Computing with Chemical Reaction Networks

Nikhil Gopalkrishnan

The programming language of chemical kinetics

Use the language of coupled chemical reactions prescriptively as a "programming language" for engineering new systems (rather than descriptively as a modeling language for existing systems)

Real programmers code in CHEMISTRY

Chemical Reaction Networks (CRN)

syntax:
stochastic: discrete state space, continuous time Poisson process

$2 A$
$B+A \quad \xrightarrow{10^{5}} \quad 2 B$
$B \quad \xrightarrow{0.01}$
$A+C$
$\xrightarrow[{\xrightarrow{0.0165}}]{\xrightarrow{10^{5}}}$
$2 C$

$$
\xrightarrow{5 \times 10^{4}}
$$

we use only stochastic CRNs in this talk
mass-action: continuous ODEs

two possible semantics:

behaviors of all "syntactically correct" CRNs

behaviors that

 are "easy" for chemistrybehaviors used by biology

Cells are smart: controlled by signaling and regulatory networks

Human neutrophil chasing a bacterium through red blood cells

source: David Rogers, Vanderbilt University Want to understand principles of chemical computation

Engineer embedded controllers for biochemical systems, "wet robots", smart drugs, etc.

Are CRNs an "implementable" programming language?

- "I don't believe that every crazy CRN you write down actually describes real chemicals!"
- Response to objection: Soloveichik, Seelig, Winfree [PNAS 2010] found a physical implementation (high-accuracy approximation) of any CRN, using nucleic-acid strand displacement cascades

Formal Definition of Discrete (Stochastic) CRN Model

- Finite set of species $\{X, Y, Z, \ldots\}$
- A state is a nonnegative integer vector \mathbf{c} indicating the count (number of molecules) of each species: write counts as $\#_{c} X, \#_{c} Y, \ldots$
- Finite set of reactions: e.g.

$$
\begin{aligned}
& X \rightarrow W+Y+Z \\
& A+B \rightarrow C
\end{aligned}
$$

- (assume all rate constants are 1, and all reactions are unimolecular or bimolecular)

Stochastic Chemical Reaction Network

Stochastic Chemical Reaction Network(SCRN): a finite set of d reactions acting on a finite number m of species.
The stoichiometry is the nonnegative number of copies of each species required for a reaction to take place, or produced when the reaction does take place.

A reaction α is defined as:

- Stoichiometry of the reactants: $\mathbf{r}_{\alpha}=\left(\mathbf{r}_{\alpha, 1}, \ldots, r_{\alpha, m}\right)$.
- A vector of nonnegative integers.
- Stoichiometry of the products, $p_{\alpha}=\left(p_{\alpha, 1}, \ldots, p_{\alpha, m}\right)$.
- A vector of nonnegative integers.

Stochastic Chemical Reaction Network

- We will use capital letters to refer to various species and we will use standard chemical notation to describe reactions.
- Example:
- Reaction A + D \rightarrow A + 2E
- Consumes 1 molecule of species A and 1 molecule of species D
- Produces 1 molecule of species A and 2 molecules of species E.
- In this reaction, A acts catalytically because it must be present for the reaction to occur, but its number is unchanged when the reaction does occur.

Stochastic Chemical Reaction Network

State of the network: $A=\left(q_{1}, \ldots, q_{m}\right)$.

- a vector of nonnegative integers specifying the quantities present of each species.

For reaction α :

- Stoichiometry of reactants: $\mathbf{r}_{\alpha}=\left(r_{\alpha, 1}, \ldots, r_{\alpha, m}\right)$.
- Stoichiometry of the products, $p_{\alpha}=\left(p_{\alpha, 1}, \ldots, p_{\alpha, m}\right)$.

Reaction α is possible in state A :

- Only if there are enough reactants present, that is, $\forall i, q_{i} \geq r_{\alpha, i}$.

