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• Algorithmic Self-assembly (without errors):
- crystal growth is programmed by designing a set of tiles with binding interactions 
enforce specific local assembly rules. 

- Growth begins from a nucleating structure and consists of a series of attachments of 
single tiles. 

- Under slightly supersaturated conditions, the attachment of a tile to a growing crystal 
is energetically favorable only if it attaches to a growing crystal by at least two binding 
sites. 

- The tiles are designed so that during correct assembly, at every step a tile in the 
pattern attaches by a particular set of two or more binding sites.

- These binding sites are the tile’s inputs:
 the identities of the binding sites together determine which tile can attach at a given 
site. 



Theoretical and Algorithmic Issues
for Tiling Self-Assemblies

• Efficiently assembling basic shapes with precisely controlled 
size and pattern
– Constructing N X N squares with Ω(log n/log log n) tiles

[Adleman, Cheng, Goel, Huang, 2001]
– Perform universal computation by simulating BCA

[Winfree ’99]
• Library of primitives to use in designing nano-scale 

structures [Adleman, Cheng, Goel, Huang, 2001]
• Automate the design process 

[Adleman, Cheng, Goel, Huang, Kempe, Moisset de 
espanes, Rothemund 2001]

• Robustness

(Cheng, Goel, Cheng)



Robustness of Tiling Self-Assemblies

• In practice, self-assembly is a thermodynamic 
process. When T=2, tiles with 0 or 1 matches also 
attach; tiles held by total strength 2 also fall off at 
a small rate.

• Currently, there are 1-10% errors observed in 
experimental self-assembly. 

 [Winfree, Bekbolatov, ’03]
• Possible schemes for error correction
– Biochemistry tricks
– Coding theory and error correction

[Cheng, Goel, Cheng]



Types of Errors of Algorithmic self-assembly:
- self-assembly is stochastic:
- unfavorable attachments of tiles with one or more incorrect or absent inputs also occur.

Tiling Error: when a tile that attaches unfavorably does not match some of its input 
binding sites, so may not be the correct tile in the desired pattern
- Subsequent algorithmic pattern formation can be severely disrupted, resulting in a grossly 
malformed product. 
Errors of  insufficient attachment:
- While tiles that attach unfavorably usually fall off quickly, occasionally such a tile is locked 
in by the subsequent favorable attachment of an adjacent tile.

    Illustration of Correct and Erroneous assembly steps.
Growth errors:
Insufficient attachments at sites where a correct tile could have attached:
involve both a correctly matching binding site and a mismatch. 
Insufficient attachments on facets involve no mismatches; nonetheless, incorrect.

[Winfree 2007]

Errors	of	Algorithmic	self-assembly:	
-	self-assembly	is	stochas,c:	
-	unfavorable	a7achments	of	,les	with	one	or	more	incorrect	or	absent	inputs	also	occur.	
Errors	of		insufficient	a7achment:	
-	While	,les	that	a7ach	unfavorably	usually	fall	off	quickly,	occasionally	such	a	,le	is	locked	
in	by	the	subsequent	favorable	a7achment	of	an	adjacent	,le,	an	event	we	will	call	an.	
	
Tiling	Error:	when	a	,le	that	a7aches	unfavorably	does	not	match	some	of	its	input	binding	
sites,	so	may	not	be	the	correct	,le	in	the	desired	pa7ern	
-	Subsequent	algorithmic	pa7ern	forma,on	can	be	severely	disrupted,	resul,ng	in	a	grossly	
malformed	product.	
	
	
	
	
	
	
	
Figure		illustrates	correct	and	erroneous	assembly	steps.	
Growth	errors:	
	Insufficient	a7achments	at	sites	where	a	correct	,le	could	have	a7ached;		
they	involve	both	a	correctly	matching	binding	site	and	a	mismatch.		
Insufficient	a7achments	on	facets	involve	no	mismatches;	nonetheless,	incorrect.	

the added tiles may be incorrect for the pattern. Therefore,
they are called facet errors. Unlike standard crystal growth,
where nucleation on facets is part of the desired growth
process, in a proper algorithmic self-assembly every tile
attaches by two or more binding sites. Facet errors were
identified as a major source of algorithmic self-assembly
errors both in experimental17 and in theoretical20,21 studies.
The overall rate of errors during assembly is the sum of the
growth errors and the facet errors.
The choice of tiles for an algorithmic self-assembly process

not only determines the pattern that is formed when all
attachments are favorable but also determines the growth
path and can influence the rate at which errors occur during
growth. In theory, it is possible to transform a less robust
tile set into a more robust tile set that can assemble the
desired object with fewer errors.20-23 In such transformed
tile sets, a block of tiles plays the same logical role as a
single tile in the less robust tile set (Figure 1b). The goal is
for such blocks to exploit a form of “proofreading”: when
an incorrect tile attaches, further unfavorable assembly steps

must occur within the block in order for the incorrect tile to
become locked in place. Because such steps are rare,
assembly stalls, allowing more time for the incorrect tile to
fall off, so that correct assembly can proceed.
Simulations of the first proofreading tile sets20 (Figure 1b),

here called uniform proofreading tile sets, show a substantial
reduction in the rate of growth errors. However, uniform
proofreading tile sets do not reduce the rate of facet errors;
just one insufficient attachment can nucleate the growth of
a layer of uniform proofreading tiles along an entire facet
(Figure 2a). Snaked proofreading tile sets21 (Figure 1c)
improve on uniform proofreading tile sets. They reduce the
rate of growth errors in the same way as uniform proofread-
ing tile sets and additionally reduce the rate of facet errors;
multiple adjacent insufficient attachments must occur before
favorable growth can continue along a facet (Figure 2b). The
2 × 2 snaked proofreading tile set shown in Figure 1c only
protects against facet errors on the facet parallel to the sT1
and sT2 tiles; we call this the “hard facet”. The other, “easy”,
facet theoretically permits facet errors at approximately

Figure 1. Algorithmic self-assembly and proofreading blocks. (a) During algorithmic self-assembly, a tile attaches to a growing crystal by
binding domains on its edges. Here, the four labels on a tile’s corners indicate specific binding domains; asterisk indicates complementary
domains (X binds to X*). The attachment of a tile where both its input (bottom) edges match the available edges on the crystal is preferred
over the attachment of a tile where a single (or no) match occurs. Growth errors occur when a tile attaches by one matching bond and one
nonmatching bond. Facet errors occur when a tile attaches by only one matching bond. In both cases, for an error to occur, the incorrect
tile must be “locked in” by a second tile before it detaches. (b) The logical structure of a 2 × 2 uniform proofreading block. Each tile in
the original tile set is converted into four tiles that, as a logical block, redundantly encode the same input and output information on the
perimeter of the block, while binding domains on the interior of the block encode the identity of the original tile. Correct assembly at a
growth site proceeds one tile at a time, either in the order pT1-pT2-pT4-pT3 or in the order pT1-pT4-pT2-pT3. The unique labels
inside a proofreading block reduce the rate of growth errors because for a block to be completed, one of the tiles that attaches on top of
an incorrect tile must also be incorrectsit cannot match both the label inside the block and the label presented by the crystal. (c) The
structure of a 2 × 2 snaked proofreading block. Binding labels on the perimeter of the block are the same as in a uniform proofreading
block, but the interior has two modifications: there is an inert interaction between sT1 and sT2, and the other two tiles are fused to create
the “double tile” sT34. This forces correct assembly to proceed in the order sT1-sT34-sT2. Snaked proofreading tile sets, like uniform
proofreading tile sets, force a subsequent tile that attaches after an incorrect attachment to be incorrect also. (d) Zigzag ribbons. While only
three repeat units are shown, ribbons can be arbitrarily long. The 6 tiles interact through 12 distinct pairwise binding domains, all shown
as flat sides, as their logic is not essential here. In addition to the double tiles shown, we use variants of the double tiles that present binding
domains to create a desired facet (e.g., Z78H presents H1* and H2* for the hard facet) or present inert “blunt ends” (e.g., Z56B) to which
nothing may bind.

2914 Nano Lett., Vol. 7, No. 9, 2007

[Winfree	2007]	
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Modelling Self-Assembly Errors
• Temperature: A positive integer giving number of attachements needed 

for assembly of a tile. (Usually 1 or 2)
• A set of tile types: Each tile is an oriented rectangle with glues on its 

corners. Each glue has a non-negative strength (0, 1 or 2).
• An initial assembly (seed).

• Rules: A tile can attach to an assembly iff the combined strength of the 
“matched glues” is greater or equal than the temperature.

• Tiles with combined strength equal to temperature can fall off.
• Errors: Once a while, there will be two tiles attach at the same time and 

both are held by strength at least two after the attachment.
• We call this an “insufficient attachment”.

• Our goal: minimize the impact of insufficient attachments
[Chen]



Example of Error-Free Self-Assembly

T=2

[Cheng, Goel, Cheng]
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Example of Error-Free Self-Assembly

[Cheng, Goel, Cheng]
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Example of Error-Free Self-Assembly
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What can go wrong in a Self-
Assembly?

T=2

[Cheng, Goel, Cheng]



T=2

What can go wrong in a Self-
Assembly?

Error

[Cheng, Goel, Cheng]



Why it may not matter:

T=2
More
Errors

[Cheng, Goel, Cheng]



Why errors of Self-assembly may not 
matter:

T=2

[Cheng, Goel, Cheng]



T=2

What can go really wrong in a Self-
Assembly?

[Cheng, Goel, Cheng]



T=2

What can go really wrong in a Self-
Assembly?

Error
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What can go really wrong?

