Kinetics

Xin Song Edited by John Reif

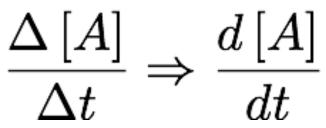
Edited from lecture notes by: Chung (Peter) Chieh, University of Waterloo Hana El-Samad, UCSB John D. Bookstaver, St. Charles Community College Dan Reid, Champaign CHS Claire Vallance, University of Oxford

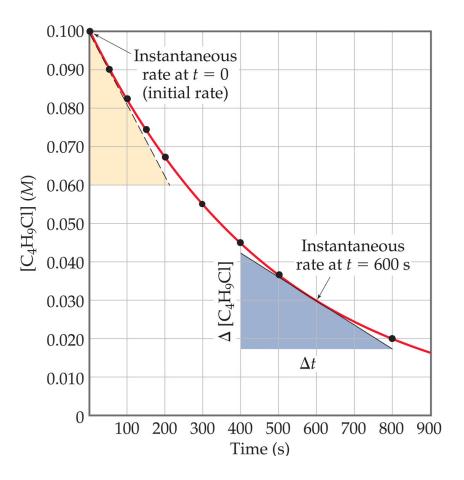
Chemical Kinetics

Reaction Rates

Reaction rate is the change in the concentration of a reactant or a product with time (*M*/s).

$$A \longrightarrow B$$


- rate = $\frac{\Delta[A]}{\Delta t}$ rate = $\frac{\Delta[B]}{\Delta t}$
- Δ [A] = change in concentration of A over time period Δt
- Δ [B] = change in concentration of B over time period Δt


Because [A] decreases with time, Δ [A] is negative.

Reaction Rates

 $C_4H_9Cl(aq) + H_2O(l) \rightarrow C_4H_9OH(aq) + HCl(aq)$

- A plot of concentration vs. time for this reaction yields a curve like this.
- The slope of a line tangent to the curve at any point is the **instantaneous rate** at that time.

Reaction Rates and Stoichiometry

• To generalize, for the reaction

$$aA + bB \longrightarrow cC + dD$$

$$rate = -\frac{1}{a} \frac{\Delta [A]}{\Delta t} = -\frac{1}{b} \frac{\Delta [B]}{\Delta t} = \frac{1}{c} \frac{\Delta [C]}{\Delta t} = \frac{1}{d} \frac{\Delta [D]}{\Delta t}$$
Reactants (decrease) Products (increase)

Rate in Terms of Concentration

Each reaction has its own equation that expresses its **rate as a function of the concentrations** of the involved species (e.g., reactants, products, catalysts).

This is called its **Rate Law**

Rate Laws

- In general, rates of reactions increase as concentrations increase since there are more collisions occurring between reactants.
- The overall concentration dependence of reaction rate is given in a **rate law** or rate expression.
- For reactions follow *simple rate laws*:

 $\mathbf{v} = k \, [\mathbf{A}]^{\mathbf{m}} \, [\mathbf{B}]^{\mathbf{n}} \dots$

- [A], [B]: reactant concentrations
- The exponents *m* and *n*: reaction order (w.r.t. specific reactant)
- The constant k: rate constant
- The **overall reaction order** is the sum of the reaction orders:

m + n

Determination of Rate Laws

- Rate laws, rate constants, and orders are **determined** *experimentally*.
- The order of a reactant is **NOT** generally related to its stoichiometric coefficient in a balanced chemical equation.

$$F_2(g) + 2CIO_2(g) \longrightarrow 2FCIO_2(g)$$

 $v = k [F_2][CIO_2]^{(1)}$

Chung (Peter) Chieh University of Waterloo

Expression of Rate Laws

Reactions with **simple rate laws**:

 $H_2 + I_2 \rightarrow 2HI \qquad \qquad \nu = k [H_2][I_2].$

 $3CIO^{-} \rightarrow CIO_{3}^{-} + 2CI^{-}$ $\nu = k [CIO^{-}]^{2}$

Reactions with **complex rate laws***:

 $H_2 + Br_2 \rightarrow 2HBr$ $v = \frac{[H_2][Br_2]^{1/2}}{1 + k'[HBr]/[Br_2]}$

* imply multi-step reactions (sequence of elementary steps)

 $\begin{array}{ll} \mathsf{Br}_2 & \to \mathsf{Br} + \mathsf{Br} \\ \mathsf{Br} + \mathsf{H}_2 \to \mathsf{H} + \mathsf{HBr} \\ \mathsf{H} + \mathsf{Br}_2 \to \mathsf{Br} + \mathsf{HBr} \\ \mathsf{Br} + \mathsf{Br} \to \mathsf{Br}_2 \end{array}$

however, the overall rate cannot involve intermediate species

Reaction Kinetics (Vallance)