When reaction α occurs in state A :

- The reactant molecules are used up and the products are produced.
- New state: $B=\left(q_{1}-r_{\alpha, 1}+p_{\alpha, 1}, \ldots, q_{m}-r_{\alpha, m}+p_{\alpha, m}\right)$.

Stochastic Chemical Reaction Network

Reaction Notation:

- We write $A \rightarrow B$ if there is some reaction in the Stochastic Chemical Reaction Network C that can change A to B.
- We write \rightarrow^{*} for the reflexive transitive closure of \rightarrow

Probabilistic Reactions:

- We write $\operatorname{Pr}[A \rightarrow B]$ to indicate the probability that, given that the state is initially A, the next reaction will transition to the state to B.

Discrete (Stochastic) CRN Model

System evolves via a continuous time Poisson process:

Reaction j

- $A \rightarrow \ldots$
- $A+B \rightarrow \ldots$
- $A+A \rightarrow \ldots$

Propensity $\boldsymbol{\rho}_{\boldsymbol{j}}$
\#A
$(1 / v) \# A$ \#B where $v=$ volume
$(1 / v) \# A(\# A-1) / 2$

Time until next reaction: is exponential random variable with rate $\Sigma_{j} \rho_{j}\left(\right.$ and expected value $\left.1 / \Sigma_{j} \rho_{j}\right)$

Probability $\rho_{k} / \Sigma_{j} \rho_{j}$ that the next reaction is the kth reaction.

Stochastic Chemical Reaction Networks Papers

Computation With Finite Stochastic Chemical Reaction Networks (Soloveichik,Cook, Winfree, Bruck, 1985)

DNA as a universal substrate for chemical kinetics(Soloveichik, Seelig, Winfree, PNAS2010)

Programmability of Chemical Reaction Networks(Chen, Doty, Soloveichik)

Simulation of Boolean circuits using CRNs

Programmability of Chemical Reaction Networks(Chen, Doty, Soloveichik)
Given: Boolean Circuit: The Boolean Circuit suffices to use only one type of Boolean operation: NAND:

$$
x_{k}=x_{i} \text { NAND } x_{j}
$$

Construct: Simulating CRN:

$$
\begin{aligned}
& A_{i}+A_{j} \rightarrow A_{i}+A_{j}+B_{k}, \\
& A_{i}+B_{j} \rightarrow A_{i}+B_{j}+B_{k}, \\
& B_{i}+A_{j} \rightarrow B_{i}+A_{j}+B_{k}, \\
& B_{i}+B_{j} \rightarrow B_{i}+B_{j}+A_{k} .
\end{aligned}
$$

- It deterministically computes the same function as the given Boolean circuit, despite the uncontrollable order in which reactions occur.
- The presence of a single A_{i} molecule represents that $x_{i}=0$, the presence of a single B molecule represents that $\dot{x}_{i}=1$, and the presence of néither indicates that x_{i} has not \dot{y} et been computed.
- If one starts with a single A or B molecule for each input variable, then with probability 1 the correct species will be eventually produced for each output variable.

Computations using CRNs

a)

Programmability of Chemical Reaction Networks(Chen, Doty, Soloveichik)
Four representations of

the same computation:

Starting with 1 A and n C's, the maximum number of D 's that can be produced is $\mathbf{2 n}$.
(b) A Petri net:

Each circle corresponds to a place (a molecular species), and each black bar corresponds to a transition (a reaction).
(a) A Stochastic

Chemical Reaction $\quad C \rightarrow B$
Network:
$B+C \rightarrow A$
$B+E \rightarrow B+D$
b)

c)
(c) A Vector Addition System: Note that dimensions F and G must be added to the Vector Addition System to capture the two reactions that are catalyzed by A and B.
(d) A Fractran program:

