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Visual DSD (DNA Strand Displacement) 
software tool:
- allows rapid prototyping and analysis of computational devices implemented 
using DNA strand displacement
web- based graphical interface. 

- implementation of DSD programming language described by :
Lakin,M.R. et al. (2011) Abstractions for DNA circuit design. J. R. Soc. Interface, 
doi:10.1098/rsif.2011.0343, July 20, 2011 

DSD Provides:
- stochastic and deterministic simulation, 
- construction of continuous-time Markov chains
- various export formats (allowing models to be analyzed using third-party tools) 



Example:
Toehold-mediated DNA branch migration and strand displacement. Example:	
Toehold-mediated	DNA	branch	migra>on	and	strand	displacement.		

checking to DNA strand displacement gates and systems,
including a DNA strand displacement device for approxi-
mate majority voting. Additional details of the methods
are presented in §4, followed by a discussion of future
work in §5.

2. BACKGROUND

2.1. DNA strand displacement

DNA strand displacement [8] is a mechanism for per-
forming computation with DNA molecules. Once initial
species of DNA are mixed together, strand displacement
systems proceed autonomously [9] as increases in entropy
(from releasing strands) and enthalpy (from forming
additional base pairs) drive the system forward [10].
These increases typically result from the conversion of
active gate structures into unreactive waste. Further-
more, because DNA strand displacement relies solely
on hybridization between complementary nucleotide
sequences to perform computational steps, these systems
require no additional enzymes or transcription machin-
ery, which in turn allows experiments to be run using
simple laboratory equipment.

In most strand displacement schemes, populations of
single strands of DNA are interpreted as signals, whereas
double-stranded DNA complexes act as gates, mediating
changes in the signal populations. Within the system, the
computational mechanism is toehold-mediated branch
migration and strand displacement [11]. At the periphery
of the system, signal populations may be connected to
fluorophores for human-readable output, or regulated
by custom-designed aptamer molecules that interface to
the biological environment. The latter example high-
lights a key strength of DNA-based computational
devices: the ability to interface directly with biological
systems [12,13].

Figure 1 presents example branch migration and
strand displacement reactions. Each letter in the figure
represents a distinct domain (a sequence of nucleotides)
and the asterisk operator (*) denotes the Watson–
Crick (C–G, T–A) complement of a given domain.

Short domains (represented in colour) are known as toe-
holds, while long domains (in grey) are often referred to as
recognition domains. We assume that toeholds are suffi-
ciently short (4–10 nucleotides) that they hybridize
reversibly with their complements, whereas recognition
domains are sufficiently long (greater than 20 nucleo-
tides) to hybridize irreversibly [11]. Each single strand
is oriented from the 50 (left) end to the 30 (right) end,
and each double-stranded complex consists of hybridized
single strands with opposite orientations. We assume
that the underlying nucleotide sequences have been
chosen such that distinct domains do not interact at all.

In the first reaction from figure 1, an incoming strand
binds to a gate because the ‘t’ toehold domain in
the strand hybridizes with its exposed complement
in the gate, producing the intermediate complex on the
right-hand side. Because the incoming strand is only
held on by a toehold, this reaction can be reversed, caus-
ing the single strand to float away into the solution. In the
second reaction, the ‘x’ domain in the overhanging strand
matches the next domain along the double-stranded
backbone, which means that the branching point
between the overhanging strand and the backbone can
move back and forth in a random walk called a branch
migration. Eventually, the random walk may completely
detach the short ‘x’ strand from the gate in a strand dis-
placement. This reaction is considered irreversible
because the invading strand is now attached to the gate
by a long domain as well as a toehold. Note that if the rec-
ognition domain on the strand did not match the next
domain along the gate, then branch migration could
not proceed, and the incoming strand would eventually
unbind. We call such binding reactions unproductive.
The third reaction is another branch migration, though
in this case no strand is displaced because even after
the ‘y’ domain has been displaced, the rightmost strand
is still attached by a toehold. The fourth reaction is a
(reversible) unbinding reaction in which the rightmost
strand spontaneously unbinds because of the low binding
strength of the toehold.

