
Self-Assembled	Circuit	Patterns	
from	DNA9	Conference	paper	by	Cook,	Rothmund,	

Winfree			



1 n
1

n
1

0 n
0

n
0

(a)
1 c
1

n
0

0 c
0

c
1

Rc

L
0

S

1 c
1

n
0

(b)
Rc 1 c

1
n

0
Rc

L
0

S L
0

S

0 n
0

n
0
1 c
1

n
0
Rc

1 c
1

n
0
0 c
0

c
1
0 c
0

c
1
0 c
0

c
1
Rc 8

(c)
0 n
0

n
0
0 n
0

n
0
1 n
1

n
1
1 n
1

n
1
1 c
1

n
0
Rc 7

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 n
1

n
1
1 c
1

n
0
0 c
0

c
1
Rc 6

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 n
1

n
1
0 n
0

n
0
1 c
1

n
0
Rc 5

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 c
1

n
0
0 c
0

c
1
0 c
0

c
1
Rc 4

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 n
1

n
1
1 c
1

n
0
Rc 3

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 c
1

n
0
0 c
0

c
1
Rc 2

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 c
1

n
0
Rc 1

L
0

L
0

L
0

L
0

L
0

L
0

L
0

L
0

L
0

L
0

S

Fig. 1. The counter tiles (from [29]). The set of seven tiles shown in (a) are a Tile
Assembly Model program for counting in binary. The tiles labeled “1” are colored
gray to make it easier to see the resulting pattern, visible in (c). The self-assembly
progresses by individual tiles accreting to the assembly as shown in (b). Edges marked
with a small letter or number have bond strengths of 1, while edges with a double line
have bond strengths of 2 (and do not require a further label here, since there is only
one vertical and one horizontal kind). A later stage of self-assembly is shown in (c),
with arrows indicating all the places that a new tile could accrete.

To understand how the program works, we can conceptually categorize the
seven tiles used in this example into two groups: The three tiles bearing large
letters, called boundary tiles, are used to set up the initial conditions on the
boundary of the computation. The four tiles bearing large numbers, called rule
tiles, perform the computation and their numbers are to be interpreted as the
binary digits of the output pattern.

The pattern in Figure 1(c) shows a stage of self-assembly with τ = 2, so
tiles can only bind to one another when the total binding strength is ≥ 2. For
example, an “L” tile may bond on either side to another “L” tile or on its right
side to an “S” tile, using a single strength-2 bond. The rule tiles, which can
form only strength-1 bonds, can only bind to an assembly if two or more bonds
cooperate to hold the tile in place, since τ = 2. Thus, at first, the only counter
tiles which can assemble are boundary tiles, via strength-2 bonds. Only after
the boundary tiles have begun to assemble into a V-shape, can rule tiles begin
binding at corner sites as shown in Figure 1(b). The rule tile shown there can
form two strength-1 bonds, and it is the only tile that can stick there.

Successive additions of rule tiles and boundary tiles would result in a struc-
ture like that in Figure 1(c) whose rows may be read, from bottom to top, as
an enumeration of binary numbers. To understand how this works, inspect the
rule tiles. Consider the bottom and right sides of each rule tile as inputs, and
the left and top sides as outputs. A rule tile fitting into a corner “reads” two
input bits by matching bonds; one bit it reads is the identity of the digit below
it and the other is the carry bit from the tile to its right (if “c”, carry= 1; if “n”,