T=2

More
Errors

[Cheng, Goel, Cheng]



Error-Reducing Designs
• Biochemistry tricks

– Strand Invasion mechanisms
[Chen, Cheng, Goel, Huang, Moisset de espanes, 

2004]
• Coding theory and error correction

– Proofreading tiles
[Winfree, Bekbolatov,2003]

– Snake tiles
 [Chen, Goel 2004]
– Compact Redundant Tiles
 [Reif,Sahu,Yin 2004]



Example: Sierpinski Tile System
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Crystallization Errors
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Proofreading Tile Sets:
Error Correction for Algorithmic 

Self-Assembly
Erik Winfree and Renat Bekbolatov

2003



Proofreading Tiles

• Each tile in the original 
system corresponds to 

 four tiles in the new system
• The internal glues are 

unique to this block
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[Winfree, Bekbolatov, 2003]
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How Proofreading Tiles Reduce 
Errors of self-assembly
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How Proofreading Tiles Reduce 
Errors of self-assembly
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How Proofreading Tiles Reduce 
Errors of self-assembly
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How Proofreading Tiles Reduce 
Errors of self-assembly

Mismatched
Tile melts off
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How Proofreading Tiles Reduce 
Errors of self-assembly
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How Proofreading Tiles Reduce 
Errors of self-assembly

All Mismatched
Tile melted off:
Corrected Assembly
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Fig. 2. (a) Assembly of two double-crossover tiles via hybridization of 5-nucleotide
sticky ends. kf is the forward rate constant, in /M/sec, and kr,1 = kfe−Gse is the
reverse rate constant, in /sec. (b) Assembly of a double-crossover tile into a site on
the growth front of a crystal via hybridization of two 5-nucleotide sticky-end pairs. The
forward rate constant is assumed to be the same as for the single sticky-end reaction
of (a), while the reverse rate constant is assumed to require twice as much energy to
simultaneously break both sticky-end bonds – i.e., binding is cooperative – and thus
kr,2 = kfe−2Gse . Gse is the free energy of dissociation for a single sticky end, in units
of RT .

molecular interactions, i.e., the number of base pairs that must be broken in or-
der for the tile to dissociate. Thus, single tiles (monomers) that either totally or
partially mismatch their neighbors arrive at a site with equal frequency as tiles
that correctly match their neighbors, but the correctly-matching tiles stay much

[Winfree,Bekbolatov2003]

Self-assembly of 
Double Crossover 

Tiles used to form a 
Sierpinski Triangle



Kinetic Analysis of Original Assembly without 
Proofreading Tiles:
• Assume a continuous-time Markov process (satisfying detailed 

balance) for modeling the 3 D growth of a single crystal in a 
solution of free monomer tiles.

•  Assume a monomer tile whose interactions (in the strength units of 
the aTAM) with the crystal sum to 
       b= number of unit-strength sticky ends binding the tile to the 
crystal. 

Entropic Cost of Tile Assembly:
 Gmc = the entropic cost of putting a tile at a binding site     
             (depends on the monomer tile concentration) 

Free Energy Cost of Tile Disassembly:
 Gse = free energy cost of breaking a single strength-1 bond

[Winfree,Bekbolatov2003]



Kinetic Analysis of Original Assembly without 
Proofreading Tiles:

Entropic Cost of Tile Assembly:
 Gmc = the entropic cost of putting a tile at a binding site     
             (depends on the monomer tile concentration) 

Free Energy Cost of Tile Disassembly:
 Gse = free energy cost of breaking a single strength-1 bond

Absolute Rates:

Rate Association of a new monomer tile at any given site:
                      rf = kf [monomer tile] = kf e-Gmc 

Rate Disassociation:
                     rr,b = kr,b = kf e-bGse = kf e-2Gse       for case b = 2
 b= number of unit-strength sticky ends binding the tile to the crystal. 

[Winfree,Bekbolatov2003]



Kinetic Analysis of Modified Assembly without 
Proofreading Tiles:
Gmc = the entropic cost of putting a tile at a binding site     
             (depends on the monomer tile concentration) 
Gse = free energy cost of breaking a single strength-1 bond

Optimal Growth Rates are near Melting Temp of crystals: 
When   Gmc ≈ b Gse ≈ 2 Gse  when b=2 

ΔG = difference in free energy between an assembly with mismatched 
tile and assembly with a correct tile.

Assume thermodynamic limit: Error Rate ε ≈e-ΔG/RT ≈ e-ΔGse 

Growth Rate of Assembly:
       r ≈ monomer tile concentration
         = β [monomer tile]   = β e-Gmc   ≈ β e-2Gse   = βε2

[Winfree,Bekbolatov2003]
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Fig. 3. (a) Phase diagram [28] for crystal growth of tiles implementing a BCA, under
the kTAM. “Good crystals” (growth rate comparable to kf [DX] and error rate smaller
than ε) are obtained for large Gse and Gmc, below the τ = 2 boundary marking the
melting transition where Gmc = 2Gse. (b) Model for kinetic trapping. The growth site
may (E) be empty; (C) contain a correct tile; (M) contain a mismatched tile; (FC) be
“frozen” with the correct tile in place; or (FM) be “frozen” with the mismatched tile.
r∗ represents the rate at which tiles on the growth front are covered. The error rate is
taken to be the probability that, starting in E, the system reaches FM .

The parameters Gmc and Gse represent the “physical conditions” under
which tile-based assembly can take place. Gmc can be made large (or small)
by using DNA tiles at low (or high) concentrations. Gse can be made large (or
small) by letting the self-assembly take place at a cold (or hot) temperature.4
For what settings of these parameters does the kTAM obey the aTAM rules with
high probability? First note that if 2Gse > Gmc > Gse, then the tile additions
shown in figure 1b are favorable, as rf > rr,2, but all other tile additions are un-
favorable, as they make at most 1 bond and rf < rr,1. Thus, the aTAM correctly
abstracts which reactions are favorable, and which are unfavorable, with respect
to the kTAM. However, in the kTAM, unfavorable reactions also occur with some
frequency, so we expect assembly errors. Figure 4a shows several snapshots from
a Monte Carlo stochastic simulation; single growth errors occur in the 3rd and
4th frames, causing subsequent error-free growth to develop into an undesired
pattern. How frequent are these errors, and how can they be minimized?

4 Naturally, the assumption that Gmc and Gse both remain constant is likely to be
violated in actual experiments, both for reasons under our control (e.g., using a
temperature annealing schedule) and for reasons not easily under our control (e.g.,
the depletion of ambient monomer tile concentrations as a significant fraction of tiles
become incorporated into crystal assemblies.

[Winfree,Bekbolatov2003]

Kinetic Analysis of Original Assembly without Proofreading Tiles
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Fig. 6. (a) The general 2× 2 proofreading construction for rule tiles. (b) The original
Sierpinski tiles. (c) The 2×2 proofreading Sierpinski tiles. (d) Growth of the proofread-
ing Sierpinski tiles. Small tiles illustrate that when a mismatched tile is incorporated,
further growth on one side must involve a second mismatch.

growth without making an additional error. This is illustrated by the small tiles
in figure 6d: after the initial (lowest) small tile arrives, forming a mismatch
on one side, any further tile assembling on that side will either (a) agree with
the initial tile but, because it therefore must be part of the same proofreading
block, mismatch on its lower right side, or (b) agree with its lower right input,
but therefore form a mismatch with the initial small tile. The assembly process
stalls, giving time for the initial mismatched tile to fall off and be replaced by
a correct tile. The final assembly therefore has no record of the mishap having
occurred.

[Winfree,Bekbolatov2003]

Using 2 x 2 Proofreading 
Tiles to assemble a 
Sierpinski Triangle

With less errors

Redesign of original tiles 
to 2 x 2 Proofreading Tiles:

Design of original tiles for 
Sierpinski Triangle:



(c)

(a)

(b)

Fig. 4. (a) Growth of the original (1 × 1) Sierpinski tile set at Gmc = 13.9 and Gse =
7.0, to a size of ∼ 32 layers in ∼ 530 simulated seconds. Two errors can be seen; the first
occurs in the third frame and is indicated by an arrow. Subsequent error-free growth
correctly propagates the erroneous information. (b) Growth of the 2 × 2 proofreading
tiles at Gmc = 12.9 and Gse = 6.5, to a size of ∼ 64 layers in ∼ 460 simulated seconds.
(c) Growth of the 3 × 3 proofreading tiles at Gmc = 11.9 and Gse = 6.0, to a size of
∼ 96 layers in ∼ 310 simulated seconds.

if such a tile arrives before the mismatched tile dissociates, the mismatched tile
becomes locked in by multiple bonds, and is now unlikely to dissociate. For a
direct BCA tile set, the kinetic trap model shown in figure 3b accurately predicts
growth errors in kTAM simulations to obey [28]

1 − ε ≈ 1
1 + 2N r∗+rr,2

r∗+rr,1

and thus ε ≈ 2N
r∗ + rr,2

r∗ + rr,1
−→
r∗→0

2Ne−Gse ,

where r = 1
2 (rf −rr,2) is the overall growth rate and r∗ = αr is the effective rate

at which sites are frozen in the model. α = 1.5 is a free parameter chosen fit to
the data; in some sense, it accounts for the fluctuations of the growth process, in
which the growth front will wash back and forth over a given site several times
before it is “frozen” in place.

The kinetic trapping theory identified a critical relationship. Although arbi-
trarily low error rates can be achieved by appropriate choice of Gmc and Gse,
they come at the cost of a significant slow-down. This trade-off can be visual-
ized by plotting r vs ε for all reasonable values of Gmc and Gse. As illustrated
by the upper (1 × 1) plots in figure 5, all points lie above r ≈ βε2, where

[Winfree,Bekbolatov2003]

Using 3 x 3 
Proofreading Tiles to 
assemble a Sierpinski 

Triangle
with much less errors

Using 2 x 2 
Proofreading Tiles to 
assemble a Sierpinski 

Triangle
with less errors

Using Original Tiles 
to assemble a 

Sierpinski Triangle
with many errors
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Fig. 9. Proofreading tile sets are often able to heal a puncture in the crystal. Sometimes,
as in this case, some of the tiles that fill in the puncture do not perfectly match their
neighbors – a form of “scar tissue.”

and the proofreading tile set formed 98 × 98 squares 87% of the time. For com-
parison, the improved tile set formed 99× 99 squares only 26% of the time. The
disappointingly modest13 benefit provided by the proofreading tiles suggests that
alternative error mechanisms are dominant for these tile sets.

The proofreading tiles also give rise to some surprising, and pleasant, behav-
iors. One such phenomenon is their ability to heal punctures of the growing crys-
tal, as shown in figure 9. Since the identity of tiles within the punctured region is
uniquely determined by the perimeter of that region (in fact, just the lower por-
tion of the perimeter suffices), one might expect even the non-proofreading tile
set to be able to correctly fill in the punctured region. However, regrowth into the
punctured region may occur in any direction, including backward from the most
advanced edge of the puncture, where there are multiple ways to proceed locally
when using tiles implementing irreversible BCA, such as the Sierpinski tiles.14
Thus, regrowth is not always perfect; indeed, the direct BCA tiles very often
leave “scar tissue”, although the proofreading tiles do so much less frequently.