Binding, migration and unbinding reactions such as
those illustrated in figure 1 allow signal populations
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Figure 1. Toehold-mediated DNA branch migration and strand displacement. (Online version in colour.)
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Q. How many ha ’s cause x and y to collide? 
A. There are m choices for each of a1 , a2 , …, ar  , 
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checking to DNA strand displacement gates and systems,
including a DNA strand displacement device for approxi-
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are presented in §4, followed by a discussion of future
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(from releasing strands) and enthalpy (from forming
additional base pairs) drive the system forward [10].
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sequences to perform computational steps, these systems
require no additional enzymes or transcription machin-
ery, which in turn allows experiments to be run using
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single strands of DNA are interpreted as signals, whereas
double-stranded DNA complexes act as gates, mediating
changes in the signal populations. Within the system, the
computational mechanism is toehold-mediated branch
migration and strand displacement [11]. At the periphery
of the system, signal populations may be connected to
fluorophores for human-readable output, or regulated
by custom-designed aptamer molecules that interface to
the biological environment. The latter example high-
lights a key strength of DNA-based computational
devices: the ability to interface directly with biological
systems [12,13].

Figure 1 presents example branch migration and
strand displacement reactions. Each letter in the figure
represents a distinct domain (a sequence of nucleotides)
and the asterisk operator (*) denotes the Watson–
Crick (C–G, T–A) complement of a given domain.

Short domains (represented in colour) are known as toe-
holds, while long domains (in grey) are often referred to as
recognition domains. We assume that toeholds are suffi-
ciently short (4–10 nucleotides) that they hybridize
reversibly with their complements, whereas recognition
domains are sufficiently long (greater than 20 nucleo-
tides) to hybridize irreversibly [11]. Each single strand
is oriented from the 50 (left) end to the 30 (right) end,
and each double-stranded complex consists of hybridized
single strands with opposite orientations. We assume
that the underlying nucleotide sequences have been
chosen such that distinct domains do not interact at all.

In the first reaction from figure 1, an incoming strand
binds to a gate because the ‘t’ toehold domain in
the strand hybridizes with its exposed complement
in the gate, producing the intermediate complex on the
right-hand side. Because the incoming strand is only
held on by a toehold, this reaction can be reversed, caus-
ing the single strand to float away into the solution. In the
second reaction, the ‘x’ domain in the overhanging strand
matches the next domain along the double-stranded
backbone, which means that the branching point
between the overhanging strand and the backbone can
move back and forth in a random walk called a branch
migration. Eventually, the random walk may completely
detach the short ‘x’ strand from the gate in a strand dis-
placement. This reaction is considered irreversible
because the invading strand is now attached to the gate
by a long domain as well as a toehold. Note that if the rec-
ognition domain on the strand did not match the next
domain along the gate, then branch migration could
not proceed, and the incoming strand would eventually
unbind. We call such binding reactions unproductive.
The third reaction is another branch migration, though
in this case no strand is displaced because even after
the ‘y’ domain has been displaced, the rightmost strand
is still attached by a toehold. The fourth reaction is a
(reversible) unbinding reaction in which the rightmost
strand spontaneously unbinds because of the low binding
strength of the toehold.

Binding, migration and unbinding reactions such as
those illustrated in figure 1 allow signal populations
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Figure 1. Toehold-mediated DNA branch migration and strand displacement. (Online version in colour.)
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Syntax of the DNA 
strand displacement 
(DSD) language:

- Using strands A, gates G and 
systems D. 

- Where present, the graphical 
representation below is equivalent to 
the program code.

to be dynamically modified over time, and irreversi-
ble strand displacement reactions such as the second
reaction from figure 1 provide a thermodynamic bias
towards producing output. Combining these different
kinds of reactions allows us to construct cascades of
gates in which the output strands from one gate serve
as the input strands for another. This technique has
enabled the construction of large, complex logic circuits
based on DNA strand displacement [14].

In this paper, we restrict our attention to a class of
gates closely related to Cardelli’s two-domain gate
scheme [15]. Two-domain gates are a restricted class of
systemswhere every strand consists of twodomains (a toe-
hold and a long recognition domain) and gates have
no structures hanging off the main double-stranded back-
bone of the complex. The initial and final gates shown in
figure 1 have this property, although the intermediate
steps do involve transient overhanging structures during
branch migration and strand displacement steps. These
gate structures can be thought of as one continuous
strand hybridized with a complementary strand that
has breaks at certain points. Such restricted gate
structures could be assembled by synthesizing double-
stranded DNA and inserting the breaks using either
restriction enzymes or site-specific photocleavage to
split the backbone of the DNA strand at the appropriate
point. This technique should allow gates to be constructed
with a higher yield than would be obtained with the usual
technique of annealing single strands, which has a higher
probability of producing unwanted secondary structures.
In this paper, we use a variant of two-domain gates that
relaxes the restrictions on single-stranded DNA molecules
but that retains the simplified gate structure with all its
practical benefits to the experimentalist.