1 n
1

n
1

0 n
0

n
0

(a)
1 c
1

n
0

0 c
0

c
1

Rc

L
0

S

1 c
1

n
0

(b)
Rc 1 c

1
n

0
Rc

L
0

S L
0

S

0 n
0

n
0
1 c
1

n
0
Rc

1 c
1

n
0
0 c
0

c
1
0 c
0

c
1
0 c
0

c
1
Rc 8

(c)
0 n
0

n
0
0 n
0

n
0
1 n
1

n
1
1 n
1

n
1
1 c
1

n
0
Rc 7

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 n
1

n
1
1 c
1

n
0
0 c
0

c
1
Rc 6

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 n
1

n
1
0 n
0

n
0
1 c
1

n
0
Rc 5

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 c
1

n
0
0 c
0

c
1
0 c
0

c
1
Rc 4

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 n
1

n
1
1 c
1

n
0
Rc 3

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 c
1

n
0
0 c
0

c
1
Rc 2

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 c
1

n
0
Rc 1

L
0

L
0

L
0

L
0

L
0

L
0

L
0

L
0

L
0

L
0

S

Fig. 1. The counter tiles (from [29]). The set of seven tiles shown in (a) are a Tile
Assembly Model program for counting in binary. The tiles labeled “1” are colored
gray to make it easier to see the resulting pattern, visible in (c). The self-assembly
progresses by individual tiles accreting to the assembly as shown in (b). Edges marked
with a small letter or number have bond strengths of 1, while edges with a double line
have bond strengths of 2 (and do not require a further label here, since there is only
one vertical and one horizontal kind). A later stage of self-assembly is shown in (c),
with arrows indicating all the places that a new tile could accrete.

To understand how the program works, we can conceptually categorize the
seven tiles used in this example into two groups: The three tiles bearing large
letters, called boundary tiles, are used to set up the initial conditions on the
boundary of the computation. The four tiles bearing large numbers, called rule
tiles, perform the computation and their numbers are to be interpreted as the
binary digits of the output pattern.

The pattern in Figure 1(c) shows a stage of self-assembly with τ = 2, so
tiles can only bind to one another when the total binding strength is ≥ 2. For
example, an “L” tile may bond on either side to another “L” tile or on its right
side to an “S” tile, using a single strength-2 bond. The rule tiles, which can
form only strength-1 bonds, can only bind to an assembly if two or more bonds
cooperate to hold the tile in place, since τ = 2. Thus, at first, the only counter
tiles which can assemble are boundary tiles, via strength-2 bonds. Only after
the boundary tiles have begun to assemble into a V-shape, can rule tiles begin
binding at corner sites as shown in Figure 1(b). The rule tile shown there can
form two strength-1 bonds, and it is the only tile that can stick there.

Successive additions of rule tiles and boundary tiles would result in a struc-
ture like that in Figure 1(c) whose rows may be read, from bottom to top, as
an enumeration of binary numbers. To understand how this works, inspect the
rule tiles. Consider the bottom and right sides of each rule tile as inputs, and
the left and top sides as outputs. A rule tile fitting into a corner “reads” two
input bits by matching bonds; one bit it reads is the identity of the digit below
it and the other is the carry bit from the tile to its right (if “c”, carry= 1; if “n”,

1 n
1

n
1

0 n
0

n
0

(a)
1 c
1

n
0

0 c
0

c
1

Rc

L
0

S

1 c
1

n
0

(b)
Rc 1 c

1
n

0
Rc

L
0

S L
0

S

0 n
0

n
0
1 c
1

n
0
Rc

1 c
1

n
0
0 c
0

c
1
0 c
0

c
1
0 c
0

c
1
Rc 8

(c)
0 n
0

n
0
0 n
0

n
0
1 n
1

n
1
1 n
1

n
1
1 c
1

n
0
Rc 7

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 n
1

n
1
1 c
1

n
0
0 c
0

c
1
Rc 6

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 n
1

n
1
0 n
0

n
0
1 c
1

n
0
Rc 5

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 c
1

n
0
0 c
0

c
1
0 c
0

c
1
Rc 4

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 n
1

n
1
1 c
1

n
0
Rc 3

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 c
1

n
0
0 c
0

c
1
Rc 2

0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
0 n
0

n
0
1 c
1

n
0
Rc 1

L
0

L
0

L
0

L
0

L
0

L
0

L
0

L
0

L
0

L
0

S

Fig. 1. The counter tiles (from [29]). The set of seven tiles shown in (a) are a Tile
Assembly Model program for counting in binary. The tiles labeled “1” are colored
gray to make it easier to see the resulting pattern, visible in (c). The self-assembly
progresses by individual tiles accreting to the assembly as shown in (b). Edges marked
with a small letter or number have bond strengths of 1, while edges with a double line
have bond strengths of 2 (and do not require a further label here, since there is only
one vertical and one horizontal kind). A later stage of self-assembly is shown in (c),
with arrows indicating all the places that a new tile could accrete.