Elementary Reactions

Always follow simple rate laws

Unimolecular decomposition	$A \rightarrow B$	v = k [A]
Bimolecular reaction	$A + B \rightarrow P$ $A + A \rightarrow P$	v = k [A][B] $v = k [A][A] = k [A]^2$

Reactant order reflects molecularity (# of molecules involved in reaction)

Elementary Reactions

- The **reaction mechanism** gives the path of the reaction.
- The stoichiometry **can** be used to determine the rate law!
- The **molecularity** of a process tells how many molecules are involved in the process.
- <u>Law of Mass Action</u>: The rate of a simple (one step) reaction is directly proportional to the concentration of the reacting substances.

TABLE 14.3 Elementary Steps and Their Rate Laws				
Molecularity	Elementary Step	Rate Law		
<i>Uni</i> molecular <i>Bi</i> molecular <i>Bi</i> molecular <i>Ter</i> molecular <i>Ter</i> molecular <i>Ter</i> molecular <i>Ter</i> molecular	$A \longrightarrow \text{products}$ $A + A \longrightarrow \text{products}$ $A + B \longrightarrow \text{products}$ $A + A + A \longrightarrow \text{products}$ $A + A + B \longrightarrow \text{products}$ $A + B + C \longrightarrow \text{products}$	Rate = $k[A]$ Rate = $k[A]^2$ Rate = $k[A][B]$ Rate = $k[A]^3$ Rate = $k[A]^2[B]$ Rate = $k[A][B][C]$		

Dan Reid Champaign CHS

Integrated Rate Laws

Goal: express concentration as a function of time **Why:** fit to the form of typical experimental data **How:** integrate the expression of rate law

Reaction	Order	Differential form	Integrated form
$A \xrightarrow{k} P$	zeroth	$\frac{d[A]}{dt} = -k$	$[A] = [A]_0 - kt$
$A \xrightarrow{k} P$	first	$\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = -k \ [\mathrm{A}]$	ln[A] = ln[A] ₀ - <i>kt</i>
$A + A \xrightarrow{k} P$	second	$\frac{1d[A]}{2} dt = -k [A]^2$	$\frac{1}{[A]} = \frac{1}{[A]_0} + 2kt$
A + B	second	$\frac{d[A]}{dt} = -k [A][B]$	$kt = \frac{1}{[B]_0 - [A]_0} \ln \frac{[B]_0 [A]}{[A]_0 [B]}$
		differential rate	integrated rate

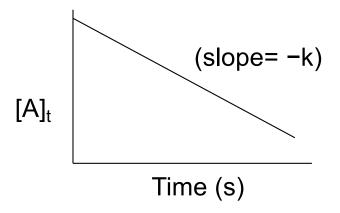
differential rate expression

integrated rate expression

Reaction Kinetics (Vallance)

Order of Reaction

- A reaction is 0th order in a reactant if the change in concentration of that reactant produces <u>no effect</u>.
- A reaction is 1st order if <u>doubling</u> the concentration causes the rate to <u>double</u>.
- A reaction is 2nd order if <u>doubling</u> the concentration causes a <u>quadruple</u> increase in rate.

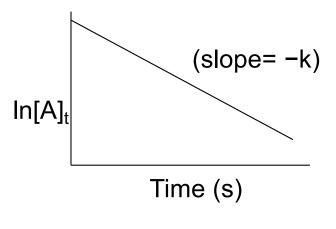

-3rd order...doubling concentration leads to 2³ (or 8 times) the rate. - extremely rare.

Zero-Order Reaction

 $A \rightarrow P$ zeroth $\frac{d[A]}{dt} = -k$ reaction rate $= -\frac{\Delta[A]_t}{\Delta t} = k$ (constant)

Integrated rate law: $[A]_t = -kt + [A]_0$

• This equation has the general form for a straight line, y=mx+b, so a plot of $[A]_t$ vs. t is a straight line with slope (-k) and intercept $[A]_0$.