- The numerators correspond to the reaction products, and the denominators correspond to the reactants.
- The first seven prime numbers are used here in correspondence to the letters A through G in the other examples.
- As in the previous example, $F(13)$ and $G(17)$ must be introduced to avoid unreduced fractions for the catalyzed reactions
$\left.\begin{array}{ccccccc}A & B & C & D & E & F & G \\ \hline\langle-1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \langle & 0 & -1 & 1 & 0 & 0 & 0 \\ \langle & \rangle & -1 & -1 & 0 & 0 & 0 \\ 0 \\ \langle-1 & 0 & 0 & -1 & 0 & 1 & 0 \\ \langle & 0 & 0 & 0 & 2 & -1 & 0 \\ \langle & \rangle \\ \langle & -1 & 0 & 0 & -1 & 0 & 1 \\ \langle & 1 & 0 & 1 & 0 & 0 & -1\end{array}\right\rangle$

$$
\frac{3}{2} \quad \frac{7}{5} \quad \frac{2}{15} \quad \frac{13}{14} \quad \frac{242}{13} \quad \frac{17}{33} \quad \frac{21}{17}
$$

Deterministic Function Computation with Chemical Reaction Networks

Ho-Lin Chen, David Doty, and David Soloveichik

Deterministic Function Computation with CRNs

Task: compute function $\mathbf{z}=f(\mathbf{x}) \quad\left(\mathbf{x} \in \mathbb{N}^{k}, \mathbf{z} \in \mathbb{N} /\right)$

- initial state: input counts $X_{1}, X_{2}, \ldots, X_{k}$ (and fixed counts of non-input species)
- Output: counts of $Z_{1}, Z_{2}, \ldots, Z_{I}$
- Output-stable state: all states reachable from it have same counts of $Z_{1}, Z_{2}, \ldots, Z_{l}$
- Deterministic computation: a correct output-stable state "always reached in the limit $t \rightarrow \infty$ " (infinitely often reachable states are infinitely often reached)

Example 1 of Deterministic Function Computation with CRNs

Task is to Compute: $f(x)=2 x$

Start with input amount x of X

Reaction: $X \rightarrow Z+Z$
Output z

(From presentation of Chen, Doty, Soloveichik, Deterministic
Function Computation with Chemical Reaction Networks.)

Example 2 of Deterministic Function Computation with CRNs

Task is to Compute:

$f\left(x_{1}, x_{2}\right)=$ if $x_{1}>x_{2}$ then $y=1$ else $y=0$

> start with $1 N$ and input amounts of X_{1}, X_{2}
> $X_{1}+N \rightarrow Y$
> $X_{2}+Y \rightarrow N$

Example 3 of Deterministic Function Computation with CRNs

Task is to Compute: $f\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\}$

start with input amounts of X_{1}, X_{2}

$$
\begin{aligned}
& X_{1} \rightarrow Z_{1}+Z \\
& X_{2} \rightarrow Z_{2}+Z \\
& Z_{1}+Z_{2} \rightarrow K \\
& K+Z \rightarrow \varnothing
\end{aligned}
$$

Other Deterministic Functions: Can they be computed with CRNs?

- $f(x)=x / 2$?
- $f(x)=x^{2}$?
- $f\left(x_{1}, x_{2}\right)=x_{1} \cdot x_{2}$?
- $f(x)=2^{x}$?

Deterministic Functions Computed with CRNs

Main result:

Theorem: Functions $f: \mathbb{N}^{k} \rightarrow \mathbb{N}^{\prime}$ deterministically computable by CRNs are precisely those with a semilinear graph. graph $(f)=\left\{(\mathbf{x}, \mathbf{z}) \in \mathbb{N}^{k+1} \mid f(\mathbf{x})=\mathbf{z}\right\}$
$A \subseteq \mathbb{N}^{k+1}$ is linear if there are vectors $\mathbf{b}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{p}$ so that $A=\left\{\boldsymbol{b}+\mathrm{n}_{1} \cdot \mathbf{u}_{1}+\ldots+\mathrm{n}_{p} \cdot \mathbf{u}_{p} \mid \mathrm{n}_{1}, \ldots, \mathrm{n}_{p} \in \mathbb{N}\right\}$
A is semilinear if it is a finite union of linear sets.
Intuitively, semilinear functions are "piecewise linear functions" with a finite number of pieces

Non-semilinear examples

$$
f\left(x_{1}, x_{2}\right)=x_{1} \cdot x_{2}
$$

no finite union of linear sets

> Other functions not semilinear: $. f(x)=x^{2}$ $f(x)=2^{x}$

How do we show this?