2.2. The DNA strand displacement
programming language

The DSD programming language [2] provides a textual
syntax for expressing the structure of DNA species such
as those portrayed graphically in figure 1. The seman-
tics of the DSD language defines a formal translation
of a collection of DNA species into a system of chemical
reactions that captures the possible interactions
between the species. The language includes syntactic
and graphical abbreviations that allow us to represent
a particular class of DNA molecules in a concise
manner. The class of molecules in question is those
without secondary structure—that is, only single-
stranded DNA sequences may hang off the main
double-stranded backbone of the molecule. This rules
out tree-like or pseudo-knotted structures, which
greatly simplifies the definition of the semantics while
still allowing a wide variety of systems to be designed.

The textual syntax of the DSD programming
language and the corresponding graphical represen-
tation are presented in table 1. The syntax is defined
in terms of sequences S, L, R, strands A, gates G and sys-
tems D. A sequence S comprises one or more domains,
which can be long domains N or short domains N^.
DNA species can be single or double stranded. A
single upper strand kSl denotes a sequence S oriented
from left to right on the page, while a single lower

strand fSg denotes a sequence S oriented from right
to left on the page. A double strand [S] denotes an
upper strand kSl bound to the complementary lower
strand fS*g. A gate G is composed of double-stranded
segments of the form fL’gkLl[S]kRlfR’g, which rep-
resents an upper strand kL S Rl bound to a lower
strand fL’ S* R’g along the double-stranded region
[S]. The sequences L, R, L0 and R’ can potentially
be empty, in which case we simply omit them. Gates
are built up by concatenating gate segments G1 and
G2 along a common lower strand, written G1:G2, or
along a common upper strand, written G1::G2. In
the graphical representation, we omit the colons
altogether and connect the strands.

An individual DNA species can be an upper strand
kSl, a lower strand fSg or a gate G. We let D range
over systems of such species. Multiple systems D1,
D2 can be present in parallel, written as D1jD2.
A domain N can also be restricted to molecules D, writ-
ten new N D. This represents the assumption that the
domain (or its complement) is not used by any other
molecules outside D. We also allow module definitions
of the form X(ñ)=D, where ñ are the module par-
ameters and X(m̃) is an instance of the module D
with parameters ñ replaced by m̃. We assume a fixed
set of module definitions, which are declared at the
start of the program. The definitions are assumed to
be non-recursive, such that a module cannot invoke
itself, either directly or indirectly via another module.

All of the models discussed in this paper were created
using the Visual DSD tool.1 This is a web-based
implementation of the DSD language that allows net-
works of strand displacement reactions to be designed,

Table 1. Syntax of the DNA strand displacement (DSD)
language, in terms of strands A, gates G and systems D.
Where present, the graphical representation below is
equivalent to the program code above.

1http://lepton.research.microsoft.com/webdna
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Example of initial transducer gate:   
(a) Initial species and 
(b) expected final species for the transducer gate. accepts an input signal X and the second gate produces

an output signal Y. The single strands are fuel species:
the first ejects an intermediate strand from the input
gate in an irreversible reaction that prevents input
signal X from being rejected (thereby undoing the
execution of the gate so far), whereas the second
ejects the output signal Y from the output gate. This
design is closely related to the two-domain design
from [22], with the addition of a private ‘c’ domain
that introduces an additional irreversible step into
the execution of the gate. The effect of this modification
is limited for the simple transducer gate but will become
more apparent when we move on to more complicated
gate designs. Note, however, that the definition of
T(N,x,y) does not include a similar ‘new’ declaration
for the ‘a’ domain. This has implications for crosstalk
between gate populations, as we shall see below.

The expected final species for the transducer gate
design (when N ¼ 1) are shown in figure 3b. The intended
effect is to convert an incoming kt^ xl signal into kt^ yl,
leaving only unreactive waste. We say that a strand or
gate is reactive if it can react with some other species
present in the system to cause a strand to be displaced,
and unreactive otherwise. In this example, the unreac-
tive species are those in which all toeholds occur in
double-stranded segments and are thus sequestered.