5 Discussion

The primary result of this paper is that dramatic improvements in the error rates
for algorithmic self-assembly can be achieved, in principle, by proper redesign of
the abstract tile set, without changing the fundamental molecular implementa-
tion. The 2×2 proofreading tiles for BCA increase the optimal growth speed r for
which a target error rate ϵ can be achieved from r = βϵ2 to r = βϵ, and greater
improvements can be obtained with larger K × K proofreading constructions.
If these constructions hold up in practice, it may be possible for algorithmic
self-assembly to scale up to macroscopic assemblies without errors.

Although the theoretical and simulation results presented here firmly estab-
lish the effectiveness of the proofreading tile construction, the rigorous proof of
their robustness in the kTAM remains an open problem.

When considering implementation of proofreading tile sets with DNA tiles,
the question of efficiency arises. One wishes for a minimal number of tiles, since
13 The 2 × 2 proofreading Sierpinski tile set under these conditions would obtain ε =

1.5× 10−7, and therefore 104 tiles would assemble without errors 99.9% of the time.
14 As pointed out by Adleman (personal communication), this suggests a relationship

between reversible cellular automaton logic and self-healing properties.

[Winfree,Bekbolatov2003]

Using Proofreading Tiles to heal 
punctures in Sierpinski Triangle



Kinetic Analysis of  k x kProof-Reading Assembly:
Again assume a continuous-time Markov process: 
(satisfying detailed balance) for modeling the 3D growth of a single crystal in a solution 
of free monomer tiles.

 In Proof-Reading Assembly each monomer tile is replaced with a K 
x K subassembly. 
Again Optimal Growth Rates are near Melting Temp of crystals, 
where   Gmc ≈ 2 Gse

Assume thermodynamic limit: error rate for an entire block: now 
determined by K mismatched tiles
 Error Rate ε ≈e-ΔG/RT ≈ e-ΔGse ≈ e-KGse so e-Gse ≈ε1/k

Growth Rate of Proof-Reading Assembly:
               r ≈ monomer tile concentration
                 = β [monomer tile] 
                 = β e-Gmc   ≈ β e-2Gse   = βε2/K

[Winfree,Bekbolatov2003]



Error Free Self-assembly Using 
Snaked Proof-Reading Tiles

Ho-Lin Chen & Ashish Goel 
2005
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Initial Error-Free Assembly

[Cheng, Goel, Cheng]



•First tile attaches with a weak binding strength

Example of Nucleation Errors

[Cheng, Goel, Cheng]



•First tile attaches with a weak binding strength
•Second tile attaches and secures the first tile

Example of Nucleation Errors

[Cheng, Goel, Cheng]



•First tile attaches with a weak binding strength
•Second tile attaches and secures the first tile
•Other tiles can attach and forms a layer of (possibly incorrect) tiles.

Example of Nucleation Errors

[Cheng, Goel, Cheng]



Snake Tiles

• Each tile in the original 
system corresponds to four 
tiles in the new system

• The internal glues are 
unique to this block
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G1a

G4a G4b

G3a

[Cheng, Goel, Cheng]



•First tile attaches with a weak binding strength

How Snake Tiles reduce 
Nucleation Errors

[Cheng, Goel, Cheng]



•First tile attaches with a weak binding strength
•Second tile attaches and secures the first tile

How Snake Tiles reduce 
Nucleation Errors

[Cheng, Goel, Cheng]



•First tile attaches with a weak binding strength
•Second tile attaches and secures the first tile
•No Other tiles can attach without another nucleation error

How Snake Tiles reduce 
Nucleation Errors

[Cheng, Goel, Cheng]



Four by Four Snake Tiles
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Example: Four by Four Snake Tiles

[Cheng, Goel, Cheng]
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Example: Four by Four Snake Tiles
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Example: Four by Four Snake Tiles
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Example: Four by Four Snake Tiles
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Example: Four by Four Snake Tiles
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Example: Four by Four Snake Tiles
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Example: Nucleation Errors (T=2) for
Diagonal Tile Assemblies

Starting from an initial assembly

[Cheng&Goel,2004]
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The first tile attaches with strength 1.
(usually falls off fast)

[Cheng&Goel,2004]

Example: Nucleation Errors (T=2) for
Diagonal Tile Assemblies
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The second tile attaches and now both
tiles are held by strength 2.

[Cheng&Goel,2004]

Example: Nucleation Errors (T=2) for
Diagonal Tile Assemblies
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Error propagates.

[Cheng&Goel,2004]

Example: Nucleation Errors (T=2) for
Diagonal Tile Assemblies
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Snaked Tile System for Diagonal 
Tile Assemblies

• Replace a tile by
 a block of 4 tiles
• Internal glues are unique

G1

G4G3

G2

G1b X4

X3

G2a

X2

G3b

G2b

G1a

G4a

G4b

G3a

Blunt end (inert)

[Cheng&Goel,2004]
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Starting from an initial assembly

[Cheng&Goel,2004]

Example: Nucleation Errors (T=2) reduced for
Diagonal Tile Assemblies using Snaked Tiles
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Two tiles attach and both tiles 
are held by strength 2.

[Cheng&Goel,2004]

Example: Nucleation Errors (T=2) reduced for
Diagonal Tile Assemblies using Snaked Tiles
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No other tiles can attach.

Inert edge

[Cheng&Goel,2004]

Example: Nucleation Errors (T=2) reduced for
Diagonal Tile Assemblies using Snaked Tiles
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Generalization of Snaked Tiles to 
Diagonal Tile Assemblies

G1

G4G3

G2

[Cheng&Goel,2004]



Experimental Verification of 
Proof-Reading & Snaked Tiles for 

Reducing Nucleation Errors 

Ashish Goel
Rebecca Schulman
Erik Winfree

[Cheng,Schulman,Winfree]
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Snaked Tile System for Diagonal 
Tile Systems

• Replace a tile by
 a block of 4 tiles
• Internal glues are unique

[Chen, Goel, 2004]
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[Cheng,Schulman,Winfree]
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Snaked Tile System for Diagonal Tile 
Systems
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Tile sets used in experiments
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Proofreading block

[Cheng,Schulman,Winfree]



80

Width-4 Zig-Zag Ribbon using Snaked Tiles

[Schulman, Winfree, DNA 10, 2004]

6 tile types
[Cheng,Schulman,Winfree]
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AFM of Zig-Zag Ribbons

[Cheng,Schulman,Winfree]



ZZ + Snake Tiles

10 tile types
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10 tile types
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10 tile types
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ZZf + Snake Tiles
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Theoretical Analysis of Snaked Tiles

• The snake tile design can be extended to 
2k x 2k blocks.

• Prevents tile propagation even after k-1 
insufficient attachments happen.

[Cheng,Schulman,Winfree]
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bad............

: insufficient attachments

: erroneous tiles falling off

[Cheng,Schulman,Winfree]

How do Snaked Tiles work?
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bad............

: happens with rate O(e-G) * rf

: erroneous tiles falling off

[Cheng,Schulman,Winfree]

How do Snaked Tiles work?
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• The snake tile design can be extended to 
2k x 2k blocks.

• Prevents tile propagation even after k-1 
insufficient attachments happen.

• When < k insufficient attachments 
happened locally, all the erroneous tiles 
are expected to fall off in time poly(k). 

[Cheng,Schulman,Winfree]

Theoretical Analysis of Snaked Tiles
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bad............

: happens with rate O(e-G) * rf

: happens with rate 1/poly(k)

[Cheng,Schulman,Winfree]

Theoretical Analysis of Snaked Tiles
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bad............

: happens with rate O(e-kG) 

  if backward rate  >>  forward rate 

bad

[Cheng,Schulman,Winfree]

Theoretical Analysis of Snaked Tiles
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If we want to assemble a structure 
with size N, we can use Snaked Tile 
System with block size k=O(log N). 

 The assembly process is expected 
to finish within time Õ(N) and be 
error free with high probability.

[Cheng,Schulman,Winfree]

Theoretical Analysis of Snaked Tiles
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Fig. 1. (a) The parity tile system. (b) Illustrating the action of the parity tile system on the ”input”
string 1111. The arrow at the top represents the order in which tiles must attach in the absence of
errors

In this setting, tiles in the top row attach from left to right, if there are no errors.
Hence, in the absence of errors, there is always a correct “next” position

3.1 Growth Errors and the Winfree-Bekbolatov Proof-Reading System

An error is said to be a “growth” [11] error if an incorrect tile attaches in the next
position. The proof-reading approach of Winfree and Bekbolatov [11] can correct such
errors by using redundancy. They replace each tile in the system with four tiles, arranged
in a 2×2 block. Figure 2(b) depicts the four tiles that replace a 10 tile. The glues internal
to the block are all unique. This added redundancy results in resilience to growth errors.
The details are described in their paper.
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Fig. 2. (a) The original 10 tile. (b) The four proof-reading tiles for the 10 tile, using the construc-
tion of Winfree and Bekbolatov [11]. (c) The snaked proof-reading tiles for the parity tile system.
The internal glues are all unique to the 2× 2 block corresponding to the 10 tile. Notice that there
is no glue on the right side of 10A or the left side of 10C and that the glue between the top two
tiles is of strength 2. This means that the assembly process doubles or “snakes” back onto itself,
as demonstrated by the arrow

3.2 Nucleation Errors and Improved Proof-Reading

However, there is another, more insidious kind of error that can happen. A tile may
attach at a position other than the correct “next” position using just a strength one glue.
This would be the incorrect tile, and hence an error with probability 50%, and such
an error will propagate to the right ad infinitum even if we are using the proof-reading
tile set of Winfree and Bekbolatov. We call such errors “nucleation” errors1. In more

1 Winfree and Bekbolatov call these facet roughening errors and reserve the term nucleation
errors for another phenomenon.
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3.1 Growth Errors and the Winfree-Bekbolatov Proof-Reading System

An error is said to be a “growth” [11] error if an incorrect tile attaches in the next
position. The proof-reading approach of Winfree and Bekbolatov [11] can correct such
errors by using redundancy. They replace each tile in the system with four tiles, arranged
in a 2×2 block. Figure 2(b) depicts the four tiles that replace a 10 tile. The glues internal
to the block are all unique. This added redundancy results in resilience to growth errors.
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Fig. 2. (a) The original 10 tile. (b) The four proof-reading tiles for the 10 tile, using the construc-
tion of Winfree and Bekbolatov [11]. (c) The snaked proof-reading tiles for the parity tile system.
The internal glues are all unique to the 2× 2 block corresponding to the 10 tile. Notice that there
is no glue on the right side of 10A or the left side of 10C and that the glue between the top two
tiles is of strength 2. This means that the assembly process doubles or “snakes” back onto itself,
as demonstrated by the arrow

3.2 Nucleation Errors and Improved Proof-Reading

However, there is another, more insidious kind of error that can happen. A tile may
attach at a position other than the correct “next” position using just a strength one glue.
This would be the incorrect tile, and hence an error with probability 50%, and such
an error will propagate to the right ad infinitum even if we are using the proof-reading
tile set of Winfree and Bekbolatov. We call such errors “nucleation” errors1. In more

1 Winfree and Bekbolatov call these facet roughening errors and reserve the term nucleation
errors for another phenomenon.