Theorem [Angluin, Aspnes, Eisenstat, PODC 2006]: The predicates decidable by CRNs are precisely the semilinear predicates.

We connect computation of functions (integer output) to computation of predicates (YES/NO output)

Deterministic predicate computation with stochastic CRNs:

task: decide predicate $b=\varphi(\mathbf{x})\left(\mathbf{x} \in \mathbb{N}^{k}, b \in\{y \mathrm{yes}, \mathrm{no}\}\right)$

- initial state: input counts $X_{1}, X_{2}, \ldots, X_{k}$ (and fixed counts of non-input species)
- output: either $\# Y>0$ and $\# N=0$ (yes) or $\quad \# Y=0$ and $\# N>0$ (no)
- output-stable state: all states reachable from it have same yes/no answer
- set decided by CRN: $\mathrm{S}_{\text {yes }}=\left\{\mathbf{x} \in \mathbb{N}^{k} \mid \varphi(\mathbf{x})=\right.$ yes $\}$

Theorem [Angluin, Aspnes, Eisenstat, PODC 2006]: The sets decidable by CRNs are precisely the semilinear sets.

Two directions of proof

Only semilinear functions can be computed:

- f computed by CRN $C \Rightarrow \operatorname{graph}(f)$ decided by CRN D

All semilinear functions can be computed:

- graph (f) decided by CRN $D \Rightarrow f$ computed by CRN C

f computed by CRN $C \Rightarrow$ graph(f) decided by CRN D

Want to decide, given input (x, z), is $f(x)=\boldsymbol{z}$?

- Keep track of total number of Z's ever produced or consumed:

$$
\begin{array}{ll}
A+B \rightarrow Z+W & \text { becomes } A+B \rightarrow Z+W+Z_{p} \\
A+Z \rightarrow B & \text { becomes } A+Z \rightarrow B+Z_{C}
\end{array}
$$

- Initial state has z copies of Z_{C}

$$
\begin{array}{ll}
Z_{P}+Z_{C} \rightarrow Y & Z_{P}+Y \rightarrow Z_{P}+N \\
Y+N \rightarrow Y & Z_{C}+Y \rightarrow Z_{C}+N
\end{array}
$$

If Z_{P} or Z_{C} are left over, change answer to NO

graph(f) decided by CRN $D \Rightarrow$ f computed by CRN C

Want: given x copies of X, produce $f(x)$ copies of Z

- If graph $(f)=\left\{(x, z) \in \mathbb{N}^{2} \mid f(x)=z\right\}$ is semilinear, then so is the set

$$
F_{\text {diff }}=\left\{\left(x, z_{P}, z_{C}\right) \in \mathbb{N}^{3} \mid f(x)=z_{P}-z_{C}\right\}
$$

- So some CRN $D_{\text {diff }}$ decides $F_{\text {diff }}$
- Start with 0 of Z, Z_{p}, Z_{C}, and add to $D_{\text {diff }}$ the reactions
N only present
when $D_{\text {diff }}$ thinks
answer is NO

$$
\begin{array}{lll}
N & \rightarrow & N+Z_{P}+Z \\
N+Z & \rightarrow & N+Z_{C}
\end{array}
$$

CRN Simulations of: Minsky's register machine (RM)

A Finite State Machine with a fixed number of registers

- Each register can store a non-negative integer
- Inc(i,r,j) : Increment register r and move from state ito j
- Dec(l, r,j,k): Decrement register rif $r>0$ and move from state i to j; else move to state k

Minsky's register machine (RM): A Finite state machine with a fixed number of registers

- Each register can store a non-negative integer
- Inc(i,r,j) : Increment register r and move from state i to j
- Dec($ا, r, j, k)$: Decrement register r if $r>0$ and move from state i to j; else move to state k