Here, we will focus on verifying the correctness of two
transducer gates in series. The first gate should turn a
signal X0 into X1, and then the second should turn
signal X1 into X2. Using the DSD code from figure 2,
the input signal and pair of transducers are given by:
S(1,x0) | T(1,x0,x1)| T(1,x1,x2).

To formalize a correctness property to be checked by
PRISM, we first need to identify the states of the model in
which the execution of the gates has completed succes-
sfully. This is performed with the following PRISM code,
which is, in a generic form, designed to be applicable to
various different designs:

Here, strands_reactive and gates_reactive
are pre-defined formulae (automatically generated

by Visual DSD) that, when evaluated in a particu-
lar state of a model, return the number of reactive
strands and reactive gates in that state, respectively.
The variable output gives the number of output
strands (in this example, kt^ x2l) and N is the
number of parallel copies of the system. So, we say
that the execution was successful when all copies of
the gate have produced the required output and there
are no reactive gates or strands (other than output
strands) present.

Notice that, by definition, when the specification
“all_done” given above is true; no further reactions
can occur. Hence, such states of the model are deadlock
states (those with no outgoing transitions to other
states). We specify the correctness of the system
design by stating that: (i) any possible deadlock state
that can be reached must satisfy “all_done” and
(ii) there is at least one path through the system that
reaches a state satisfying “all_done”. These two
properties can be represented by formulae in the (non-
probabilistic) temporal logic CTL, which can be verified
by PRISM:

When we use PRISM to check these two queries,
we find that the second is true but the first is false.
In fact, we find that there are two deadlock states in
the model, one where “all_done” is false and one
where it is true. We can visualize both states using
the Visual DSD tool, as shown in figure 4. State 2, on
the right-hand side, represents the case where the
system has executed correctly and indeed this is
the result that we would anticipate: the state contains
the output strand kt^ x2l along with the inert
garbage left over from complete execution of the two
transducer gates. State 1, however, is incorrect: even
though the output strand kt^ x2l is produced,
we see that some constituent complexes of the trans-
ducers are left in a reactive state, with exposed
toehold domains.

When checking that the first query above is false,
PRISM also produces a counterexample in the form of
a path through the model that leads to a deadlock
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Figure 3. (a) Initial species and (b) expected final species for the transducer gate. (Online version in colour.)
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Example of initial transducer gate code, 

with additional definition for signal strands.

simulated and analysed. For the purposes of this work,
we have developed additional functionality for visual
DSD that allows the reaction network to be exported
as a model that can be loaded into the PRISM probabil-
istic model checker for verification. Additional details
of how reaction networks are computed in DSD are
provided in §4.

2.3. Probabilistic model checking

Model checking is an automated formal verification
technique, based on the exhaustive construction and
analysis of a finite-state model of the system being ver-
ified. The model is usually a labelled state-transition
system, in which each state represents a possible con-
figuration of the system and each transition between
states represents a possible evolution from one configur-
ation to another. The desired correctness properties of
the system are typically expressed in temporal logics,
such as computation tree logic (CTL) or linear-time
temporal logic. We omit here a precise description of
these logics (see [16,17] for detailed coverage); instead,
we give some typical CTL formulae below, along with
their corresponding informal meanings:

— A [ G !(“access1” & “access2”): ‘processes 1
and 2 never simultaneously access a shared resource’;

— A [ F “end” ]: ‘the algorithm always eventually
terminates’ and

— E [ !“fail” U “end” ]: ‘it is possible for the algor-
ithm to terminate without any failures occurring’.

Once the desired correctness properties of the system have
been formally expressed in this way, they can then be ver-
ified using a model checker. This performs an exhaustive
analysis of the system model, for each property either
concluding that it is satisfied or, if not, providing a
counterexample illustrating why it is violated.

Probabilistic model checking is a generalization of
model checking for the verification of systems that exhi-
bit stochastic behaviour. In this case, the models that
are constructed and analysed are augmented with quan-
titative information regarding the likelihood that
transitions occur and the times at which they do so.
In practice, these models are typically Markov chains
or Markov decision processes. To model systems of reac-
tions at a molecular level, the appropriate model is
continuous-time Markov chains (CTMCs), in which
transitions between states are assigned (positive, real-
valued) rates. These values are interpreted as the
rates of negative exponential distributions.

