume all rate constants are 1, and all reactions are
unimolecular or bimolecular)

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

9

Stochastic Chemical Reaction Network

Stochastic Chemical Reaction Network(SCRN): a finite set
of d reactions acting on a finite number m of species.

The stoichiometry is the nonnegative number of copies of
each species required for a reaction to take place, or
produced when the reaction does take place.

A reaction α is defined as:
● Stoichiometry of the reactants: rα = (rα,1,..., rα,m).

– A vector of nonnegative integers.

● Stoichiometry of the products, pα = (pα,1 , . . . , pα,m).
– A vector of nonnegative integers.

10

● We will use capital letters to refer to various species and
we will use standard chemical notation to describe reactions.

● Example:
● Reaction A + D → A + 2E

– Consumes 1 molecule of species A and 1 molecule of species D
– Produces 1 molecule of species A and 2 molecules of species E.

● In this reaction, A acts catalytically because it must be
present for the reaction to occur, but its number is unchanged
when the reaction does occur.

Stochas4c Chemical Reac4on Network

11

State of the network: A = (q1 , . . . , qm).
– a vector of nonnegative integers specifying the quantities present of

each species.

For reaction α:
● Stoichiometry of reactants: rα = (rα,1,..., rα,m).

● Stoichiometry of the products, pα = (pα,1 , . . . , pα,m).

Reaction α is possible in state A:

● Only if there are enough reactants present, that is, ∀i, qi ≥ rα,i.

When reaction α occurs in state A:

● The reactant molecules are used up and the products are
produced.

● New state: B = (q1 − rα,1 + pα,1,..., qm − rα,m + pα,m).

Stochastic Chemical Reaction Network

12

Stochastic Chemical Reaction Network
Reaction Notation:
• We write A→ B if there is some reaction in the

Stochastic Chemical Reaction Network C that can
change A to B.

• We write →* for the reflexive transitive closure of →
.

Probabilistic Reactions:
• We write Pr[A → B] to indicate the probability that,

given that the state is initially A, the next reaction
will transition to the state to B.

13

Discrete (Stochas9c) CRN Model
System evolves via a continuous time Poisson process:
Reaction j Propensity ρj
● A → … #A

● A + B → … (1/v) #A #B where v = volume

● A + A → … (1/v) #A (#A – 1) / 2

Time until next reaction: is exponential random variable with
rate Σj ρj (and expected value 1 / Σj ρj)

Probability ρk / Σj ρj that the next reaction is the kth reaction.

14

Computation With Finite Stochastic Chemical Reaction
Networks (Soloveichik,Cook, Winfree, Bruck, 1985)

DNA as a universal substrate for chemical
kinetics(Soloveichik, Seelig, Winfree, PNAS2010)

Programmability of Chemical Reaction Networks(Chen,
Doty, Soloveichik)

Stochastic Chemical Reaction Networks
Papers

Simulation of Boolean circuits using CRNs
Programmability of Chemical Reaction Networks(Chen, Doty, Soloveichik)

Construct: Simulating CRN:

• It deterministically computes the same function as the given Boolean circuit, despite the

uncontrollable order in which reactions occur.

• The presence of a single A
i

molecule represents that x
i

= 0, the presence of a single B
i molecule represents that x

i
= 1, and the presence of neither indicates that x

i
has not yet

been computed.

• If one starts with a single A or B molecule for each input variable, then with probability 1

the correct species will be eventually produced for each output variable.

Given: Boolean Circuit: The Boolean Circuit suffices to use only one type of Boolean operaEon: NAND:

Computa(ons using CRNs
Programmability of Chemical Reac>on
Networks(Chen, Doty, Soloveichik)

(d) A Fractran program:
• The numerators correspond to the reaction products, and the

denominators correspond to the reactants.
• The first seven prime numbers are used here in

correspondence to the letters A through G in the other
examples.