[Chen&Goel2005]

Example Parity Tile system:

Example Parity Tile system with Proof-reading Tiles and Snaked Tiles:



Theoretical Analysis of Snake Tiling
(can skip)

• The snake tile design can be extended to 2k x 
2k blocks.
– Prevents tile propagation even after k+1 

nucleation error happen.

• With 2k x 2k snake tile system, we can 
assemble an N by N square of blocks with time 
Õ(N1+4/k+1) and (with high probability) remain 
stable for time Õ(N1+4/k+1).
– Assuming tiles held by strength 3 does not fall off
– The error probability at each location changes from p to pk

[Chen&Goel2005]



Analysis of Errors of Insufficient Attachment

68 H.-L. Chen and A. Goel

complicated systems, these errors can also happen on the boundary of a completed
assembly, making it very hard to precisely control the size of an assembly. Both growth
errors and nucleation errors are caused by what we term an insufficient attachment –
the attachment of a tile to an existing assembly using a total glue strength of only 1
(even though the temperature is 2) and then being “stabilized” (i.e. held by strength
2) by another tile attaching in the vicinity. Insufficient attachments are unlikely at any
given site (say they happen with probability x) but over the course of n attachments,
the probability of getting at least one insufficient attachment may become as large as
O(nx). We will now show a design that requires two insufficient attachments in close
proximity to have an error that can propagate, and significantly reduces the chances of
getting an error (either growth or nucleation). Figure 2(c) shows the 2 × 2 block that
replaces a single tile (say tile 10), and the arrow shows the order in which the sub-
tiles attach at a site when there have been no insufficient attachments. Notice that there
is no glue between tiles 10A and 10C . This is what prevents nucleation errors from
propagating without another insufficient attachment. We call this the “snaked” proof-
reading system, since the assembly process for a block doubles back on itself.

It is easy to show that the above approach can be extended to arbitrary k × k sized
blocks, to get lower and lower error rates. The above idea can also be extended to Sier-
pinski tile systems [10] and counters [8, 2], though for technical reasons, a 3 × 3 block
is needed at a minimum to take care of nucleation errors in these more complicated
systems. Detailed analysis is given in section 4. However, the following lemmas are
useful to illustrate the kind of improvements we can expect to get. The quantities f ,
r and Gse are as defined in section 2.2. An insufficient attachment at temperature two
is the process that a tile attaches with strength one, but, before it falls off, another tile
attaches right next to it and both tiles are held by strength at least two.

Lemma 1. The rate at which an insufficient attachment happens at any location in a
growing assembly is f2

r e−Gse = O(e−3Gse).

Proof. The rate of an insufficient attachment can be modeled as the Markov Chain
shown in figure 3. For a nucleation error to happen, first a single tile must attach
(at rate f). The fall-off rate of the first tile is reGse and the rate at which a second
tile can come and attach to the first tile is f. After the second tile attaches, an insuf-
ficient attachment has happened. So the overall rate of an insufficient attachment is
f ∗ f

f+reGse ≈ f2

r e−Gse

Without proof-reading, or even using the proof-reading system of Winfree and Bek-
bolatov, a single insufficient attachment can cause a nucleation error, and hence the

C C C C C C

E E

p

qeGse

p
error propagates

C C C C CC C C C C C C

E

Fig. 3. The C tiles represent the existing assembly, and the E tiles are new erroneous tiles

[Chen&Goel2005]



Nucleation Errors
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complicated systems, these errors can also happen on the boundary of a completed
assembly, making it very hard to precisely control the size of an assembly. Both growth
errors and nucleation errors are caused by what we term an insufficient attachment –
the attachment of a tile to an existing assembly using a total glue strength of only 1
(even though the temperature is 2) and then being “stabilized” (i.e. held by strength
2) by another tile attaching in the vicinity. Insufficient attachments are unlikely at any
given site (say they happen with probability x) but over the course of n attachments,
the probability of getting at least one insufficient attachment may become as large as
O(nx). We will now show a design that requires two insufficient attachments in close
proximity to have an error that can propagate, and significantly reduces the chances of
getting an error (either growth or nucleation). Figure 2(c) shows the 2 × 2 block that
replaces a single tile (say tile 10), and the arrow shows the order in which the sub-
tiles attach at a site when there have been no insufficient attachments. Notice that there
is no glue between tiles 10A and 10C . This is what prevents nucleation errors from
propagating without another insufficient attachment. We call this the “snaked” proof-
reading system, since the assembly process for a block doubles back on itself.

It is easy to show that the above approach can be extended to arbitrary k × k sized
blocks, to get lower and lower error rates. The above idea can also be extended to Sier-
pinski tile systems [10] and counters [8, 2], though for technical reasons, a 3 × 3 block
is needed at a minimum to take care of nucleation errors in these more complicated
systems. Detailed analysis is given in section 4. However, the following lemmas are
useful to illustrate the kind of improvements we can expect to get. The quantities f ,
r and Gse are as defined in section 2.2. An insufficient attachment at temperature two
is the process that a tile attaches with strength one, but, before it falls off, another tile
attaches right next to it and both tiles are held by strength at least two.

Lemma 1. The rate at which an insufficient attachment happens at any location in a
growing assembly is f2

r e−Gse = O(e−3Gse).

Proof. The rate of an insufficient attachment can be modeled as the Markov Chain
shown in figure 3. For a nucleation error to happen, first a single tile must attach
(at rate f). The fall-off rate of the first tile is reGse and the rate at which a second
tile can come and attach to the first tile is f. After the second tile attaches, an insuf-
ficient attachment has happened. So the overall rate of an insufficient attachment is
f ∗ f

f+reGse ≈ f2

r e−Gse

Without proof-reading, or even using the proof-reading system of Winfree and Bek-
bolatov, a single insufficient attachment can cause a nucleation error, and hence the
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p
error propagates
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Fig. 3. The C tiles represent the existing assembly, and the E tiles are new erroneous tiles
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rate of nucleation error at any location is also O(e−3Gse). The next lemma shows the
improvement obtained using our snaked proof-reading system. The difference is even
more pronounced if we compare the nucleation error rate to the growth rate, which is
a natural measurement unit in this system. The ratio of the nucleation error rate to the
growth rate is O(e−Gse) in the original proof-reading system, whereas it is O(e−2Gse)
in our system, a quadratic improvement.

Lemma 2. The rate at which a nucleation error takes place in our snaked proof-reading
system is O(e−4Gse).

Proof. In the snaked system, two insufficient attachments need to happen next to each
other for a nucleation error to occur. According to lemma 1, the first insufficient at-
tachment happens at rate O(e−3Gse). After the first insufficient attachment, the error
will eventually be corrected unless another insufficient attachment happens next to the
first. The second insufficient attachment happens at rate O(e−3Gse); but the earlier in-
sufficient attachment gets “corrected” at rate O(e−2Gse) (remember that a ≈ 1 and
hence a tile attached with strength 2 falls off at roughly the growth rate). Hence, the
probability of another insufficient attachment taking place before the previous insuffi-
cient attachment gets reversed is O(e−Gse), bringing the nucleation error rate down to
O(e−4Gse).

For growth errors, the proof-reading system of Winfree and Bekbolatov achieves a
reduced error rate of O(e−4Gse), a property preserved by our modification.

4 The General Snaked Proofreading System

The system shown in the previous section only works for prevention of nucleation errors
in one direction (west to east). The system we describe in this section can improve any
rectilinear tile system 2 and prevents nucleation errors in both growth directions.

First, we look at rectilinear systems in which all glues have strength 1. To improve
this kind of system, each tile T in the original system is replaced by a 2k × 2k block
(k ≥ 2) T1,1, T1,2, . . . , T2k,2k. Each glue Gi in the original system is replaced by 2k
glues Gi,1, Gi,2, . . . , Gi,2k with strength 1 on the corresponding boundary of the block.
All glues internal to the block have strength 1 except the following:

1. The east sides of tiles T1,2i−1 are inert, as well as the west sides of tiles T1,2i for
i = 1, 2, . . . , k − 1.

2. The north sides of tiles T2i,1 are inert, as well as the south sides of tiles T1,2i+1 for
i = 1, 2, . . . , k − 1.

3. The glues on the north sides of tiles T2i,2i+1 have strength 2, as well as the glues
on the south sides of tiles T2i+1,2i+1 for i = 1, 2, . . . , k − 1.

4. The glues on the east sides of tiles T2i,2i−1 have strength 2, as well as the glues on
the west sides of tiles T2i,2i for i = 1, 2, . . . , k.

2 A rectilinear tile system is one where growth occurs in a rectilinear fashion - from south to
north and from west to east.

[Chen&Goel2005]
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5. The east side of the tile T2k−2,2k−1 is inert, as well as the west side of the tile
T2k−2,2k.

6. The glue on the north side of the tile T2k−2,2k has strength 2, as well as the south
side of the tile T2k−1,2k.

The glues internal to the block are unique to that block and don’t appear on any other
blocks. Informally, the blocks attach to each other using the same logic as the original
system.