Properties of CTMCs are, like in non-probabilistic
model checking, expressed in temporal logic, but are
now quantitative in nature. For this, we use probabilis-
tic temporal logics such as continuous stochastic logic
(CSL) [18,19] and its extensions for reward-based prop-
erties [20]. For example, rather than verifying that ‘the
protein always eventually degrades’, using CSL allows
us to ask ‘what is the probability that the protein even-
tually degrades?’ or ‘what is the probability that the
protein degrades within t hours?’ Reward-based proper-
ties include ‘what is the expected time that proteins
are bound within the first t time units?’ and ‘what is

the expected number of phosphorylations before reloca-
tion occurs?’ For further details on probabilistic model
checking of CTMCs, see [19,20]. For a description of the
application of these techniques to the study of biological
systems, see Kwiatkowska et al. [21]. All of the models
discussed in this paper were analysed using PRISM [7], a
probabilistic model-checking tool developed at the
Universities of Birmingham and Oxford. Additional
details of probabilistic model checking using PRISM are
provided in §4.

3. RESULTS

In this section, we present a series of case studies
that demonstrate the application of probabilistic model-
checking techniques to the design of DNA strand
displacement systems. As mentioned previously, to do
so we have extended the Visual DSD tool [2] with the
capability to generate, from DSD designs, corresponding
model descriptions that can be directly analysed by the
PRISM probabilistic model checker [7]. We will study our
modified two-domain gate designs from §2.1, and present
analyses of various correctness, reliability and perform-
ance properties of the gates using PRISM. Finally, we will
construct an approximate majority voting system using
these components and show how additional approxi-
mation mechanisms can be adopted in order to verify
this system.

3.1. Transducer gates: correctness

We begin by considering one of the simplest reaction
gates: a transducer that takes an X signal as input
and produces a Y signal as output. The gate can be
thought of as implementing a unary chemical reaction
X! Y. We will demonstrate the use of (non-probabi-
listic) model checking to debug strand displacement
systems, by detecting a bug in a flawed design for a
transducer gate.

Our initial transducer design is specified by the
DSD code of figure 2. This also includes a definition
of single-stranded signals, where the S(N,x) module
denotes a population of N single-stranded signals carry-
ing the X domain. We assume that the t^ toehold is
defined globally and shared by all gates and strands.
The T(N,x,y) module represents N parallel copies of
the transducer gate that implements the X! Y reac-
tion. The body of the module definition consists of
two populations of N complexes, and two populations
of N strands. The species present in the initial state
(when N ¼ 1) are shown in figure 3a. The first gate

Figure 2. Initial transducer gate code, with additional definition
for signal strands.
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Model Checking:
Is an automated formal verification technique, based on the exhaustive construction and 
analysis of a finite-state model of the system being verified. 
- The model is usually a labeled state-transition system, in which each state represents a 
possible configuration of the system and each transition between states represents a 
possible evolution from one configuration to another.
- The desired correctness properties of the system are typically expressed in temporal 
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- Once the desired correctness properties of the system have been formally expressed in 

this way, they can then be verified using a model checker. 
- This performs an exhaustive analysis of the system model, for each property either 

concluding that it is satisfied or, if not, providing a counterexample illustrating why it is 
violated. 



Probabilistic model checking 
This is a generalization of model checking for the verification of systems that 
exhibit stochastic behavior. 
- The models that are constructed and analyzed are augmented with 

quantitative information regarding the likelihood that transitions occur and 
the times at which they do so. 

- - In practice, these models are typically Markov chains or Markov decision 
processes.

Continuous-time Markov chains (CTMCs): Used to model 
systems of reactions at a molecular level, the appropriate model is in which 
transitions between states are assigned (positive, real- valued) rates. These 
values are interpreted as the rates of negative exponential distributions. 

Properties of CTMCs (like in non-probabilistic model checking) are expressed in 
temporal logic, but are now expressed quantitative in nature. 
- For this, one uses probabilistic temporal logics such as continuous stochastic 

logic (CSL. 
- Examples: rather than verifying that ‘the protein always eventually degrades’, 

using CSL allows us to ask 
- ‘what is the probability that the protein eventually degrades?’ or 
- ‘what is the probability that the protein degrades within t hours?’ 



intermediate kt^ x1l signal, thereby leaving parts of the
transducers unused. This happens because of crosstalk:
the two transducers share a common recognition
domain ‘a’ that allows them to interfere with each
other. In contrast, the ‘new c’ declaration in the defi-
nition of the T(N,x,y) module from figure 2 enforces
that the two transducers use different nucleotide
sequences for their ‘c’ domains. The existence of this
faulty behaviour was pointed out in Cardelli [15] and
illustrated by manually tracing a path through the
system. Such bugs have, however, proved to be difficult
to identify manually using simulation tools. Here, we
demonstrate that model checking can identify such
flaws in an automatic fashion.