A register machine comparing the value of register R_{1} to R_{2}. If $R_{1} \leq R_{2}$, then it outputs 1 in register R_{3}. If $R_{1}>R_{2}$ then it outputs 2 in register R_{3}.
The start state is indicated with "start" and the halting states are those without outgoing arrows
(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

Computations using CRNs

Programmability of Chemical Reaction Networks(Chen, Doty, Soloveichik)

Simulating a register machine:

(a) The communication between the clock and the register logic modules is through single molecules of species C and T
(b) The clock module is responsible for producing a C
molecule once every so often.

- The clock module is designed so that the length of time between receiving a T and producing a C slowly increases throughout the computation, thus slowing down the register logic module to help it avoid error.
- The more A's there are, the longer the delay.
- The clock starts out with $n_{0} A^{\prime}$ s and one each of B, B^{\prime}, and $\mathrm{B}^{\prime \prime}$ and T .
- Every clock cycle not only produces a C, but increases the number of A's by one.
- Thus, at the beginning of the k th cycle, there are $n=k+$ n_{0} molecules of A .
(c) The register logic module simulates the register machine state transitions.
- The register logic module starts out with quantities of molec
- ules of $R_{\text {i }}$ indicating the starting value of register i, and a single molecule of species S where a is the start state of the register machine.
- Note that at all times the entire system contains at most a single molecule of any species other than the A and R_{i} species.

All rate constants are 1 (The construction will work with any rate constants)
(a) The Clock and Register Logic Modules

(b) Clock

$$
\begin{aligned}
& T+B \rightarrow T^{\prime}+B \\
& T^{\prime}+A \rightarrow T+A \\
& T^{\prime}+B^{\prime} \rightarrow T^{\prime \prime}+B^{\prime} \\
& T^{\prime \prime}+A \rightarrow T^{\prime}+A \\
& T^{\prime \prime}+B^{\prime \prime} \rightarrow C+B^{\prime \prime}+A
\end{aligned}
$$

(c) Register Logic

In state a increment register i and go to state b

In state a decrement register i and $S_{a}+R_{i} \rightarrow S_{a}^{\prime}$ go to state b, or if the register is $\Rightarrow S_{a}^{\prime}+C \rightarrow S_{b}+T$ empty go to state c
$S_{a}+C \rightarrow S_{c}+T$

Computations using CRNs

Programmability of Chemical Reaction Networks(Chen, Doty, Soloveichik)
Simulating a register machine:
The state diagram for a single decrement operation when:

- There are n A's and the register to be decremented holds the value 1 , and
- The corresponding system of differential equations governing the instantaneous probabilities of being in a given state.

The numbers on the arrows: are the transition rates.
instantaneous probabilities:

- The instantaneous probability of being in state T is s, in state T^{\prime} is s^{\prime}, and in state $T^{\prime \prime}$ is
 $s^{\prime \prime}$.

$$
\frac{d}{d t}\left[\begin{array}{c}
s \\
s^{\prime} \\
s^{\prime \prime} \\
p \\
q
\end{array}\right]=\left[\begin{array}{cccrc}
-2 & n & 0 & 0 & 0 \\
1 & -2-n & n & 0 & 0 \\
0 & 1 & -2-n & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
s \\
s^{\prime} \\
s^{\prime \prime} \\
p \\
q
\end{array}\right]
$$

- The instantaneous probability of being in the error-possible state is p and
- The probability of being in the no-error state is q

What if we allow error?

- Any function computable by an algorithm is computable by a randomized CRN with arbitrarily small positive probability of error.
- [Soloveichik, Cook, Winfree, Bruck, Natural Computing 2008]
- [Angluin, Aspnes, Eisenstat, Distributed Computing 2006]
- Moral: disallowing error hurts chemical algorithms much more than it hurts conventional algorithms

(From presentation of Chen, Doty, Soloveichik, Deterministic Function Computation with Chemical Reaction Networks.)

