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Entropy: Is a measure of disorder or randomness of a system. 
∆S = change in entropy due to a reaction
- An ordered system has low entropy. 
- A disordered system has high entropy.   

Enthalpy: Is defined as the sum of internal energy of a system and the 
product of the pressure and volume of the system.
∆H = change in enthalpy due to a reaction

Gibbs free energy ∆G relates enthalpy, entropy  and temperature. 
Gibbs free energy ∆G divided into components:

- enthalpic (∆H) component and 
- entropic (∆S) component. 

Temperature dependance of Gibbs free energy ∆G = ∆H - T ∗ ∆S, where T is 
the temperature in Kalvin. 

- Spontaneous reactions: will always occur when ∆H is negative and ∆S is 
positive.
- Nonspontaneous reactions: when ∆H is positive and ∆S is negative.



DNA Loops:
-Nearest neighbor interactions between the nucleic acid 
bases. 
- These interactions divide the secondary structure of the 
system into local components which are referred to as 
loops 
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3.2 Energy of a Complex Microstate

We previously defined a complex microstate in terms of the list of base pairings present

within it. However, the well studied models are based upon nearest neighbor interactions

between the nucleic acid bases. These interactions divide the secondary structure of the

system into local components which we refer to as loops, shown in figure 3.1.
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Figure 3.1: Secondary structure divided into loops.

These loops can be broken down into di↵erent categories, and parameter tables for each

category have been determined from experimental data [17]. Each loop l has an energy,

�G(l) which can be retrieved from the appropriate parameter table for its category, which

is discussed in more detail in section B.3. Each complex also has an energy contribution

associated with the entropic initiation cost [3] (e.g. rotational) of bringing two strands

together, �Gassoc, and the total contribution is proportional to the number of strands L

within the complex, as follows 2: (L� 1) ⇤�Gassoc.

2
The free energy �G �

for a reaction A + B �*)� C is usually expressed in terms of the equilib-

rium constant Keq and the concentrations [A], [B], [C] (in mol/L) of the molecules involved, as follows:

e�G �/RT
= Keq =

[A][B]
[C] . We can also express the free energy �G0

in terms of the dimensionless

mole fractions xA, xB , xC , where xi = [i]/⇢H2O (for dilute solutions), and ⇢H2O is the molarity of wa-

ter. In this case, we have e�G0/RT
= K0

eq =
xA⇤xB

xC
, and relating it to the previous equation, we see that

e�G0/RT
=

([A]/⇢H2O)⇤([B]/⇢H2O)

[C]⇤⇢H2O
=

[A][B]
[C] ⇤ 1

⇢H2O
= e�G �/RT ⇤ e� log ⇢H2O . Thus if we have an energy �G �

which was for concentration units and we wish to use mole fraction units, we must adjust it by �RT log ⇢H2O

to obtain the correct quantity. In general, if we have a complex of N molecules, the conversion to mole frac-

tions will require an adjustment of �(N � 1) ⇤ RT log ⇢H2O. To be consistent with [5], we wish to always

use free energies which are based on the mole fraction units, and thus must include this factor since the

reference free energies are for concentration units. In [5], the factor is included in the �Gassoc term, and

thus we include it in the same place, as follows: �Gassoc = �Gpub
assoc �RT log ⇢H2O, where �Gpub

assoc is found

in [3]. Thus our �Gassoc is the same as the �Gassoc
found in [5] (footnote 13).



DNA Loops Broken into Various Categories:
- Parameter tables for each category are determined from 
experimental data.
Energy of Loops:
(1) Each loop l has an energy, ∆G(l) which can be retrieved from the 
appropriate parameter table for its category. 
(2) Each complex also has an energy contribution associated with 
the entropic initiation cost (e.g. rotational) of bringing two strands 
together, ∆Gassoc. 

The total energy contribution: is proportional to the number of 
strands L within the complex: (L − 1) ∗ ∆Gassoc. 

The energy of a complex microstate c: 
is the sum of these two types of contributions. 



(A) Original loop diagram representation.
(B) Base pair list representation: Each base pairing is represented by the indices 
of the bases involved. 
(C) Dot-paren representation (also called the flat representation): Each base is 
represented by either a period, representing an unpaired base, or by a 
parenthesis, representing a pairing with the base that has the (balanced) 
matching parenthesis. An underscore represents a break between multiple 
strands. 
(D) Loop graph representation: Each loop in the secondary structure is a single 
node in the graph, which contains the sequence information within the loop. 
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ily concerned with non-pseudoknotted structures this is only a minor point. In the future

when we have excellent pseudoknot energy models, we will have to revisit this choice and

hopefully find a good representation that still allows us similar computational e⇧ciency.