To understand how the program works, we can conceptually categorize the
seven tiles used in this example into two groups: The three tiles bearing large
letters, called boundary tiles, are used to set up the initial conditions on the
boundary of the computation. The four tiles bearing large numbers, called rule
tiles, perform the computation and their numbers are to be interpreted as the
binary digits of the output pattern.

The pattern in Figure 1(c) shows a stage of self-assembly with τ = 2, so
tiles can only bind to one another when the total binding strength is ≥ 2. For
example, an “L” tile may bond on either side to another “L” tile or on its right
side to an “S” tile, using a single strength-2 bond. The rule tiles, which can
form only strength-1 bonds, can only bind to an assembly if two or more bonds
cooperate to hold the tile in place, since τ = 2. Thus, at first, the only counter
tiles which can assemble are boundary tiles, via strength-2 bonds. Only after
the boundary tiles have begun to assemble into a V-shape, can rule tiles begin
binding at corner sites as shown in Figure 1(b). The rule tile shown there can
form two strength-1 bonds, and it is the only tile that can stick there.

Successive additions of rule tiles and boundary tiles would result in a struc-
ture like that in Figure 1(c) whose rows may be read, from bottom to top, as
an enumeration of binary numbers. To understand how this works, inspect the
rule tiles. Consider the bottom and right sides of each rule tile as inputs, and
the left and top sides as outputs. A rule tile fitting into a corner “reads” two
input bits by matching bonds; one bit it reads is the identity of the digit below
it and the other is the carry bit from the tile to its right (if “c”, carry= 1; if “n”,

Assembly	of	a	Counter	via	Tiling	



seed tile
WIRE 1 : SA

w

input tiles
AND-NOT : A B

n
B C

n
C D

n
D

b

rule tiles
AND : c

u
c

u
s

u
s

u
z

u
c

a

r
s

b

AND-NOT : c
n

c
n

z
n

z
u

s
a

c
n

b
z

r

WIRE : c
w

w

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

1 0
0 1 1 0

Fig. 2. Using a binary counter to self-assemble a demultiplexer. Logic levels for an
example input-output pair are shown: only the row that exactly matches the input
pattern is set to “1”. To make a pattern with N rows, 10 + log N tiles are used.

us to look for fabrication problems: particular patterns or sets of patterns that
have potentially useful properties (e.g. as templates for electronic circuits), and
which are amenable to self-assembly.

Naively we might wonder, “Can we self-assemble the circuit for a contempo-
rary CPU?” Assuming that we can create tiles that act as circuit elements1 what
we are really asking is “Can we self-assemble the layout pattern for a CPU?”
The answer, in theory, is yes, and we may do so without using any complex
computation.

Any particular pattern, no matter how complex, can be self-assembled by
assigning a unique tile type, with a unique set of binding interactions with its
neighbors, to each position in the pattern. The resulting program is as big as the
pattern itself, with every tile in the program being used just once in the pattern.
This type of self-assembly program (called unique addressing) is undesirable be-
cause it is not efficient — an efficient program would use a small number of tile

1 Periodic electrical networks of functional LEDs have already been self-assembled on
the millimeter scale [7].

Assembly	of	a	Demultiplexer	via	Tiling	



0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

1 0

0
1
1
0 1
1 0 0 1

Fig. 3. Two self-assembled demultiplexers at right angles can address a memory. The
gray memory cell is being addressed in this figure.

types compared to the size of the pattern. Instead, unique addressing uses the
greatest number of tile types possible to create a pattern. In physical implemen-
tations [30] it appears that creating unique tile types and unique specific binding
interactions is expensive and difficult, so with currently-envisioned techniques it
seems that unique addressing is impractical except for very small patterns.