• As in the previous example, F (13) and G (17) must be
introduced to avoid unreduced fractions for the catalyzed
reactions

550 M. Cook et al.

Fig. 1 Four representations of the same computation. Starting with 1 A and n C’s, the maximum
number of D’s that can be produced is 2n. (a) A Stochastic Chemical Reaction Network. (b) A Petri
net. Each circle corresponds to a place (a molecular species), and each black bar corresponds to
a transition (a reaction). (c) A Vector Addition System. Note that dimensions F and G must be
added to the Vector Addition System to capture the two reactions that are catalyzed by A and B .
(d) A Fractran program. The numerators correspond to the reaction products, and the denominators
correspond to the reactants. The first seven prime numbers are used here in correspondence to the
letters A through G in the other examples. As in the previous example, F (13) and G (17) must be
introduced here to avoid unreduced fractions for the catalyzed reactions

difficult to guarantee a unique outcome for a nontrivial computation. Stochastic
Chemical Reaction Network computations that are arranged so as to guarantee a
unique outcome will be called confluent computations.

We can find clues regarding how to program such systems, including relevant
theorems, by examining the related computational models mentioned above and
shown in Fig. 1. The differences between the models are minor, amounting mostly

Four representations of
the same computation:
Starting with 1 A and n C’s, the
maximum number of D’s that
can be produced is 2n.

(a) A Stochastic
Chemical Reaction
Network:

(b) A Petri net:
Each circle corresponds
to a place (a molecular
species), and each black
bar corresponds to a
transition (a reaction).

(c) A Vector Addition System: Note
that dimensions F and G must be added to
the Vector Addition System to capture the
two reactions that are catalyzed by A and B.

17

Determinis)c Func)on Computa)on with
Chemical Reac)on Networks

Ho-Lin Chen, David Doty, and David Soloveichik

(From presentation of Chen, Doty, Soloveichik, Deterministic
Function Computation with Chemical Reaction Networks.)

Deterministic Function Computation
with CRNs

● initial state: input counts X1, X2, …, Xk (and fixed
counts of non-input species)

● Output: counts of Z1, Z2, …, Zl
● Output-stable state: all states reachable from it have

same counts of Z1, Z2, …, Zl
● Deterministic computation: a correct output-stable

state “always reached in the limit t → ∞” (infinitely
often reachable states are infinitely often reached)

Task: compute function z = f(x) (x∈ℕk, z∈ℕl)

19

Example 1 of Deterministic Function
Computation with CRNs

Task is to Compute: f(x) = 2x

Start with input amount x
of X

Reaction: X → Z + Z

Output z
(From presentation of Chen, Doty, Soloveichik, Deterministic

Function Computation with Chemical Reaction Networks.)

20

Example 2 of Deterministic Function
Computation with CRNs

Task is to Compute:
f(x1,x2) = if x1 > x2 then y = 1 else y = 0

start with 1 N and
input amounts of
X1,X2

X1 + N → Y
X2 + Y → N

(From presentaHon of Chen, Doty, Soloveichik, DeterminisHc
FuncHon ComputaHon with Chemical ReacHon Networks.)

21

Task is to Compute:
f(x1,x2) = max {x1,x2}

start with input
amounts of X1,X2

X1 → Z1 + Z
X2 → Z2 + Z
Z1 + Z2 → K
K + Z → Ø

Z

(From presentation of Chen, Doty, Soloveichik, Deterministic
Function Computation with Chemical Reaction Networks.)

Example 3 of Deterministic Function
Computation with CRNs

22

● f(x) = x/2 ?
● f(x) = x2 ?
● f(x1,x2) = x1∙x2 ?
● f(x) = 2x ?

(From presentaHon of Chen, Doty, Soloveichik, DeterminisHc
FuncHon ComputaHon with Chemical ReacHon Networks.)

Other Deterministic Functions:
Can they be computed with CRNs?

23

Main result:
Theorem: Functions f: ℕk → ℕl deterministically

computable by CRNs are precisely those with a
semilinear graph. graph(f) = { (x,z)∈ℕk+l | f(x)=z}

A ⊆ℕk+l is linear if there are vectors b, u1, …, up so
that A = { b + n1∙u1 + … + np∙up | n1,...,np∈ℕ }

A is semilinear if it is a finite union of linear sets.
Intuitively, semilinear functions are “piecewise linear

functions” with a finite number of pieces

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

Deterministic Functions Computed with CRNs

24

Non-semilinear examples

Other functions
not semilinear:
●f(x) = x2
●f(x) = 2x

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

25

How do we show this?

Theorem [Angluin, Aspnes, Eisenstat, PODC 2006]:
The predicates decidable by CRNs are precisely
the semilinear predicates.