We use the loop graph representation for each complex within a system microstate,

and organize those with a simple list. This gives us the advantage that the energy can be

computed for each individual node in the graph, and since each move only a⇥ects a small

portion of the graph (Figure 5.3), we will only have to compute the energy for the a⇥ected

nodes. While providing useful output of the current state then requires processing of the

graph, it turns out to be a constant time operation if we store a flat representation which
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Figure 5.1: Example secondary structure, with di⇥erent representations: (A) Original loop

diagram representation. (B) Base pair list representation. Each base pairing is represented

by the indices of the bases involved. (C) Dot-paren representation, also called the flat

representation. Each base is represented by either a period, representing an unpaired base,

or by a parenthesis, representing a pairing with the base that has the (balanced) matching

parenthesis. An underscore represents a break between multiple strands. (D) Loop graph

representation. Each loop in the secondary structure is a single node in the graph, which

contains the sequence information within the loop.

Secondary 
structure 
representations:



System microstates i, q adjacent to current state j:
(with many others not shown) 

with kinetics rates indicated

current state j:

microstate i

microstate q



Kinetic Simulation models system as a Continuous Time 
Markov chain, making probabilistic moves between 
Microstates:
If currently in microstate i, the next microstate m in a 
simulated trajectory is chosen randomly among the 
adjacent microstate  j, weighted by the rate of transition 
to each. 

Probability of Transition from microstate  i to microstate  
m:   Pr(m) = kim / Σj kij

The time taken to transition to the next microstate:
Chosen randomly from an exponential distribution 
Pr(∆t) = λ exp(−λ∆t) 
with rate parameter λ = Σjkij, the total rate out of the 
current state i. 



Choice of Kinetic Rate Model:  sets the rates of a pair of 
reactions so that they obey detailed balance. 

Detailed Balance of Kinetic Rates:

if there is a transition from system microstate i to system 
microstate j with rate kij there must be a transition from j 
to i with rate kji which are related by:

kij / kji = e-(∆G (j )−∆G (i) )/RT



Classify transitions between microstates into two 
exclusive types: 

(1) Unimolecular Transitions: 
Transitions where changes are within a single complex. 

(2) Bimolecular Transitions: 
Transitions that change the number of complexes present 
in the system.



Unimolecular Transitions: transitions between microstates 
where changes are within a single complex. 

- Define these transitions in terms of the complex 
microstate which is changed, rather than the full system 
microstate. 

- Define a complex microstate d as being adjacent to a 
complex microstate c if it differs by exactly one base pair. 

Creation Move: a transition from c to d that adds a base 
pair a.

Deletion Move: transition from c to d that removes a base 
pair a. 



Unimolecular
Microstate 
Moves:
(A) Creation moves (blue line) and Deletion moves (red highlight) are represented 
here by rectangles. Either type of move is associated with a particular loop, and
has indices to designate which bases within the loop are affected. 
(B) All possible moves which affect the interior loop in the center of the structure. 
These are then arranged into a tree (green area), which can be used to quickly 
choose a move. 
(C) Each loop in the loop graph then has a tree of moves that affect it, and we can 
arrange these into another tree (black boxes), each node of which is associated 
with a particular loop (dashed line) and thus a tree of moves (blue line). This 
resulting tree then contains all the moves available in the complex. 



Unimolecular Rate Models:
(1) Kawasaki method: both “downhill” (energetically favorable) 
and uphill transitions scale directly with the steepness of their 
slopes. (There is no bound on the maximum rate.)

(2) Metropolis method: all downhill moves occur at the same 
fixed rate, and only the uphill moves scale with the slope. 
(Maximum rate for any move is bounded, and all downhill moves 
occur at this rate.) 

(3) Entropy/Enthalpy Method: uses the division of free 
energies into entropic and enthalpic components to assign the 
transition rates in an intuitive manner: 
- base pair creation moves must overcome the entropic energy 
barrier to bring the bases into contact, and 
- base pair deletion moves must overcome the enthalpic energy 
barrier in order to break them apart. 



Bimolecular Transitions: transitions between microstates  
that change the number of complexes present in the 
system.
A bimolecular transition from system microstate i to system 
microstate j: is one where the single base pair difference 
between them leads to a differing number of complexes 
within each system microstate. 