We can fix the crosstalk bug in the transducer
module from figure 2 by adding an additional ‘new a’
declaration within the module definitions, as shown in
the definition of the alternative T2(N,x,y) module
in figure 5. This suffices to prevent crosstalk between
the populations of gates that implement the different
chemical reactions, because each population of gates
uses different domains for their private ‘a’ and ‘c’
domains. We verify this using PRISM by re-running the
above-mentioned queries against the same model but
with occurrences of the T module replaced by T2 mod-
ules. In each case, these designs are correct: both queries
are true.

3.2. Transducer gates: performance
and reliability

Next, we examine some quantitative properties of the
transducer gate designs from §3.1. Returning first of
all to the pair of faulty transducers, we use PRISM to ana-
lyse the kinetics of the system. Recall that there are two
possible outcomes once the system eventually termi-
nates, one where the execution has completed
successfully and one where it has not. Using the PRISM

temporal logic queries

we can compute the probability that the transducer
pair has, after exactly T seconds: (i) terminated, (ii)
terminated in error; and (iii) terminated successfully.

Figure 6 shows how these probabilities vary for
different values of T. We see that the erroneous out-
come is more likely to occur in the early stages than
the successful outcome. This is to be expected because
the error in the system arises when various intermediate
reaction steps are skipped. By removing the time

parameter T from the queries, we can use PRISM to com-
pute the eventual probability of each outcome:

As the plot in figure 6 suggests, there is in fact an equal
probability of 0.5 for each possible outcome. Intuitively,
this can be explained as follows. There is a point in the
execution of the system where, as described in §3.1, it is
possible either for the reaction to proceed as intended or
for interference between gates to occur. In fact, each of
these two conflicting reactions occurs with the same
rate, meaning that they are equally likely. Furthermore,
each one is irreversible; so the final outcome is effec-
tively decided at this point.

Interestingly, although a single copy of the faulty
transducer pair is clearly unreliable (because it fails
with probability 0.5), we can improve the overall
reliability of the design by adding multiple (N) parallel
copies of the gates. Section 4 of Cardelli [15] suggests
that, if large populations of these gates execute in par-
allel, the additional strands available in the system
should be able to ‘unblock’ the partially completed
gates in the erroneous deadlock state. This hypothesis
is supported by evidence from individual stochastic
simulations of the system. Here, we use PRISM to perform
a more exhaustive analysis: we compute, for different
values of N, the expected percentage of gates in the
final state of the system that are still reactive (recall
from §3.1 that a reactive gate in the final state is an
indicator that the transducer did not execute correctly).

The DSD code for N copies of the transducer pair is:
S(N,x0)| T(N,x0,x1)| T(N,x1,x2). There are
several different ways to compute the desired property
using PRISM. One simple way is to use the query:

which gives the probability that there are i reactive
gates in the final state of the system and, from this,
compute the expected final percentage.

Figure 7 plots this value for a range of values of N.
We see that the percentage of reactive gates decreases
with increasing N, indicating, as conjectured, that run-
ning more copies of the faulty gates in parallel (i.e.
increasing N) means that more of the gates in the
system will be used correctly.

Figure 5. Corrected transducer gate code, with an addi-
tional ‘new a’ declaration that prevents crosstalk between
different gates.
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Figure 6. Plot showing the probability for each possible out-
come of the faulty transducer pair, after T seconds. (Online
version in colour.)
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Screenshot of the Visual DSD tool:
- Code entry box on the left and
- Output tabs on the right. 
Along the top of the screen are options to select example programs, adjust the semantics and 
control the simulator. 

The example shown implements a simple transducer gate: 
- The Compilation tab: on the right-hand side displays output from the compiler, in this case a 
visualization of all the individual reactions. 
- The Simulation tab: shows time-course plots and data tables from stochastic and deterministic 
simulations.
- The Analysis tab: shows various representations of the continuous-time Markov chain. 
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Fig. 1. Screenshot of the Visual DSD tool, with the code entry box on the left and the output tabs on the right. Along the top of the screen there are options to
select example programs, adjust the semantics and control the simulator. The example shown implements a simple transducer gate. The Compilation tab on
the right-hand side displays output from the compiler, in this case a visualization of all the individual reactions. The Simulation tab shows time-course plots
and data tables from stochastic and deterministic simulations, and the Analysis tab shows various representations of the continuous-time Markov chain.