An illustrative example with k = 2 is shown in figure 4(a). The numbering of the
tiles in figure 4(b) denotes the sequence of the tile attachment in the assembly process.
It is worth noticing that all the tiles on the northern and eastern side of the block are held
by strength at least 3. So whenever all the tiles on a block are attached, it is unlikely for
them to fall off.
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Fig. 4. (a) The structure of 4x4 block. (b) The order of the growth

Recall that f denoted the forward rate of a tile attaching, and r denotes the backward
rate of a tile held by strength 2 falling off. In the rest of the section, we assume that
f = r and tiles held by strength three do not fall off. We need to make this assumption
for our proof to go through, but we don’t believe they are necessary.

Here are some definitions we will use in this section: a k-bottleneck is a connected
structure which requires at least k insufficient attachments to form. A block error oc-
curs if all the tiles in a block have attached and are all incorrect (compared to perfect
growth).It is easy to prove that a block error is just an example of a k-bottleneck.

We are going to consider an idealized system where the south and west boundary
is already assembled and the tiles in the square are going to assemble in a rectilinear
fashion. The following theorems represent our main analytical result:

Theorem 1. With a 2k× 2k snaked tile system (for some fixed k), assuming we can set
eGse to be O(n 2

k ), an n × n square of blocks can be assembled in time O(n1+ 4
k ) and

with high probability, no block errors happen Ω(n1+ 4
k ) time after that.

[Chen&Goel2005]
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Theorem 2. With a 2k × 2k snaked tile system, k = O(log n), assuming that we can
set eGse to be O(k6), an n × n square of blocks can be assembled in time Õ(n) and
with high probability, no block errors happen for Ω̃(n) time after that.

Here, the Õ notation hides factors which are polynomial in k and log n. Informally,
Theorems 1 and 2 say that snaked proofreading results in tile systems which assembly
quickly and remain stable for a long time.

In fact, we believe that our scheme achieves good performance without having to set
eGse to be as high as O(k6) and the ratio between forward and backward rate can be set
to some constant for getting a good performance. The simulation results are described
at the end of this section confirm our intuition.

4.1 Proof of the Main Result

Since all tiles in a correctly attached block are held by strength three, once a correct
block attaches at a location, none of its tiles ever fall off. So, it suffices to only consider
the perimeter of the supertile. For ease of exposition, we are going to focus on errors
that happen on the east edge of the assembly.

Lemma 3. Consider any connected structure caused by m insufficient attachments
(1 ≤ m ≤ k). Then the width of the structure can be at most 2m, and the height
of the structure can be at most 2k (i.e., this connected structure can only span two
blocks). This structure will fall off in expected time O(k5

r ) unless there’s a block error
somewhere in the assembly or an insufficient attachment happens within the (at most
two) blocks spanned by the structure.

PROOF OUTLINE: The proof of this lemma involves a lot of technical details. Due to
space constraints, we only present a sketch in this version. In the structure of 2k × 2k
snaked tiles, all the glues between the (2i)-th row and (2i+1)-th row have strength 1 for
all i. So, to increase the width from 2i to 2i + 1, we must have at least one insufficient
attachment. So, with m insufficient attachments, the width of the structure can be at
most 2m. Using similar arguments, the height of the structure can be at most 2k. Also,
the attached tiles can be partitioned into O(k) parts. Each of these parts can be viewed
as a 2 × O(k) rectangle with every internal glue having strength 1. The process of tiles
attaching to and detaching from each rectangle can be modeled using two orthogonal
random walks and hence, each rectangle will fall off in expected time O(k4

r ). The dif-
ferent rectangles can fall off sequentially, and after one rectangle falls off completely,
none of its tiles will attach again unless an insufficient attachment happens. Thus, the
structure will fall off in expected time O(k5

r ) unless there’s a block error (anywhere in
the assembly) or an insufficient attachment happens (within the two blocks) before the
structure has a chance to fall off. ⊓⊔

Theorem 3. Assume that we use a 2k × 2k snaked tile system and Gmc = 2Gse. Then
for any ϵ, there exists a constant c such that, with probability 1− ϵ, no k-bottleneck will
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Theorem 2. With a 2k × 2k snaked tile system, k = O(log n), assuming that we can
set eGse to be O(k6), an n × n square of blocks can be assembled in time Õ(n) and
with high probability, no block errors happen for Ω̃(n) time after that.

Here, the Õ notation hides factors which are polynomial in k and log n. Informally,
Theorems 1 and 2 say that snaked proofreading results in tile systems which assembly
quickly and remain stable for a long time.

In fact, we believe that our scheme achieves good performance without having to set
eGse to be as high as O(k6) and the ratio between forward and backward rate can be set
to some constant for getting a good performance. The simulation results are described
at the end of this section confirm our intuition.

4.1 Proof of the Main Result

Since all tiles in a correctly attached block are held by strength three, once a correct
block attaches at a location, none of its tiles ever fall off. So, it suffices to only consider
the perimeter of the supertile. For ease of exposition, we are going to focus on errors
that happen on the east edge of the assembly.

Lemma 3. Consider any connected structure caused by m insufficient attachments
(1 ≤ m ≤ k). Then the width of the structure can be at most 2m, and the height
of the structure can be at most 2k (i.e., this connected structure can only span two
blocks). This structure will fall off in expected time O(k5

r ) unless there’s a block error
somewhere in the assembly or an insufficient attachment happens within the (at most
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Proof. By definition, k insufficient attachments are required before a k-bottleneck hap-
pens. After i insufficient attachments take place, one of the following is going to hap-
pen:

– One more insufficient attachment. Consider any structure X caused by i insufficient
attachments. By Lemma 3, the size of X cannot exceed two blocks, hence the
number of insufficient attachment locations that can cause this structure to grow
larger is at most 4k. So, the rate of the (i + 1)-th insufficient attachment happening
is at most 4kfe−Gse .

– All the attached tiles fall off. By Lemma 3, the expected time for all the attached
tiles to fall off is O(k5

r )

So, after i insufficient attachments happen, the probability of the (i + 1)-th insufficient
attachment happening before all tiles fall off is O( kfe−Gse

kfe−Gse+r/k5 ) = O( e−Gse

e−Gse+1/k6 ).
So, after the first insufficient attachment takes place, the probability of a k-bottleneck

happening before all the attached tiles fall off is less than O(( e−Gse

e−Gse+1/k6 )
k−1

). As
shown in Lemma 1, the expected time for the first insufficient attachment is O( 1

f eGse).
So, the expected time for a k-bottleneck to happen at a certain location is at most

O( 1
f eGse( e−Gse+1/k6

e−Gse )
k−1

). Hence, for any small ϵ, we can find a constant c such that,
with probability 1 − ϵ, no k-bottleneck will happen at a specific location within time

c 1
f eGse( e−Gse+1/k6

e−Gse )
k−1

.

Theorem 4. If we assume there are no k-bottlenecks, and the rate of insufficient at-
tachments is at most O( f

k6 ), then an n× n square of 2k × 2k snaked tile blocks can be

assembled in expected time O(k5n
f ).

Proof. With the snaked tile system, after all the tiles in a block attach, all the tiles
are held by strength at least 3 and will never fall off. Using the running time analy-
sis technique of Adleman et al. [2], the system finishes in expected time O(n × TB),
where n is the size of the terminal shape and TB is the expected time for a block to
assemble. Without presence of k-bottlenecks, when we want to assemble a block, the
erroneous tiles that currently occupy that block are formed by at most k− 1 insufficient
attachments. By Lemma 3, without any further insufficient attachments happening, the
erroneous tiles will fall off in time O(k5

f ) and the correct block can attach within time

O(k4

f ). By assumption, the rate of insufficient attachment happening is at most O( f
k6 ),

and there are at most O(k) locations for insufficient attachments to happen and affect
this process. So, there’s a constant probability that no insufficient attachments will hap-
pen during the whole process and thus the time required to assemble a block, TB , is at
most O(k5

f ).

Theorems 1 and 2 follow from the above two theorems. Notice that there is a lot of
slack in our analysis.
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the attached tiles can be partitioned into O(k) parts. Each of these parts can be viewed
as a 2 × O(k) rectangle with every internal glue having strength 1. The process of tiles
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ferent rectangles can fall off sequentially, and after one rectangle falls off completely,
none of its tiles will attach again unless an insufficient attachment happens. Thus, the
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r ) unless there’s a block error (anywhere in
the assembly) or an insufficient attachment happens (within the two blocks) before the
structure has a chance to fall off. ⊓⊔
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Proof. By definition, k insufficient attachments are required before a k-bottleneck hap-
pens. After i insufficient attachments take place, one of the following is going to hap-
pen:

– One more insufficient attachment. Consider any structure X caused by i insufficient
attachments. By Lemma 3, the size of X cannot exceed two blocks, hence the
number of insufficient attachment locations that can cause this structure to grow
larger is at most 4k. So, the rate of the (i + 1)-th insufficient attachment happening
is at most 4kfe−Gse .

– All the attached tiles fall off. By Lemma 3, the expected time for all the attached
tiles to fall off is O(k5
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So, after i insufficient attachments happen, the probability of the (i + 1)-th insufficient
attachment happening before all tiles fall off is O( kfe−Gse
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Theorem 4. If we assume there are no k-bottlenecks, and the rate of insufficient at-
tachments is at most O( f

k6 ), then an n× n square of 2k × 2k snaked tile blocks can be

assembled in expected time O(k5n
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Proof. With the snaked tile system, after all the tiles in a block attach, all the tiles
are held by strength at least 3 and will never fall off. Using the running time analy-
sis technique of Adleman et al. [2], the system finishes in expected time O(n × TB),
where n is the size of the terminal shape and TB is the expected time for a block to
assemble. Without presence of k-bottlenecks, when we want to assemble a block, the
erroneous tiles that currently occupy that block are formed by at most k− 1 insufficient
attachments. By Lemma 3, without any further insufficient attachments happening, the
erroneous tiles will fall off in time O(k5

f ) and the correct block can attach within time
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f ). By assumption, the rate of insufficient attachment happening is at most O( f
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and there are at most O(k) locations for insufficient attachments to happen and affect
this process. So, there’s a constant probability that no insufficient attachments will hap-
pen during the whole process and thus the time required to assemble a block, TB , is at
most O(k5

f ).

