Exercise: Reaction Rates, Reaction Orders, Rate Laws

Exercise: Reaction Half-Life

$$\frac{Q}{L} = \frac{1}{2} \sum_{i=1}^{\infty} \frac{1}{2} \sum_{i=1$$

$$\frac{Q6}{Integrated} \text{ rate half-life of } 2^{nd} \text{-order reaction.}$$

$$Integrated \text{ rate } [aw: \frac{1}{[A]} = \frac{1}{[A_0]} + 2kt$$

$$Answer: \text{ Plug in } [A] = \frac{1}{2} [A_0] \text{ and solve for } t.$$

$$\frac{1}{\pm [A_0]} = \frac{1}{[A_0]} + 2kt$$

$$\frac{2}{[A_0]} - \frac{1}{[A_0]} = 2kt$$

$$\frac{1}{[A_0]} = 2kt$$

$$\frac{1}{[A_0]} = 2kt$$

$$\frac{1}{[A_0]} = \frac{1}{2k[A_0]}$$

Note: The proper definition for
$$2^{nd}$$
-order integrated rate law
 $A + A \stackrel{k}{\longrightarrow} P$ (or $2A \stackrel{k}{\longrightarrow} P$)
should be:

$$\boxed{\frac{1}{[A_{1}]} = \frac{1}{[A_{0}]} + 2kt}$$
Some feet may have incorrectly
neglected the '2' here !
Derivation: For $2A \stackrel{k}{\longrightarrow} P$, we have
 $\begin{cases} v = -\frac{1}{2} \frac{d(A)}{dt} = \frac{d(P)}{dt}$ (differential form)
 $v = k[A]^{2}$ (rate law)
Therefore: $-\frac{1}{2} \frac{d(A)}{dt} = k[A]^{2} \rightarrow To$ get integrated rate law :
 $-\frac{1}{2} \frac{d(A)}{(A_{1}]^{2}} = kdt$ (shown on the left)
 $\int_{[A_{1}]}^{[A_{1}]} (\frac{1}{2} \cdot \frac{1}{(A_{1}]}) d(A) = \int_{t_{0}}^{t} k dt$
 $\frac{1}{2} (\frac{1}{(A_{1}]} - \frac{1}{(A_{1})}) = k(t-t_{0}) = kt$
 $\frac{1}{[A_{1}]} - \frac{1}{(A_{1}]} = 2kt \implies \frac{1}{[A_{1}]} = \frac{1}{(A_{1}]} + \frac{2kt}{a}$

-