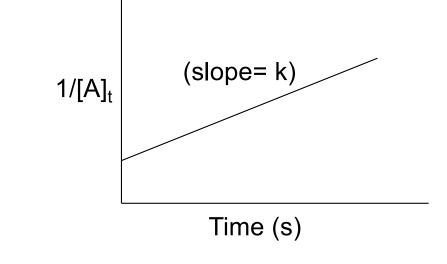

Chung (Peter) Chieh University of Waterloo

First-Order Reaction

Integrated rate law: $\ln[A]_t = -kt + \ln[A]_0$

where $[A]_t$ = concentration of [A] after some time, t k= reaction rate constant in units of s⁻¹ t= time in seconds $[A]_o$ = initial concentration of A

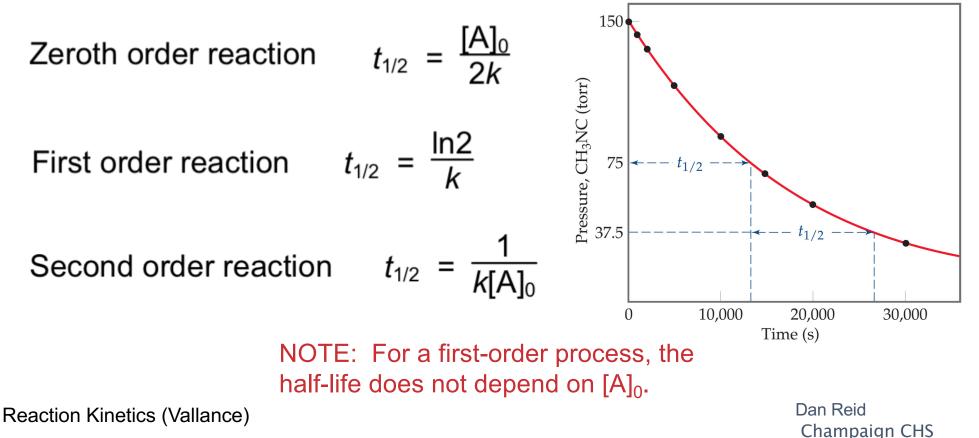
• This equation has the general form for a straight line, y=mx+b, so a plot of $\ln[A]_t$ vs. t is a straight line with slope (-k) and intercept $\ln[A]_0$.



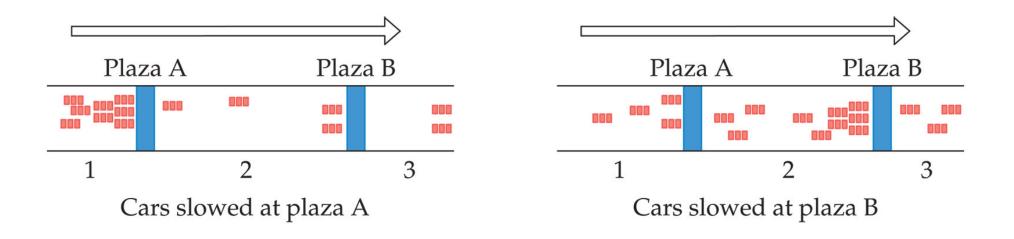
Second-Order Reaction

Integrated rate law: $1/[A]_t = kt + 1/[A]_0$

where $[A]_t$ = concentration of [A] after some time, t k= reaction rate constant in units of M⁻¹s⁻¹ t= time in seconds $[A]_o$ = initial concentration of A

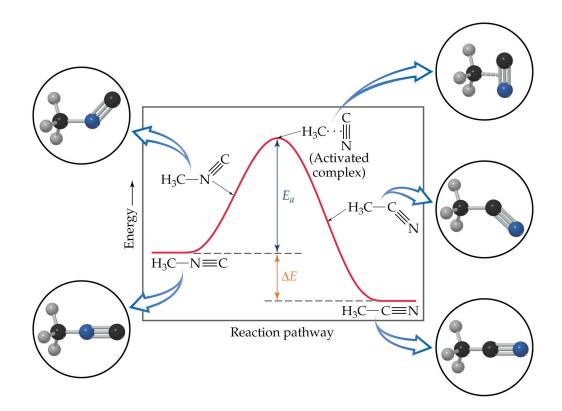

• This equation has the general form for a straight line, y=mx+b, so a plot of $I/[A]_t$ vs. t is a straight line with slope (k) and intercept of $1/[A]_0$.

Dan Reid Champaign CHS


Reaction Half-Life

- Half-life is the time taken for the concentration of a reactant to drop to half its original value.
- Substitute into integrated rate laws: t_{1/2} is the time taken for [A] to reach ¹/₂[A]₀

Multi-Step Process


- In a multistep process, one of the steps will be slower than all others.
- The overall reaction cannot occur faster than this slowest, rate-determining step.

Activation Energy

The minimum amount of energy required to initiate a reaction:

Activation energy (*E_a*)