Theorems 1 and 2 follow from the above two theorems. Notice that there is a lot of
slack in our analysis.
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Zig-Zag ribbons tested in experiments

name description
Normal Zig-Zag

(ZZ)
Side A: Glues 2, 4 

Side B: blunt
Flipped 
(ZZf)

Side A: Glues 1, 3 
Side B: blunt

Double_sided
(ZZ_DS)

Side A: Glues 2, 4
Side B: Glues 1, 3

Flipped + double_sided
(ZZ_DSf)

Side A: Glues 1, 3
Side B: Glues 2, 4 slow

fast

slow

slow
fast
fast

snake tiles[Cheng,Schulman,Winfree]
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AFM Imaging of 
ZZf + 100 nM Snaked block

[Cheng,Schulman,Winfree]
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AFM Imaging of 
Zig-Zag + 100 nM Snaked block

[Cheng,Schulman,Winfree]
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AFM Imaging of 
Zig-Zag + 100 nM Proofreading

[Cheng,Schulman,Winfree]
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AFM Imaging of 
ZZf + 100 nM Proofreading

[Cheng,Schulman,Winfree]
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AFM Imaging of 
ZZ_DS + 10 nM Proofreading

[Cheng,Schulman,Winfree]
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AFM Imaging of 
ZZ_DS + 10 nM Snaked block

[Cheng,Schulman,Winfree]
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Statistics comparing Snaked Blocks 
with Proofreading Blocks

Ratio of 
chunks on 
each side

Zig-Zag
Side A: glues 2, 4
Side B: glues 1, 3

Zig-Zag
Side A: glues 1, 3
Side B: glues 2, 4

Snaked block 4.7 4.2

Proofreading 
block 1.1 1.5

[Cheng,Schulman,Winfree]
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Ratio of tiles 
on each side

Zig-Zag
Side A: glues 2, 4
Side B: glues 1, 3

Zig-Zag
Side A: glues 1, 3
Side B: glues 2, 4

Snaked block 4.3 3.9

Proofreading 
block 1.0 1.2

[Cheng,Schulman,Winfree]

Statistics comparing Snaked Blocks with 
Proofreading Blocks



Reducing Facet Nucleation during 
Algorithmic Self-Assembly

Ho-Lin Chen,Rebecca Schulman,Ashish 
Goel,and Erik Winfree
NANOLETTERS 2007

[Chen,Schulman,Goel,Winfree2007]



Errors of Algorithmic self-assembly:
  - Insufficient attachments 
  - Facet Nucleation Errors

-Insufficient attachments on assembly facets that
 involve no mismatches

- The added tiles may be incorrect for the pattern. 

In standard crystal growth: 
- nucleation on facets is part of the desired 
growth process, 

In a proper algorithmic self-assembly: 
- every tile attaches by two or more binding sites, so nucleation on 
facets may cause errors of assembly 

the same rate as for the uniform proofreading tile set
(Figure 2c).
The larger 3 × 3 snaked proofreading block (Figure 3)

can protect against facet errors on both facet orientations,
as is necessary for the full range of algorithmic growth.
Simulation and theory predict that these and larger k × k
blocks further reduce both growth errors and facet errors.21
The larger blocks use the basic mechanism of the 2 × 2
block multiple times to reduce the rate of facet errors; for
example, the 3 × 3 block uses the 2 × 2 snaked motif once
for each facet orientation. Thus, experimental investigation

of the 2 × 2 system assesses the essential principle used by
the larger systems.
In this paper, we investigate experimentally whether

2 × 2 snaked proofreading tiles have a lower rate of facet
nucleation than 2 × 2 uniform proofreading tiles. We use
DNA tiles (Figure 4) to implement both uniform and snaked
proofreading blocks and study their growth on long facets
created using zigzag ribbons24 (Figure 1d). See Supplemen-
tary Figures S1-S11 for sequences and diagrams of all
molecules used in this work. We show that with snaked
proofreading blocks, facet nucleation errors are reduced

Figure 2. Facet nucleation and growth. (a) Facet nucleation of uniform proofreading blocks. Following a single insufficient attachment
(tiles with dots indicate the unfavorable attachments that were locked in), subsequent growth by favorable attachments can grow an entire
layer of tiles. Subsequent rows are each nucleated by a single insufficient attachment event. (b) Facet nucleation for snaked proofreading
blocks along the hard facet. Here, a single insufficient attachment results in a pair of tiles on the facet, but further favorable growth steps
are impossible because of the inert bonds interior to the snaked blocks. Two adjacent insufficient attachments are necessary to nucleate two
layers of facet growth. Each additional two layers of growth requires another two adjacent insufficient attachments. (c) Facet nucleation for
snaked proofreading blocks along the easy facet. Here, an insufficient attachment consists of a single tile and an adjacent double tile. Thus,
two layers of snaked proofreading tiles can be nucleated by just one insufficient attachment.

Figure 3. 3 × 3 snaked blocks reduce facet growth on both facet types. On either facet, an isolated insufficient attachment (initiated by
the tiles marked with dots) can grow by favorable attachment to a maximal size of three tiles, at which point it is no longer possible to
attach a tile by two binding sites. However, at a proper growth site, the series of exclusively favorable assembly steps following the snaked
path shown can complete the block quickly.

Nano Lett., Vol. 7, No. 9, 2007 2915

[Winfree 2007]
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the added tiles may be incorrect for the pattern. Therefore,
they are called facet errors. Unlike standard crystal growth,
where nucleation on facets is part of the desired growth
process, in a proper algorithmic self-assembly every tile
attaches by two or more binding sites. Facet errors were
identified as a major source of algorithmic self-assembly
errors both in experimental17 and in theoretical20,21 studies.
The overall rate of errors during assembly is the sum of the
growth errors and the facet errors.
The choice of tiles for an algorithmic self-assembly process

not only determines the pattern that is formed when all
attachments are favorable but also determines the growth
path and can influence the rate at which errors occur during
growth. In theory, it is possible to transform a less robust
tile set into a more robust tile set that can assemble the
desired object with fewer errors.20-23 In such transformed
tile sets, a block of tiles plays the same logical role as a
single tile in the less robust tile set (Figure 1b). The goal is
for such blocks to exploit a form of “proofreading”: when
an incorrect tile attaches, further unfavorable assembly steps

must occur within the block in order for the incorrect tile to
become locked in place. Because such steps are rare,
assembly stalls, allowing more time for the incorrect tile to
fall off, so that correct assembly can proceed.
Simulations of the first proofreading tile sets20 (Figure 1b),

here called uniform proofreading tile sets, show a substantial
reduction in the rate of growth errors. However, uniform
proofreading tile sets do not reduce the rate of facet errors;
just one insufficient attachment can nucleate the growth of
a layer of uniform proofreading tiles along an entire facet
(Figure 2a). Snaked proofreading tile sets21 (Figure 1c)
improve on uniform proofreading tile sets. They reduce the
rate of growth errors in the same way as uniform proofread-
ing tile sets and additionally reduce the rate of facet errors;
multiple adjacent insufficient attachments must occur before
favorable growth can continue along a facet (Figure 2b). The
2 × 2 snaked proofreading tile set shown in Figure 1c only
protects against facet errors on the facet parallel to the sT1
and sT2 tiles; we call this the “hard facet”. The other, “easy”,
facet theoretically permits facet errors at approximately

Figure 1. Algorithmic self-assembly and proofreading blocks. (a) During algorithmic self-assembly, a tile attaches to a growing crystal by
binding domains on its edges. Here, the four labels on a tile’s corners indicate specific binding domains; asterisk indicates complementary
domains (X binds to X*). The attachment of a tile where both its input (bottom) edges match the available edges on the crystal is preferred
over the attachment of a tile where a single (or no) match occurs. Growth errors occur when a tile attaches by one matching bond and one
nonmatching bond. Facet errors occur when a tile attaches by only one matching bond. In both cases, for an error to occur, the incorrect
tile must be “locked in” by a second tile before it detaches. (b) The logical structure of a 2 × 2 uniform proofreading block. Each tile in
the original tile set is converted into four tiles that, as a logical block, redundantly encode the same input and output information on the
perimeter of the block, while binding domains on the interior of the block encode the identity of the original tile. Correct assembly at a
growth site proceeds one tile at a time, either in the order pT1-pT2-pT4-pT3 or in the order pT1-pT4-pT2-pT3. The unique labels
inside a proofreading block reduce the rate of growth errors because for a block to be completed, one of the tiles that attaches on top of
an incorrect tile must also be incorrectsit cannot match both the label inside the block and the label presented by the crystal. (c) The
structure of a 2 × 2 snaked proofreading block. Binding labels on the perimeter of the block are the same as in a uniform proofreading
block, but the interior has two modifications: there is an inert interaction between sT1 and sT2, and the other two tiles are fused to create
the “double tile” sT34. This forces correct assembly to proceed in the order sT1-sT34-sT2. Snaked proofreading tile sets, like uniform
proofreading tile sets, force a subsequent tile that attaches after an incorrect attachment to be incorrect also. (d) Zigzag ribbons. While only
three repeat units are shown, ribbons can be arbitrarily long. The 6 tiles interact through 12 distinct pairwise binding domains, all shown
as flat sides, as their logic is not essential here. In addition to the double tiles shown, we use variants of the double tiles that present binding
domains to create a desired facet (e.g., Z78H presents H1* and H2* for the hard facet) or present inert “blunt ends” (e.g., Z56B) to which
nothing may bind.

2914 Nano Lett., Vol. 7, No. 9, 2007
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the same rate as for the uniform proofreading tile set
(Figure 2c).
The larger 3 × 3 snaked proofreading block (Figure 3)

can protect against facet errors on both facet orientations,
as is necessary for the full range of algorithmic growth.
Simulation and theory predict that these and larger k × k
blocks further reduce both growth errors and facet errors.21
The larger blocks use the basic mechanism of the 2 × 2
block multiple times to reduce the rate of facet errors; for
example, the 3 × 3 block uses the 2 × 2 snaked motif once
for each facet orientation. Thus, experimental investigation

of the 2 × 2 system assesses the essential principle used by
the larger systems.
In this paper, we investigate experimentally whether

2 × 2 snaked proofreading tiles have a lower rate of facet
nucleation than 2 × 2 uniform proofreading tiles. We use
DNA tiles (Figure 4) to implement both uniform and snaked
proofreading blocks and study their growth on long facets
created using zigzag ribbons24 (Figure 1d). See Supplemen-
tary Figures S1-S11 for sequences and diagrams of all
molecules used in this work. We show that with snaked
proofreading blocks, facet nucleation errors are reduced

Figure 2. Facet nucleation and growth. (a) Facet nucleation of uniform proofreading blocks. Following a single insufficient attachment
(tiles with dots indicate the unfavorable attachments that were locked in), subsequent growth by favorable attachments can grow an entire
layer of tiles. Subsequent rows are each nucleated by a single insufficient attachment event. (b) Facet nucleation for snaked proofreading
blocks along the hard facet. Here, a single insufficient attachment results in a pair of tiles on the facet, but further favorable growth steps
are impossible because of the inert bonds interior to the snaked blocks. Two adjacent insufficient attachments are necessary to nucleate two
layers of facet growth. Each additional two layers of growth requires another two adjacent insufficient attachments. (c) Facet nucleation for
snaked proofreading blocks along the easy facet. Here, an insufficient attachment consists of a single tile and an adjacent double tile. Thus,
two layers of snaked proofreading tiles can be nucleated by just one insufficient attachment.