We connect computation of functions (integer output)
to computation of predicates (YES/NO output)

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

26

Determinis4c predicate computa4on
with stochas4c CRNs:

● initial state: input counts X1, X2, …, Xk (and
fixed counts of non-input species)

● output: either #Y > 0 and #N = 0 (yes)
or #Y = 0 and #N > 0 (no)

● output-stable state: all states reachable from it
have same yes/no answer

● set decided by CRN: Syes= { x∈ℕk | φ(x) = yes }

task: decide predicate b = φ(x) (x∈ℕk, b∈{yes,no})

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

27

Two directions of proof

Only semilinear functions can be computed:
● f computed by CRN C ⇒ graph(f) decided by CRN D

All semilinear functions can be computed:
● graph(f) decided by CRN D ⇒ f computed by CRN C

Theorem [Angluin, Aspnes, Eisenstat, PODC 2006]:
The sets decidable by CRNs are precisely the
semilinear sets.

(From presenta?on of Chen, Doty, Soloveichik, Determinis?c Func?on Computa?on with Chemical Reac?on Networks.)

28

f computed by CRN C⇒
graph(f) decided by CRN D

Want to decide, given input (x,z), is f(x) = z?

● Keep track of total number of Z's ever produced or
consumed:

A + B → Z + W becomes A + B → Z + W + ZP
A + Z → B becomes A + Z → B + ZC

● Initial state has z copies of ZC
ZP + ZC → Y ZP + Y → ZP + N
Y + N → Y ZC + Y → ZC + N

Eventually all
ZP and ZC go
away (if equal)
or one is left
over (if
unequal)

If ZP or ZC
are left over,
change
answer to
NO

If neither is left
over, change
answer to YES

(From presenta?on of Chen, Doty, Soloveichik, Determinis?c Func?on Computa?on with Chemical Reac?on Networks.)

29

graph(f) decided by CRN D⇒
f computed by CRN C

Want: given x copies of X, produce f(x) copies of Z

● If graph(f) = { (x,z)∈ℕ2 | f(x) = z } is semilinear, then so is the set

Fdiff = { (x,zP,zC)∈ℕ3 | f(x) = zP – zC }

● So some CRN Ddiff decides Fdiff
● Start with 0 of Z, ZP, ZC, and add to Ddiff the reactions

N → N + ZP + Z
N + Z → N + ZC

N only present
when Ddiff thinks
answer is NO

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

CRN Simulations of:
Minsky’s register machine (RM)

A Finite State Machine with a fixed number of
registers
• Each register can store a non-negative integer
• Inc(i,r,j) : Increment register r and move from

state i to j
• Dec(I,r,j,k): Decrement register r if r > 0 and

move from state i to j; else move to state k

(From presenta?on of Chen, Doty, Soloveichik, Determinis?c Func?on Computa?on with Chemical Reac?on Networks.)

Minsky’s register machine (RM):
A Finite state machine with a fixed number of
registers
• Each register can store a non-negative integer
• Inc(i,r,j) : Increment register r and move from state i to j
• Dec(I,r,j,k): Decrement register r if r > 0 and move from state i to j; else

move to state k

A register machine comparing the value of register R
1

to R
2

. If R
1

≤ R
2

, then it outputs 1 in register R
3

. If R
1

> R
2

then it outputs 2 in register R
3

.

The start state is indicated with “start” and the halting states are those without outgoing arrows

566 M. Cook et al.

Fig. 7 A register machine comparing the value of register R1 to R2. If R1 ≤ R2, then it outputs 1
in register R3. If R1 > R2 then it outputs 2 in register R3. The start state is indicated with “start”
and the halting states are those without outgoing arrows

this polymer that mimic the operation of the TM. The SCRN corresponding to this
system has a different species for each polymer sequence, length, and the “head”
chemical group and location. A single molecule then represents a single TM (tape
and attached head), and reactions transform this molecule from one species to an-
other. Thus, infinitely many species and infinitely many reactions are needed to
represent Bennett’s biomolecular TM simulation as a SCRN (although augmented
combinatorial formalisms, which go beyond SCRNs, can represent Bennett’s chem-
ical TMs and other Turing-universal polymer-based chemical machines; see, for
example, [21]).