- Join Move: differing number of complexes is due to a base 
pair joining two complexes in i to form a single complex in j. 

- Break Move: the removal of this base pair from i causes 
one complex in i to break into two complexes within j.

Every bimolecular move is reversible: If i to j is a join move, 
then j to i must be a break move, and vice versa.



Moves of varying types which take current state i to state j:
(A) A creation move. 
(B) A deletion move.  
- The changed region is highlighted in cyan. 
- Loops that are in j but not i are highlighted in red (in the loop graph) and must be 
created and have their moves generated. 
- Loops shown highlighted in blue have had an adjacent loop change, and thus must 
have their deletion moves recalculated. 
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first step) or unimolecular (thus one of the ones stored in the tree). If it’s bimolecular,

reverse the counting process using the random number to pick the unique combination of

open loops and bases involved in the bimolecular step. If it’s a unimolecular step, pick a

move out of the trees of moves for each complex in the system as discussed above.

5.2.2 Move Update

A.
State i State j

B.
State i State j’

Figure 5.3: Moves of varying types which take current state i to state j. The changed region

is highlighted in cyan. Loops that are in j but not i are highlighted in red (in the loop graph)

and must be created and have their moves generated. Loops shown highlighted in blue have

had an adjacent loop change, and thus must have their deletion moves recalculated. (A) A

creation move. (B) A deletion move.

Once a move has been chosen, we must update the loop graph to reflect the new state.

This is a straightforward substitution: for a creation move, which a⇥ects a single loop, we

must create the resulting pair of loops which replace the a⇥ected loop and update the graph

connections appropriately (Figure 5.3A). Similarly, for a deletion move, which a⇥ects two

loops, we must create the single loop that results from joining the two a⇥ected loops, and

update the graph connections appropriately (Figure 5.3B).



An interior loop:
- With all theoretically possible creation moves for the first two bases on the top 
strand shown as cyan lines, and 
- All possible deletion moves shown as red boxes. 

Note that for each creation move shown here, we must check whether the bases 
could actually pair, and only then continue with the energy computations to 
determine the rate of the move. 
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Figure 5.4: A interior loop, with all theoretically possible creation moves for the first two

bases on the top strand shown as cyan lines, and all possible deletion moves shown as red

boxes. Note that for each creation move shown here, we must check whether the bases could

actually pair, and only then continue with the energy computations to determine the rate

of the move.

5.2.4 Energy Computation

It is in the energy computation that our loop graph representation of the complex microstate

shines, as the basic operation required for each possible move in the move generation step

is computing the di⇥erence of energies between the a⇥ected loop(s) that would be present

after the move and those present beforehand.

For all loop types except open loops and multiloops, computing the loop energy is as

simple as looking up the sequence information (base pairs and adjacent bases) and loop

sizes in a table [16, 27], and is a constant-time lookup. For open loops and multiloops, this

computation is linear in the number of adjacent helices (e.g. adjacent nodes in the loop

graph) if we are using an optional configuration of the energy model which adds energies

that come from bases adjacent to the base pairs within the loop (called the “dangles”

option). Theoretically we could have an open loop or multiloop that is adjacent to O(N)

other nodes in the loop graph, but this is an extraordinarily unlikely situation and present

only with particular energy model options, so we will consider the energy computation step

to be O(1).



- All plots are log/log except for the inset, which is a linear/linear plot of the same 
data is in the uniform random sequence plot. 
- The density of test cases is shown using overlaid regions of varying intensity. 
- From lightest to darkest, these correspond to 80%, 40% and 10% of the test cases 
being within the region. 
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Figure 5.5: Comparison of real time used per simulated time unit between Multistrand and

Kinfold 1.0, for four di⇥erent single stranded systems with varying total length. All plots

are log/log except for the inset, which is a linear/linear plot of the same data is in the

uniform random sequence plot. The density of test cases is shown using overlaid regions of

varying intensity. From lightest to darkest, these correspond to 80%, 40% and 10% of the

test cases being within the region.

or open loop. These creation moves are generally unfavorable, except for the small number

that lead to new stack loops. Thus we do not expect there to be a quadratic number of

favorable moves. A linear number is much more likely: a long duplex region could reach a

linear number (if say, N
4 bases were unpaired but could be formed easily into stacks). Thus,

Comparison of real time 
used per simulated time 
unit between: 

- Multistrand and
- Kinfold 1.0, 

for four different single 
stranded systems with 
varying total length. 