Figure 3. 3 × 3 snaked blocks reduce facet growth on both facet types. On either facet, an isolated insufficient attachment (initiated by
the tiles marked with dots) can grow by favorable attachment to a maximal size of three tiles, at which point it is no longer possible to
attach a tile by two binding sites. However, at a proper growth site, the series of exclusively favorable assembly steps following the snaked
path shown can complete the block quickly.
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Zigzag Ribbons of Proof-Reading Tiles 
have to deal with various Facet Types: 

Easy: where snaked proofreading tiles can nucleate growth with just 
one insufficient attachment 

Hard: where two adjacent insufficient attachments are required for 
snaked proofreading tiles to nucleate facet growth

Blunt: which contain no binding sites and therefore do not allow 
growth. 

[Chen,Schulman,Goel,Winfree2007]



the same rate as for the uniform proofreading tile set
(Figure 2c).
The larger 3 × 3 snaked proofreading block (Figure 3)

can protect against facet errors on both facet orientations,
as is necessary for the full range of algorithmic growth.
Simulation and theory predict that these and larger k × k
blocks further reduce both growth errors and facet errors.21
The larger blocks use the basic mechanism of the 2 × 2
block multiple times to reduce the rate of facet errors; for
example, the 3 × 3 block uses the 2 × 2 snaked motif once
for each facet orientation. Thus, experimental investigation

of the 2 × 2 system assesses the essential principle used by
the larger systems.
In this paper, we investigate experimentally whether

2 × 2 snaked proofreading tiles have a lower rate of facet
nucleation than 2 × 2 uniform proofreading tiles. We use
DNA tiles (Figure 4) to implement both uniform and snaked
proofreading blocks and study their growth on long facets
created using zigzag ribbons24 (Figure 1d). See Supplemen-
tary Figures S1-S11 for sequences and diagrams of all
molecules used in this work. We show that with snaked
proofreading blocks, facet nucleation errors are reduced

Figure 2. Facet nucleation and growth. (a) Facet nucleation of uniform proofreading blocks. Following a single insufficient attachment
(tiles with dots indicate the unfavorable attachments that were locked in), subsequent growth by favorable attachments can grow an entire
layer of tiles. Subsequent rows are each nucleated by a single insufficient attachment event. (b) Facet nucleation for snaked proofreading
blocks along the hard facet. Here, a single insufficient attachment results in a pair of tiles on the facet, but further favorable growth steps
are impossible because of the inert bonds interior to the snaked blocks. Two adjacent insufficient attachments are necessary to nucleate two
layers of facet growth. Each additional two layers of growth requires another two adjacent insufficient attachments. (c) Facet nucleation for
snaked proofreading blocks along the easy facet. Here, an insufficient attachment consists of a single tile and an adjacent double tile. Thus,
two layers of snaked proofreading tiles can be nucleated by just one insufficient attachment.

Figure 3. 3 × 3 snaked blocks reduce facet growth on both facet types. On either facet, an isolated insufficient attachment (initiated by
the tiles marked with dots) can grow by favorable attachment to a maximal size of three tiles, at which point it is no longer possible to
attach a tile by two binding sites. However, at a proper growth site, the series of exclusively favorable assembly steps following the snaked
path shown can complete the block quickly.
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significantly on the expected facet. This demonstrates the
effectiveness of the basic principle underlying snaked
proofreading.
Results. (A) Lattice Structure.We first verified that the

DNA structures we designed to implement uniform proof-
reading, snaked proofreading, and facets formed as expected.
We used gel electrophoresis to verify that each of the four
tiles in both proofreading tile sets assembled correctly. The
component strands for each tile were annealed in a PCR
machine (Eppendorf) from 90 to 20 °C at a rate of 0.1 °C
every 6 s. Nondenaturing gel electrophoresis of the annealed
tiles showed that the strands for each of the tiles in
Figure 4 formed a single product with at least 80% yield.
To make lattices, we mixed the annealed tiles for each lattice
at room temperature to a final concentration of 100 nM per
strand. We waited for half an hour and then deposited the
samples onto mica and imaged by tapping mode atomic force
microscopy (AFM). Both the uniform and proofreading
tiles formed lattices (Figure 5a,c). (Compared to simply
annealing all strands together in one step, this procedure is
known to result in smaller and poorly formed crystals, but
it is closer to the conditions used in experiments to measure
facet nucleation.) The bright stripes in every other row of
tiles confirmed that the tiles in the lattices were arranged
correctly.
We determined the annealing and melting temperatures

of each lattice using measurements of 260 nm absorbance26
made by a spectrophotometer with a computer-controlled
temperature bath (AVIV Biomedical) during an anneal and
subsequent melt. The strands for each lattice (50 nM per
strand) were annealed from 90 to 10 °C over 10 h, held at
10 °C for 2 h, and then melted back to 90 °C at the same
rate. For both lattices, we observed (Figure 12 in Supporting
Information) a reversible transition between 45 and 70 °C,
where tile formation has been observed previously,3,17,24 and
a hysteretic transition at lower temperatures, where lattices
formed. Formation of both lattices occurred around 16 °C
and melted between 25 and 37 °C, indicating a significant
kinetic barrier to homogeneous nucleation. As ribbons would
lower this kinetic barrier, we expected that in the presence

of ribbons at room temperature, lattices would grow on
ribbons rather than nucleating spontaneously. At lower
temperatures during melting, the uniform proofreading lattice
absorbance signal was very noisy (presumably due to light
scattering that occurs when the lattices grow larger than the
260 nm wavelength being measured), but it appears that the
uniform proofreading lattices melted at a temperature
∼3 °C higher than the snaked proofreading lattices.
Having demonstrated that the DNA implementation of

both proofreading blocks can form crystalline lattices, and
are thus structurally sound for investigating their relative
effectiveness for reducing assembly errors, we proceeded to
construct four types of zigzag ribbon, each of which presents
a different combination of one of three facet types: “easy,”
where snaked proofreading tiles can nucleate growth with
just one insufficient attachment; “hard,” where two adjacent
insufficient attachments are required for snaked proofreading
tiles to nucleate facet growth; or blunt, which contain no
binding sites and therefore do not allow growth. The
“ZZeasy” ribbon has sticky ends for the easy facet (E1* and
E2*) on the Z78 tile and blunt sticky ends on the Z56 tile,
while the “ZZhard” ribbon has sticky ends for the hard facet
(H1* and H2*) on the Z78 tile and blunt sticky ends on the
Z56 tile. To directly compare the rates of facet nucleation
on the two facet types within the same experiment, we used
ribbons with a distinct facet type on each side of the ribbon
so that we could compare the number of layers that grow
on each side. The “ZZeasyhard” ribbon presents the easy
facet on the Z78 tile and the hard facet on the Z56 tile, while
the “ZZhardeasy” ribbon presents the hard facet on the Z78
tile and the easy facet on the Z56 tile.
To assemble each of the four ribbon types used to create

the desired facets, we annealed their component tiles as
described above and then mixed them together at room
temperature to a final concentration of 100 nM of each tile.
We annealed this mixture from 60 to 20 °C with the
temperature decreasing 0.1 °C per minute. AFM imaging
after dilution to 10 nM showed that each ribbon type formed
four-tile-wide zigzag ribbons with a typical length of several
micrometers (Figure 5b).

Figure 4. DNA implementation of uniform and snaked proofreading blocks. (a) DNA tiles for a uniform proofreading block. Each tile
shown is a double-crossover molecule known as the DAO-E molecule.25 A DAO-E molecule is composed of four strands of DNA. While
the “core” of the molecule is double stranded, there are four five-nucleotide single-stranded regions (sticky ends) on each molecule that can
bind to complementary sticky ends on other tiles. Two hairpins are present on each of the shaded tiles in Figure 1b to provide AFM
contrast. (b) DNA tiles for a 2 × 2 snaked proofreading block, which in the rest of the paper will be referred to simply as a “snaked
proofreading block”. To make an inert bond between sT1 and sT2, the sticky ends of the tiles are double stranded and truncated by two and
three bases, respectively. The double tile sT34 is implemented by a larger molecule which has the structure of two DAO-E tiles fused
together. Hairpins are used on tiles shaded in Figure 1c.
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DNA implementation of Snaked Proofreading Blocks



(B) Facet Growth on Single-Sided Ribbons. We used
single-sided ribbons to measure the rate at which lattices
grow on a facet. Since each row of growth must be nucleated
by one or more insufficient attachments (Figure 2), the
number of rows that grow on a facet in a fixed period of
time increases with increasing nucleation rate. For each kind
of proofreading lattice, we assembled ribbons that presented
either an easy or hard facet as described above and then
diluted them to 10 nM. We immediately added 50 nM of
each preformed proofreading tile, waited for 10 min, then
deposited the samples onto mica and imaged them using
AFM.
Both kinds of proofreading lattices grew on both facets

(parts d-g of Figure 5). The uniform proofreading lattices
grew more than 10 layers on both facets, as did the snaked
proofreading lattice on the easy facet. In contrast, the snaked

proofreading lattice grew only two to six rows on the hard
facet during the experiment, suggesting that the nucleation
rate of the snaked proofreading lattice on the facet is less
than that of the other cases. However, because most of the
tiles were used up during the experiment (50 nM is enough
to grow an average of 10 rows on each ribbon), it was not
possible to quantify how much smaller the nucleation rate
of snaked proofreading lattices on the hard facet is than the
other rates. Reliability was also limited by trial-to-trial
variations in experiment timing and in tile stoichiometry for
both the lattices and the ribbons and by concerns about the
difference in the melting temperatures of the two lattices.
(C) Facet Growth on Double-Sided Ribbons. We

therefore devised a second set of experiments to quantita-
tively compare the relative growth rates of the two kinds of
proofreading lattices on both easy and hard facets. In these

Figure 5. AFM images. Missing tiles are due to damage during AFM scanning. Scale bars are 300 nm. (a) Uniform proofreading lattices
(100 nM). (b) Zigzag ribbons, ZZhardeasy (10 nM). (c) Snaked proofreading lattices (100 nM). (d) ZZeasy (10 nM) with uniform proofreading
(50 nM). (e) ZZeasy (10 nM) with snaked proofreading (50 nM). (f) ZZhard (10 nM) with uniform proofreading (50 nM). (g) ZZhard (10
nM) with snaked proofreading (50 nM). (h) ZZhardeasy (10 nM) with uniform proofreading (10 nM). (i) ZZhardeasy (10 nM) with snaked
proofreading (10 nM). (j) A long ZZhardeasy ribbon with snaked proofreading.
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Self-healing Tile Systems
[Winfree,2005]

• Goal: When a big portion of the lattice is 
removed, it should be able to grow back 
correctly.