Taking a different approach of storing and processing information, we show that
SCRNs with a finite set of species and chemical reactions are Turing universal in
probability—they can execute any computer program for any length of time, and
produce the correct output with high probability. Thus, to increase the complex-
ity of the computation performed by SCRNs, it is not necessary to add new reac-
tions or species (as is the case when simulating circuits or using arbitrarily complex
polymers). Our method, building on [16] as described in [14], involves showing
that Register Machines (RMs) can be simulated by SCRNs for any length of time
with little probability of error. Since it is known that any computer program can be
compiled to a RM [13, 42], we can conclude that any computer program can be
effectively compiled to a SCRN. Also since there exist specific RMs known to be
Turing-universal (i.e., capable of simulating any computer program), we can con-
clude that there is a Turing-universal SCRN that can simulate any computer program
with high probability.

Register Machines are a simplified, idealized abstraction of how computers work,
with a CPU manipulating memory. Minsky showed in the 60s that Register Ma-
chines are capable of universal computation. A Register Machine is a machine that
has a fixed number of registers, each of which can hold an arbitrary nonnegative
integer. In addition to the registers, it has a fixed program which consists of a set
of instructions. Every instruction is either an increment instruction, a decrement in-
struction, or a halt instruction. The increment and decrement instructions specify

and to the tape. Reading a bit of the tape allows the head to transition to different internal states
and move left or right depending on the read bit; whether and which symbol is written depends of
the state of the head.

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

Computations using CRNs
Programmability of Chemical Reaction Networks(Chen, Doty, Soloveichik)

Programmability of Chemical Reaction Networks 571

Fig. 8 Simulating a register machine. (a) The communication between the clock and the register
logic modules is through single molecules of species C and T . (b) The clock module is responsible
for producing a C molecule once every so often. The clock module is designed so that the length of
time between receiving a T and producing a C slowly increases throughout the computation, thus
slowing down the register logic module to help it avoid error. Specifically, the more A’s there are,
the longer the delay. The clock starts out with n0 A’s and one each of B , B ′, and B ′′ and T . Every
clock cycle not only produces a C, but increases the number of A’s by one. Thus, at the beginning
of the kth cycle, there are n = k + n0 molecules of A. The clock’s operation is further analyzed in
Fig. 9. (c) The register logic module simulates the register machine state transitions. The register
logic module starts out with quantities of molecules of Ri indicating the starting value of register i,
and a single molecule of species Sa where a is the start state of the register machine. Note that at
all times the entire system contains at most a single molecule of any species other than the A and
Ri species. All rate constants are 1 (The construction will work with any rate constants)

i is not empty. By delaying the release of the C, the clock module ensures that the
probability of this happening is low. The delay increases from step to step suffi-
ciently to guarantee that the union bound taken over all steps of the probability of
error does not exceed ε.

Let us analyze the probability of error quantitatively. Suppose the current step is
a decrement step and that the decremented register has value 1. This is the worst
case scenario since if the register holds value greater than 1, the rate of the reaction
Sa + Ri → S′

a is correspondingly faster, and if the step is an increment step or the
register is zero, then no error can occur. Figure 9 illustrates the state diagram of the
relevant process. All of the reactions in our Stochastic Chemical Reaction Network

Simulating a register machine:

(a) The communication between the clock and the register
logic modules is through single molecules of species C and T
.

(b) The clock module is responsible for producing a C
molecule once every so often.
• The clock module is designed so that the length of time

between receiving a T and producing a C slowly
increases throughout the computation, thus slowing
down the register logic module to help it avoid error.

• The more A’s there are, the longer the delay.

• The clock starts out with n
0

A’s and one each of B, Bʹ,
and Bʹʹ and T .

• Every clock cycle not only produces a C, but increases
the number of A’s by one.

• Thus, at the beginning of the kth cycle, there are n = k +
n

0
molecules of A.

(c) The register logic module simulates the register
machine state transitions.
• The register logic module starts out with quantities of

molec

• ules of R
i

indicating the starting value of register i, and a
single molecule of species S

a
where a is the start state

of the register machine.
• Note that at all times the entire system contains at

most a single molecule of any species other than the A
and R

i
species.

All rate constants are 1 (The construction will work with any

rate constants)

Simulating a register machine:
The state diagram for a single decrement
operation when:

• There are n A’s and the register to be
decremented holds the value 1, and

• The corresponding system of differential
equations governing the instantaneous
probabilities of being in a given state.

The numbers on the arrows: are the transition
rates.

instantaneous probabilities:
• The instantaneous probability of being in

state T is s, in state T ʹ is sʹ, and in state T ʹʹ is
sʹʹ.