2.3 Visualization and export
Visual DSD offers numerous visualizations of the DNA species in the
system, using the graphical notation introduced in Lakin et al. (2011). These
range from the structure of the individual DNA species through pictorial
representations of individual reactions (as shown on the right-hand side
of Fig. 1) to a graph-based visualization of the entire chemical reaction
network or continuous-time Markov chain. Simulation results are plotted as
line graphs of species populations over time. Simple arithmetic functions on
populations can also be plotted. The tool can also output nucleotide sequences
as a starting point for construction of the systems.

Data and models can be exported from Visual DSD in a variety of formats.
Chemical reaction networks can be exported to SBML (Hucka et al., 2003)
and the time series data from simulations can be saved in CSV format for
loading into a spreadsheet. Continuous-time Markov chains can be exported
as a model for the PRISM probabilistic model checker (Hinton et al., 2006).
The user can then express system properties as temporal logic formulae and
verify them using stochastic model checking (Kwiatkowska et al., 2007).
PRISM can also perform detailed quantitative analysis of reaction kinetics.
Examples queries include the probability of reaching a given state within
a particular time, or the probability of reaching an undesirable state due to
interference between DNA strands.

3 DISCUSSION
Visual DSD has been used to model and analyse a wide range
of DNA strand displacement devices, including logic gates (Qian
and Winfree, 2011), neural network computation (Qian et al.,
2011), fork and join gates (Cardelli, 2010), oscillators (Lakin et al.,
2011) and a range of other devices including catalytic gates and
schemes for simulating arbitrary chemical systems (Phillips and
Cardelli, 2009). Note that secondary structures such as hairpin,
pseudoknot and multiloop junctions are not currently supported;
however, some of these structures, including hairpins, are currently
under development for a future release. We have found that the tool
is particularly beneficial when designing new systems from scratch,
as the visualizations make it easy to debug programs. Support for
reusable modules in program code makes it quick and easy to
construct new, larger systems using pre-designed components. The
tool embodies the scientific workflow and can increase efficiency

and productivity of DNA device design and analysis by allowing
users to simulate systems before attempting to build them in the
lab, thereby saving time and lab resources. It also enables in silico
investigation of the behaviour of systems that are beyond the current
state of the art in fabrication, such as particularly large and/or
complex systems. Furthermore, once a design has been formalized in
the DSD language it becomes possible to perform formal verification
of certain aspects of its behaviour, for example using a stochastic
model checker or a theorem prover. We are continually developing
the software and adding new features.
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The Visual DSD tool comes with a number of example 
systems implemented using DNA molecules. 
These are accessible from the drop-down menu 
labeled “Examples” in the top-left corner of the 
Silverlight user interface. 

Built in Visual DSD Examples:

The Catalytic example: is an implementation of the 
entropy-driven catalytic gate from (Zhang, 
Turberfield, Yurke, & Winfree, 2007). 

The Lotka example: is the Lotka-Volterra predator-
prey oscillator. 

The Mapk example: models a mitogen-activated 
protein kinase (MAPK) signaling cascade (Huang & 
Ferrel, 1996) 

The Migrations example: serves to demonstrate the 
branch migration rate model (Zhang & Winfree, 
2009). 
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Using the catalytic gate 
as an example:

- Selecting this populates the “Code” tab in 
the left-hand pane with the text of the 
example program

- The text of this program begins with a 
directive to the simulator telling it the duration 
of the simulation run and how many sample 
data points to use. 

- The next line specifies a “scaling factor” 
which the system uses to automatically scale 
up from molar concentrations to populations 
of individuals, for the stochastic simulation. 

- The third and fourth lines declare two 
domains with specified binding and unbinding 
rates. 

- The final element of the program is a 
collection of DNA molecules with their 
respective concentrations.

- Now that we have a program to run, clicking 
on the “Compile” button performs the 
compilation into chemical reactions. 
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Using the catalytic gate as an example, Cont:
The “Input” tab: visualizes the initial DNA molecules in the system 
(exactly as they were entered in the code) using a common graphical 
notation.

Within the “Compilation” tab: the “Species” tab: uses the same 
graphical notation but provides a list of all of the species which could 
possibly be produced by reactions from the initial species presented 
in the input program. 