Computation With Finite Stochastic Chemical Reaction Networks

 (Soloveichik,Cook, Winfree, Bruck, 1985)- Turing-universal computation using molecular counts
- Fast and reliable
- Small number of distinct molecular species
- Probability of error can be made arbitrarily small (>0 0) by increasing molecular counts
- But require assumption:
- fast reactions are guaranteed to occur before any slow reaction.

Computation With Finite Stochastic Chemical Reaction Networks (Soloveichik,Cook, Winfree, Bruck, 1985)

- SCRNs are Turing universal and thus can compute any computable function without error, assuming fast reactions are guaranteed to occur before any slow reaction.
- SCRNs can compute any computable function with probability of error less than ε for any $\varepsilon>0$, but for $\varepsilon=0$ universal computation is impossible.
- SCRNs are NOT capable of universal computation with any fixed bounded probability of success, if each reaction's probability of occuring depends only on what reactions are possible (but not on the concentrations).
- SCRNs are capable of computing exactly the class of primitive recursive functions without error, if we take the result of the longest possible sequence of reactions as the answer.
- The time and space requirements for Stochastic Chemical Reaction Networks doing computation, compared to a Turing Machine, are a simple polynomial slowdown in time, but an exponential increase in space.

Naive Simulation of Register Machine (RM) by Stochastic CRN

$$
\begin{array}{lc}
\operatorname{inc}(i, r, j) & S_{i} \rightarrow S_{j}+M_{r} \\
\operatorname{dec}(i, r, j, k) & \operatorname{dec}_{1}: S_{i}+M_{r} \rightarrow S_{j} \\
& \operatorname{dec}_{2}: S_{i} \rightarrow S_{k}
\end{array}
$$

Error Worse when $\mathbf{M}_{\mathrm{r}}=1$

Error per step $=K_{2} /\left(K_{1} / \mathbf{v}+K_{2}\right)$
$\mathrm{K}_{1}=$ rate constant for dec $_{1}$
$K_{2}=$ rate constant for dec $_{2}$

Improved Bounded RM Simulation

Rxn

Logical function
(inc) $\quad C+S_{i} \rightarrow S_{j}+M_{r}+C \quad \operatorname{inc}(i, r, j)$
(dec $\left._{1}\right) S_{i}+M_{r} \rightarrow S_{j}$
(dec ${ }_{2}$) $C_{1}+S_{i} \rightarrow S_{k}+C_{l}$

$$
\operatorname{dec}(i, r, j, k)
$$

Bounded RM simulation:

Species C (\#C = 1) acts a dummy catalyst to ensure that all reactions are bimolecular, simplifying the analysis of how the simulation scales with the volume.

Initial molecular counts are:

- if i is the start state then $\# S_{i}=1$,
- \#S $=0$ for $j \neq i$, and
- $\# M_{r}$ is the initial value of register r.

Improved Bounded RM Simulation

Rxn Catalysts

$C_{l} \rightarrow C_{l-1}$	A^{*}
$C_{l-1} \rightarrow C_{l}$	A
\vdots	\vdots
$C_{3} \rightarrow C_{2}$	A^{*}
$C_{2} \rightarrow C_{3}$	A
$C_{2} \rightarrow C_{1}$	A^{*}
$C_{1} \rightarrow C_{2}$	A

Clock module for the RM simulation:
Dummy Catalyst A* : acts as a dummy catalyst to ensure that all reactions in the clock module are bimolecular and thus scale equivalently with the volume, ensuring that the error probability is independent of the volume.

Clock Module: The clock module maintains the average concentration of C_{i} at approximately (\#A*) ${ }^{\mathrm{i}} /(\# \mathrm{~A})^{\mathrm{i}-1}$.
Initial molecular counts are: $\# C_{i}=1$, and \#C $C_{1}=\cdots=\# C_{i-1}=0$.
For the $R M$ simulation $\# A *=1$, and $\# A=\Theta\left(1 / \varepsilon^{i /(i-1)}\right)$.