• The instantaneous probability of being in the
error-possible state is p and

• The probability of being in the no-error state
is q

572 M. Cook et al.

Fig. 9 The state diagram for a single decrement operation when there are n A’s and the register
to be decremented holds the value 1, and the corresponding system of differential equations gov-
erning the instantaneous probabilities of being in a given state. The numbers on the arrows are the
transition rates. The instantaneous probability of being in state T is s, in state T ′ is s′, and in state
T ′′ is s′′. The instantaneous probability of being in the error-possible state is p and the probability
of being in the no-error state is q

have the same rate constant of 1. Thus, all reactions with exactly one molecule of
each reactant species in solution have the same reaction rate of 1. There are two
reactions for which this single molecule condition is not true: T ′ + A → T + A

and T ′′ + A → T ′ + A, since there are many A’s in solution. If there are n A’s in
solution, each of these two reactions has rate n. Now, we will bound the probability
that the clock produces the C before the Sa + Ri → S′

a reaction occurs, which is a
bound on the probability of error. The top 4 states in the diagram (Fig. 9) represent
the 4 possible states of the clock: we either have a T , T ′, T ′′, or a C. A new cycle
starts when the register logic module produces the T and this is the start state of the
diagram. No matter what state the clock is in, the reaction Sa + Ri → S′

a can occur
at rate 1 in the register logic module. Once this happens, no error is possible. On the
diagram this is indicated by the bottom state (no error) which is a sink. On the other
hand, if a C is produced first then an error is possible. This is indicated by the sink
state C (error possible).

We compute the absorption probability of the error-possible state by solving the
corresponding flow problem. Solving the system of differential equations in Fig. 9
for dp

dt under the condition that ds
dt = −1, ds′

dt = ds′′
dt = 0, we find that the absorption

probability of the error-possible state is p = 1
(n+2)2+4 . Thus, the probability of error

for a step with n A’s is bounded by p = 1
(n+2)2+4 . In order to be sure that the

probability that no error occurs during any point in the computation is larger than

Computa/ons using CRNs
Programmability of Chemical Reac>on Networks(Chen, Doty, Soloveichik)

34

 18

What if we allow error?
● Any function computable by an algorithm is

computable by a randomized CRN with arbitrarily
small positive probability of error.

– [Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008]

– [Angluin, Aspnes, Eisenstat, Distributed Computing 2006]

● Moral: disallowing error hurts chemical algorithms
much more than it hurts conventional algorithms

algorithmically
computable

randomized
CRNs

function's
computational
complexity

deterministic
algorithms

randomized
algorithms

finite-state
computable

randomized
finite-state
algorithms

deterministic
finite-state
algorithms

polynomial-time
computable

randomized
poly-time (BPP)

algorithms

deterministic
poly-time (P)
algorithms

exponential-time
computable

deterministic
CRNs

semilinear

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

• Turing-universal computation using molecular
counts

• Fast and reliable
• Small number of distinct molecular species
• Probability of error can be made arbitrarily small

(> 0) by increasing molecular counts
• But require assumption:

- fast reactions are guaranteed to occur before any
slow reaction.

Computation With Finite Stochastic Chemical Reaction Networks
(Soloveichik,Cook, Winfree, Bruck, 1985)

Computation With Finite Stochastic Chemical Reaction Networks
(Soloveichik,Cook, Winfree, Bruck, 1985)

• SCRNs are Turing universal and thus can compute any computable func?on without

error, assuming fast reac.ons are guaranteed to occur before any slow reac.on.

• SCRNs can compute any computable func>on with probability of error less than ε̨ for any
ε > 0, but for ε ̨= 0 universal computa.on is impossible.

• SCRNs are NOT capable of universal computa>on with any fixed bounded probability of

success, if each reac.on’s probability of occuring depends only on what reac.ons are
possible (but not on the concentra.ons).

• SCRNs are capable of compu>ng exactly the class of primi>ve recursive func>ons
without error, if we take the result of the longest possible sequence of reac.ons as the
answer.

• The >me and space requirements for Stochas?c Chemical Reac?on Networks doing
computa?on, compared to a Turing Machine, are a simple polynomial slowdown in .me,

but an exponen.al increase in space.