• Method: For each tile in the original system, 
we create a unique block in the new system.

• Idea: Use the block to prevent tile from 
growing backwards. 

[Winfree,2005]
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Assumptions

• Use abstract tile assembly model (TAM).

• Requires a fix set of incoming and outgoing 
edges for each tile in the original system.

[Winfree,2005]
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Example: Sierpinski System

0 0

0

1 0

1

0 1

1

1 1

0

0 0 0 0

T=20 1 1 0

1 0 000 0

[Winfree,2005]
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Example: Sierpinski System

0 0

0

1 0

1

0 1

1

1 1

0

0 0

T=20 1 1 0

1 0 000 0

00

[Winfree,2005]
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Example: Sierpinski System

0 0

0

1 0

1

0 1

1

1 1

0 T=20 1 1 0

[Winfree,2005]
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Example: Sierpinski System

0 0

0

1 0

1

0 1

1

1 1

0 T=20 1 1 0

destroyed

(Chen)
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Example: Sierpinski System

0 0

0

1 0

1

0 1

1

1 1

0 T=20 1 1 0

1 1

(Chen)
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Example: Sierpinski System

0 0

0

1 0

1

0 1

1

1 1

0 T=20 1 1 0

[Winfree,2005]
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Example: Sierpinski System
Note: the inputs of Sierpinski tiles are not reversible.

0 0

0

1 0

1

0 1

1

1 1

0 T=20 1 1 0

? ?

[Winfree,2005]



[Winfree & Bekbolatov2003]

time
damage

scar

Fig. 9. Proofreading tile sets are often able to heal a puncture in the crystal. Sometimes,
as in this case, some of the tiles that fill in the puncture do not perfectly match their
neighbors – a form of “scar tissue.”

and the proofreading tile set formed 98 × 98 squares 87% of the time. For com-
parison, the improved tile set formed 99× 99 squares only 26% of the time. The
disappointingly modest13 benefit provided by the proofreading tiles suggests that
alternative error mechanisms are dominant for these tile sets.

The proofreading tiles also give rise to some surprising, and pleasant, behav-
iors. One such phenomenon is their ability to heal punctures of the growing crys-
tal, as shown in figure 9. Since the identity of tiles within the punctured region is
uniquely determined by the perimeter of that region (in fact, just the lower por-
tion of the perimeter suffices), one might expect even the non-proofreading tile
set to be able to correctly fill in the punctured region. However, regrowth into the
punctured region may occur in any direction, including backward from the most
advanced edge of the puncture, where there are multiple ways to proceed locally
when using tiles implementing irreversible BCA, such as the Sierpinski tiles.14
Thus, regrowth is not always perfect; indeed, the direct BCA tiles very often
leave “scar tissue”, although the proofreading tiles do so much less frequently.

5 Discussion

The primary result of this paper is that dramatic improvements in the error rates
for algorithmic self-assembly can be achieved, in principle, by proper redesign of
the abstract tile set, without changing the fundamental molecular implementa-
tion. The 2×2 proofreading tiles for BCA increase the optimal growth speed r for
which a target error rate ϵ can be achieved from r = βϵ2 to r = βϵ, and greater
improvements can be obtained with larger K × K proofreading constructions.
If these constructions hold up in practice, it may be possible for algorithmic
self-assembly to scale up to macroscopic assemblies without errors.

Although the theoretical and simulation results presented here firmly estab-
lish the effectiveness of the proofreading tile construction, the rigorous proof of
their robustness in the kTAM remains an open problem.

When considering implementation of proofreading tile sets with DNA tiles,
the question of efficiency arises. One wishes for a minimal number of tiles, since
13 The 2 × 2 proofreading Sierpinski tile set under these conditions would obtain ε =

1.5× 10−7, and therefore 104 tiles would assemble without errors 99.9% of the time.
14 As pointed out by Adleman (personal communication), this suggests a relationship

between reversible cellular automaton logic and self-healing properties.

Example: Using Proofreading Tiles sets in 
Sierpinski System to Heal
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Using Blocks of Tiles to Promote 
Healing (T=2)

• Replace a tile by
 a block of 4 tiles
• Internal glues are unique

G1

G4G3

G2

X1

X4

G2

X2

G1

G4

Block of Tiles

X3

(Chen)

Original Tile
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X1

G2G1

X3

(Chen)

Using Blocks of Tiles to Promote 
Healing (T=2)

X1

X4

G2G1

G3

X3

• The system is safe even when several tiles can form a 
bigger block before attaching to the assembly.



131

• The system is safe even when several tiles can form a 
bigger block before attaching to the assembly.

(Chen)

Using Blocks of Tiles to Promote 
Healing (T=2)

X1

X4

G2G1

G3

X3 X1

X4

G2

X2

G1

G4G3

X3
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• The system is safe even when several tiles can form a 
bigger block before attaching to the assembly.

(Chen)

Using Blocks of Tiles to Promote 
Healing (T=2)

X1

X4

G2

X2

G1

G4G3

X3
X1

X4

G2

X2

G1

G4G3

X3
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X1

X4

G2

X2

G1

G4G3

X3 Attach to assembly

(Chen)

• The system is safe even when several tiles can form a 
bigger block before attaching to the assembly.

Using Blocks of Tiles to Promote 
Healing (T=2)



Compact Error Resilient 
Computational DNA Tiling Assemblies 

John Reif, Sudheer Sahu, Peng Yin
Department of Computer Science, Duke University

DNA 2004 Conference

[Reif,Sahu,Yin2004]



Self-Assembly of DNA Tiles

• Perform universal computation.

• Manufacture patterned nanostructures from smaller unit 
nanostructures.

135

[Reif,Sahu,Yin2004]



Computational tiles

Frame tiles

Seed tile

Binary counter

Assembly of Binary Counter (Winfree)

[Reif,Sahu,Yin2004]



Errors in Self-Assembly of DNA Tiles

• Binding rules are not strict.

• A tile might get assembled to a binding site where it was not 
supposed to go.

[Reif,Sahu,Yin2004]



Computational tiles

Frame tiles

Seed tile

Error!

Example of a Computational Error

[Reif,Sahu,Yin2004]



How to Decrease Errors?

• Errors can be arbitrarily decreased by
– Decreasing concentration of tiles.
– Increasing binding strengths.
– Drawback : Reduce speed.

• Another approach: 
– Change the logical design of the tiles.

[Reif,Sahu,Yin2004]



Error Resilient Tilings by Winfree

Winfree’s Construction:
Exchange each Tile with 
       2 x 2 array of tiles:
• Error rate reduced from 𝛜 => 𝛜2

• Assembly area increased by 4 times

(Excerpted from Winfree 03)

Original tiles:

Error resilient tiles:

Winfree’s Generalized Construction:
Exchange each Tile with 
       k x k array of tiles:
• Error rate reduced from 𝛜 => 𝛜k

• Assembly area increased by k2



Original tiles:

Error resilient tiles:

A B C

AB BC

[Reif,Sahu,Yin2004]

Error Resilient Tilings by [Reif,Sahu,&Yin 2004]



Original tiles:

Error resilient tiles:

A B C

AB BC

[Reif,Sahu,Yin2004]

Error Resilient Tilings by [Reif,Sahu,&Yin 2004]



Original tiles:

Error resilient tiles:

A B C

AB BC

Error checking pads

[Reif,Sahu,Yin2004]

Error Resilient Tilings by [Reif,Sahu,&Yin 2004]



A Computational Tile

[Reif,Sahu,Yin2004]



Compact Error Resilient Construction

• Wholeness of pad: Single pad per side.
[Reif,Sahu,Yin2004]



One Mismatch causes more Mismatch

Case 1

[Reif,Sahu,Yin2004]



One Mismatch causes more Mismatch

Case 2

[Reif,Sahu,Yin2004]



One Mismatch causes more Mismatch

Case 3

(Reif,Sahu,Yin)



One Mismatch causes more Mismatch

Case 4

[Reif,Sahu,Yin2004]



Result of Compact Error Resilient Scheme

• We saw:
– Two way overlay scheme.
– One mismatch caused at least one more mismatch. 
– Error is reduced from 𝛜 to 𝛜2.

• Next we will see:
– Three way overlay scheme.
– One mismatch will cause at least two more mismatches.
– Error can be reduced from 𝛜 to 𝛜3.

[Reif,Sahu,Yin2004]



Compact Error Resilient Tiles (3-way overlay)

Reduce Error from Î to Î3

[Reif,Sahu,Yin2004]



Examples of Error Resilient Assembly

[Reif,Sahu,Yin2004]



Examples of Error Resilient Assembly

[Reif,Sahu,Yin2004]



Computer Simulation (Xgrow, Winfree)

Three way overlay

Winfree 2x2 construction

Two way overlay

No error correction

Winfree 3x3 construction

[Reif,Sahu,Yin2004]



Conclusions

•  Assembly size not increased by this error-resilient tile 
design. 

•  Two way overlay: error rate 𝛜 (5%) => 𝛜2(0.25%). 
•  Three way overlay: error rate 𝛜 (5%) => 𝛜3 (0.0125%). 
•  Open question: Can we reduce error rate  𝛜  => 𝛜k ?

[Reif,Sahu,Yin2004]