The “Reactions” and “Graph” tabs: display the set of possible 
reactions between the various DNA species.
- The “Reactions” tab: lists the reactions.
- The “Graph” tab: visualizes them as a reaction network.
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is reported in a message box together with the location of the offending section of the program, like 
the following example error message. 
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tab on the right-hand side. This output persists until a modified program is compiled using the 
͞Compile͟�ďƵƚƚŽŶ͘ 

 

dŚĞ�͞Input͟�tab visualises the initial DNA molecules in the system (exactly as they were entered in 
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notation from that used in (Phillips & Cardelli, 2009), although that notation can be selected as an 
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graphical notation but provides a list of all of the species which could possibly be produced by 
reactions from the initial species presented in the input program. dŚĞ�͞ZĞĂĐƚŝŽŶƐ͟�ĂŶĚ�͞'ƌĂƉŚ͟�ƚĂďƐ�
are particularly useful as they display the set of possible reactions between the various DNA species. 
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network. The outputs of the graphical tabs for the catalytic gate example are as follows. 

 

 



Outputs of the graphical tabs for the catalytic gate example:
Labeled Nodes: Each labelled node in the “Graph” tab denotes a species. (The initial species are represented 
with a bold outline.)
Unlabled Nodes: Each unlabeled node represents a reaction, which may or may not be reversible, with 
edges connected to reactant and product species.:
- For irreversible reactions: edges with no arrows denote reactants, while edges with hollow arrows denote 
products. 
- For reversible reactions: hollow and solid arrows are used to distinguish between the products of the forward 
and reverse reactions, respectively. 
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The “Plot” tab produces a real-time graph of the concentrations (or populations) of certain species:
- The species to plot can be specified in the program but our example gives no such directives – in this case the default behaviour is to 
plot the populations of all species. 
- The chart window can be dragged using the mouse and zoomed in and out using the scroll wheel. 
- Along the top of the plot window is a collection of buttons which give more control over the plot. 
- Clicking on the button for a particular species toggles the visibility of the relevant line in the plot. 
- There are also buttons to show all plots and to hide all plots. This selection bar can itself be hidden or moved to dock at the right-hand 
side of the screen instead of at the top. 

When the simulation terminates or is paused:
- The “Initial state” and “Last state” tabs are populated with a visualization of the initial and final states of the simulation run, 
respectively. 
This includes a graphical visualization of each molecular species, along with their populations. 

5 
 

͞ĚŝƌĞĐƚŝǀĞ� duration͟Ϳ͘ By default (as in the catalytic gate example) the simulator samples the 
populations of all of the species in the system after every single reaction. It is possible 
programmatically to restrict this to a subset of the species, as discussed in the next section. 

dŚĞ�͞Table͟�ƚĂď�ĐŽŶƚĂŝŶƐ�Ă�tabular representation of the simulation data as species populations over 
time. The data in this tab can be saved as a comma-separated (CSV) or tab-separated (TSV) file which 
can then be imported into a spreadsheet such as Microsoft Excel. Alternatively, the data can be 
copied and pasted directly into Excel as it stands. 

dŚĞ�͞WůŽƚ͟�ƚĂď�ƉƌŽĚƵĐĞƐ�Ă�ƌĞĂů-time graph of the concentrations (or populations) of certain species. 
The species to plot can be specified in the program but our example gives no such directives ʹ in this 
case the default behaviour is to plot the populations of all species. The chart window can be dragged 
using the mouse and zoomed in and out using the scroll wheel. 

 

Along the top of the plot window is a collection of buttons which give more control over the plot. 
Clicking on the button for a particular species toggles the visibility of the relevant line in the plot. 
There are also buttons to show all plots and to hide all plots. This selection bar can itself be hidden 
or moved to dock at the right-hand side of the screen instead of at the top. 

tŚĞŶ�ƚŚĞ�ƐŝŵƵůĂƚŝŽŶ�ƚĞƌŵŝŶĂƚĞƐ�Žƌ�ŝƐ�ƉĂƵƐĞĚ͕�ƚŚĞ�͞/ŶŝƚŝĂů�ƐƚĂƚĞ͟�ĂŶĚ�͞>ĂƐƚ�ƐƚĂƚĞ͟�ƚĂďƐ�ĂƌĞ�ƉŽƉƵůĂƚĞĚ�
with a visualization of the initial and final states of the simulation run, respectively. This includes a 
graphical visualization of each molecular species, along with their populations. 