Naive Simulation of Register Machine
(RM) by Stochastic CRN

Error Worse when Mr = 1

Error per step = K2/ (K1 /v+K2)

K1 = rate constant for dec1
K2 = rate constant for dec2

Improved Bounded RM Simulation

Bounded RM simulation:
Species C (#C = 1) acts a dummy catalyst to ensure that all reactions are bimolecular,
simplifying the analysis of how the simulation scales with the volume.

Initial molecular counts are:

• if i is the start state then #S
i
= 1,

• #S
j

= 0 for j ≠ i, and

• #M
r

is the initial value of register r.

COMPUTATION WITH FINITE STOCHASTIC CHEMICAL REACTION NETWORKS 5

Rxn Catalysts
Rxn Logical function

A B

..
.

..
.

(inc)

(dec1)

(dec2)

Fig. 3.1. (A) Bounded RM simulation. Species C (#C = 1) acts a dummy catalyst to ensure that
all reactions are bimolecular, simplifying the analysis of how the simulation scales with the volume. Initial
molecular counts are: if î is the start state then #Sî = 1, #Sj = 0 for j != î, and #Mr is the initial value
of register r. (B) Clock module for the RM and CTM simulations. Intuitively, the clock module maintains

the average concentration of C1 at approximately (#A∗)l/(#A)l−1. Initial molecular counts are: #Cl = 1,
#C1 = · · · = #Cl−1 = 0. For the RM simulation #A∗ = 1, and #A = Θ(1/ε1/(l−1)). In the RM simulation,
A∗ acts as a dummy catalyst to ensure that all reactions in the clock module are bimolecular and thus scale
equivalently with the volume. This ensures that the error probability is independent of the volume. For the
bounded CTM simulation, we use #A∗ = Θ((3sct

sct
)1/l), and #A = Θ((1

ε3/2)1/(l−1)) (see Section A.3). Because

constructions of Section 4 will require differing random walk lengths, we allow different values of l.

In fact, we use exclusively bimolecular reactions1 and all rate constants fixed at some arbitrary

value k. Using exclusively bimolecular reactions simplifies the analysis of how the speed of the

simulation scales with the volume and ensures that the error probability is independent of the

volume. Further, working with the added restriction that all rate constants are equal forces us

to design robust behavior that does not depend on the precise value of the rate constants.

We modify our first attempt at simulating an RM to allow the arbitrary decrease of error

rates by increasing the initial molecular count of the accuracy species A. In the new construc-

tion, dec2 is modified to take a molecule of a new species C1 as reactant (see Fig 3.1(a)), so that

decreasing the effective molecular count of C1 is essentially equivalent to decreasing the rate

constant of the original reaction. While we cannot arbitrarily decrease #C1 (at the bottom it is

either 1 or 0), we can decrease the “average value” of #C1. Fig 3.1(b) shows a “clock module”

that maintains the average value of #C1 at approximately (1/#A)l−1, where l is the length of

the random walk in the clock module (see Lemma A.4 in the Appendix). Thus, to obtain error

probability per step ε we use #A = Θ(1/ε1/(l−1)) while keeping all rate constants fixed.2

How do we measure the speed of our simulation? We can make the simulation faster by

decreasing the volume, finding a physical implementation with larger rate constants, or by

increasing the error rate. Of course, there are limits to each of these: the volume may be set

(i.e. operating in a cell), the chemistry is what’s available, and, of course, the error cannot be

increased too much or else computation is unreliable. As a function of the relevant parameters,

the speed of the RM simulation is as given by the following theorem, whose proof is given in

1All unimolecular reactions can be turned into bimolecular reactions by adding a dummy catalyst.
2The asymptotic notation we use throughout this paper can be understood as follows. We write f(x, y, . . .) =

O(g(x, y, . . .)) if ∃c > 0 such that f(x, y, . . .) ≤ c · g(x, y, . . .) for all allowed values of x, y, The allowed
range of the parameters will be given either explicitly, or implicitly (e.g. probabilities must be in the range
[0, 1]). Similarly, we write f(x, y, . . .) = Ω(g(x, y, . . .)) if ∃c > 0 such that f(x, y, . . .) ≥ c · g(x, y, . . .) for
all allowed values of x, y, We say f(x, y, . . .) = Θ(g(x, y, . . .)) if both f(x, y, . . .) = O(g(x, y, . . .)) and
f(x, y, . . .) = Ω(g(x, y, . . .)).