For a circuit to be well-suited to self-assembly, its structure should have a
highly methodical pattern to it. The simplest such pattern would be a periodic
arrangement of units, such as occurs in a random-access memory circuit, shown
in the upper right region of Figure 3. Indeed, using DNA self-assembly to cre-
ate a molecular-scale memory was suggested in [18]. The pattern generated by
the counter tiles of Section 1 is a somewhat more interesting pattern, yet still
methodical, which we can see is why it was easy to implement via self-assembly.
Later in this paper we will encounter more circuits with methodical structure.

Assembly	of	two	Demultiplexers	via	Tiling	



(a)

0 1
0

0
1

1 1
1

1
0

(b)
1 0
1

1
1

0 0
0

0
0

R1

L
1

S

1 0
1

1
1
0 1
0

0
1
R1

1 1
1

1
0
1 1
1

1
0
1 1
1

1
0
1 1
1

1
0
R1

(c)
0 0
0

0
0
0 0
0

0
0
0 0
0

0
0
0 0
0

0
0
0 1
0

0
1
R1

0 0
0

0
0
0 0
0

0
0
0 0
0

0
0
0 0
0

0
0
0 1
0

0
1
1 1
1

1
0
R1

0 0
0

0
0
0 0
0

0
0
0 0
0

0
0
0 0
0

0
0
0 1
0

0
1
1 0
1

1
1
0 1
0

0
1
R1

1 0
1

1
1
0 0
0

0
0
0 0
0

0
0
0 0
0

0
0
0 1
0

0
1
1 1
1

1
0
1 1
1

1
0
1 1
1

1
0
R1

1 0
1

1
1
0 0
0

0
0
0 0
0

0
0
0 1
0

0
1
1 0
1

1
1
0 0
0

0
0
0 0
0

0
0
0 1
0

0
1
R1

1 1
1

1
0
1 0
1

1
1
0 0
0

0
0
0 1
0

0
1
1 1
1

1
0
1 0
1

1
1
0 0
0

0
0
0 1
0

0
1
1 1
1

1
0
R1

0 1
0

0
1
1 0
1

1
1
0 1
0

0
1
1 0
1

1
1
0 1
0

0
1
1 0
1

1
1
0 1
0

0
1
1 0
1

1
1
0 1
0

0
1
R1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

S

Fig. 4. The Sierpiński triangle and a set of tiles that construct it in the limit.

in [7, 11, 3]. Algorithmic self-assembly has been demonstrated at this scale as
well [19].

A demultiplexer could be used as a building block for a larger self-assembled
circuit: a pair of demultiplexers oriented at right angles along the borders of
an N ×N memory allow a memory element to be accessed using only 2 log N
lines. Thus a memory circuit may be self-assembled (see Figure 3). What other
circuits might be possible? Our next constructions derive from the observation
that the demultiplexer circuit implements a generalized inner product of a binary
vector by a binary matrix, with the binary function EQUALS substituting for
multiplication and AND substituting for addition in the definition of matrix
multiplication. That is, the circuit takes an n-bit binary vector, “multiplies” it
by a n×2n size binary “counting” matrix, and outputs a 2n long vector. Similarly,
a circuit for an arbitrary binary matrix multiplication could be created by self-
assembling a circuit decorated with logic gates as appropriate for the matrix of
choice.

3 Self-similar Transforms

Another complex pattern that may be created by a simple self-assembling com-
putation is the Sierpiński triangle, pictured in Figure 4(a). Only seven tiles,
shown in Figure 4(b) (from [27]), are required to create a pattern (shown in Fig-
ure 4(c)) whose limit is this triangular fractal pattern. As with the counter tiles,
its construction depends on τ = 2 assembly. By labeling the sides of the tiles as
“input” and “output”, individual tiles can be seen to encode the binary function
XOR. Diagonals of the assembly, interpreted as zeros and ones, form rows of
Pascal’s triangle modulo 2. It can also be seen that diagonals of the assembly
are instantaneous descriptions of a one-dimensional cellular automaton. Aside

Assembly	of	Sierpinski	Triangle	(mod	2	Pascal	Triangle)	via	Tiling	