Improved Bounded RM Simulation

Clock module for the RM simulation:
Dummy Catalyst A∗ : acts as a dummy catalyst to ensure that all reactions in the clock

module are bimolecular and thus scale equivalently with the volume, ensuring that
the error probability is independent of the volume.

Clock Module: The clock module maintains the average concentration of C
i
at

approximately (#A∗)i /(#A)i−1 .
Initial molecular counts are: #C

i
= 1, and #C

1
= · · · = #C

i−1
= 0.

For the RM simulation #A∗ = 1, and #A = Θ(1/εi/(i−1)).

COMPUTATION WITH FINITE STOCHASTIC CHEMICAL REACTION NETWORKS 5

Rxn Catalysts
Rxn Logical function

A B

..
.

..
.

(inc)

(dec1)

(dec2)

Fig. 3.1. (A) Bounded RM simulation. Species C (#C = 1) acts a dummy catalyst to ensure that
all reactions are bimolecular, simplifying the analysis of how the simulation scales with the volume. Initial
molecular counts are: if î is the start state then #Sî = 1, #Sj = 0 for j != î, and #Mr is the initial value
of register r. (B) Clock module for the RM and CTM simulations. Intuitively, the clock module maintains

the average concentration of C1 at approximately (#A∗)l/(#A)l−1. Initial molecular counts are: #Cl = 1,
#C1 = · · · = #Cl−1 = 0. For the RM simulation #A∗ = 1, and #A = Θ(1/ε1/(l−1)). In the RM simulation,
A∗ acts as a dummy catalyst to ensure that all reactions in the clock module are bimolecular and thus scale
equivalently with the volume. This ensures that the error probability is independent of the volume. For the
bounded CTM simulation, we use #A∗ = Θ((3sct

sct
)1/l), and #A = Θ((1

ε3/2)1/(l−1)) (see Section A.3). Because

constructions of Section 4 will require differing random walk lengths, we allow different values of l.

In fact, we use exclusively bimolecular reactions1 and all rate constants fixed at some arbitrary

value k. Using exclusively bimolecular reactions simplifies the analysis of how the speed of the

simulation scales with the volume and ensures that the error probability is independent of the

volume. Further, working with the added restriction that all rate constants are equal forces us

to design robust behavior that does not depend on the precise value of the rate constants.

We modify our first attempt at simulating an RM to allow the arbitrary decrease of error

rates by increasing the initial molecular count of the accuracy species A. In the new construc-

tion, dec2 is modified to take a molecule of a new species C1 as reactant (see Fig 3.1(a)), so that

decreasing the effective molecular count of C1 is essentially equivalent to decreasing the rate

constant of the original reaction. While we cannot arbitrarily decrease #C1 (at the bottom it is

either 1 or 0), we can decrease the “average value” of #C1. Fig 3.1(b) shows a “clock module”

that maintains the average value of #C1 at approximately (1/#A)l−1, where l is the length of

the random walk in the clock module (see Lemma A.4 in the Appendix). Thus, to obtain error

probability per step ε we use #A = Θ(1/ε1/(l−1)) while keeping all rate constants fixed.2

How do we measure the speed of our simulation? We can make the simulation faster by

decreasing the volume, finding a physical implementation with larger rate constants, or by

increasing the error rate. Of course, there are limits to each of these: the volume may be set

(i.e. operating in a cell), the chemistry is what’s available, and, of course, the error cannot be

increased too much or else computation is unreliable. As a function of the relevant parameters,

the speed of the RM simulation is as given by the following theorem, whose proof is given in

1All unimolecular reactions can be turned into bimolecular reactions by adding a dummy catalyst.
2The asymptotic notation we use throughout this paper can be understood as follows. We write f(x, y, . . .) =

O(g(x, y, . . .)) if ∃c > 0 such that f(x, y, . . .) ≤ c · g(x, y, . . .) for all allowed values of x, y, The allowed
range of the parameters will be given either explicitly, or implicitly (e.g. probabilities must be in the range
[0, 1]). Similarly, we write f(x, y, . . .) = Ω(g(x, y, . . .)) if ∃c > 0 such that f(x, y, . . .) ≥ c · g(x, y, . . .) for
all allowed values of x, y, We say f(x, y, . . .) = Θ(g(x, y, . . .)) if both f(x, y, . . .) = O(g(x, y, . . .)) and
f(x, y, . . .) = Ω(g(x, y, . . .)).

