COMBINATORIAL ASPECTS OF SYMBOLIC. PROGRAM ANALYSIS

A thesis presented

by
John Henry Reif
to

The Division of Engineering and Applied Physics
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
in the sﬁbject of

Applied Mathematics
Harvard University
Cambridge, Massachusetts

(July, 1977)

Copyright reserved by the author.

ii

'PREFACE

This research was supported by Naval'Electronics Systen
Command Contraé¢t No. N00039-76-C-0168 and Rome Air
Development Center Contract No. F30602-76-C-0032.

Many people: have contributed to the successful

completion of this dissertation,

I am deeply indebted to my advisor Professor Harry
Lewis for inspiration.and guidance in directing the ideas of
this thesis to the printed page. I feel honored to be the
~first doctoral student of this philosoher, mathematician,
and computer scientist; I am sure that many future students

'will benefit also from his wisdom and counsel.

I wish to express my gratitude to my other advisor,
Professor Thomas Cheatham, for teaching me much of what I
know about programming 1anguéges, for vchallengingv me with
probléms in this field (some of which:are solved herein and
some which remain to be solved), and for a reading of this

- thesis,

I wish to thank Professor Christos Papadimitriou for
introducing me to fields unrelated to this thesis but
exciting nevertheless, for advice which was always excellent

(but not always taken), and for a reading of this thesis.

iii

I would like to thank Mark Davis for many spirited
discussions on program optimization, and numerous critical

but always helpful suggestions.

I would like to thank Glenn Bresnahan for serving as a
cheerful office-mate and friend, and for a very thorough

reading of this thesis.

Also, I wish to thank Phil Pura for his meticulous

corrections to the grammar and spelling in preliminary

versions of the manuscript.

I wish to dedicate this thesis to Jane Anderson for her

patience and understanding throughout this work.

PREFACE

FIGURES

SYNOPSIS

Chapter

TABLE OF CONTENTS

1. INTRODUCTION

Overview

Graph Theoretic Notions

The Global Flow Model

Unsolvability of Various Code Improvements
Within the Arithmetic Domain

Adding Procedure calls to the

Global Flow Model

2. SYMBOLIC EVALUATION AND THE GLOBAL VALUE GRAPH

N N NN NN
EWN 2O

O 3o

Summary
Introduction _
Dags and Global Value Graphs
Propagation of Constants
A Partial Characterization of ¥,

the Minimal Element of TGVG
Rank Decomposition of a Reduced GVG
p-graph Completion and Decomposition
The Algorithm for Symbolic Evaluation
Improving the Efficiency of our Algorithm
for Symbolic Evaluation
Further Applications of Global Value Graphs
Live-Dead Analysis

3. SYMBOLIC ANALYSIS OF PROGRAMS WITH STRUCTURED DATA

3~0

3.1
3.2
3.3
3.4
3.5

4. SYMB
4.0
4.1
4,2
4.3
4.y

.
.
.
.

Summary B
Introduction : .

‘Propagation of Selections

Constant Propagation and Covers of Programs
with Structured Data _

Computing ¢*, the Minimal Fixed Point of ¥’
Type Declarations and Type Covers

OLIC PROGRAM ANALYSiS IN ALMOST LINEAR TIME

Summary

Introduction

The Computation of IDEF

The Weak Environment o _
Conclusion Computing Approximate Birthpoints
and the Simple Cover :

rEE &S
!
NNOYN -

R NN
]
N NCON) -

N NN n
]
wun LW
w O &= 00— -~ Q

—t b (A b

]
=W
(O, 3¢ [o - Y

(WS W)

w N L'AJLA)
|

W O

5. CODE MOTION

5.0 Summary
Introduction
Graph Theoretic Notions
Approximate Safe Points of Code Motion
Reduction of Code Motion to Cycle Probiems
The Computation of C1
The Computation of C2
Computing DDP on Reducible Flow Graphs
Niche Flow Graphs

(GAG NG EC RC, G, N

Ut
IV W =

REFERENCES

t ot ot
LW NN = D
WL ON\D) oW

o Tyt ot or i

'
-

1.2

2.5
2.6
3.1
3.2
3.3
3.4
3.5

3.6

3.7
3-8

3.9

FIGURES

A control flow graph.

(From Kam and Ullman[KU2]) A text expression
that is covered by a constant sign but not
discovered by Kildall's algorithm.

A flow graph and its dominator tree.

The control flow graph Fq.

An eiample of a fixed point of ¥.

A dag representation of an expression.

The global value graph cvG.

A simple example of constant propagation

- through the global value graph.:

Case (b) of Theorem 2.4.

RankAdecomposition of a global value graph.
Reversal of a list in LISP.

An example of selection pairs.

The control flow graph Fpg,

An example of a coveriné expression.

The global value graph GVG* for the
program of Figure 3.4.

The selection t is replaced by the selection
variable SV¢.

A program P in LISP.

The type program P. derived from the
program P of Figure 3.7.

A program containing an input variable which
has no tight type definition.

An example of a simple cover.

Cases (1) and (2) of the definition
of H'(m,w,S).

2-17
2-25

2-28
2-32
3-10
3-12
3-14
3-32
3-43
3-4

3-49
3-50

3-54

412

(O, BN B

The dags of the program in Figure 4.1.
Dag representation of the simple cover.
A simple example of code motion.

Transformation of a flow graph F into
a niche flow graph F'.

The dominator tree of the control
flow graph F'.

The dominator tree of the reverse of the
control flow graph F'. :

427
4-28
5-3

5-46

5-47

5-u48

vii

SYNOPSIS

Much current research in computer science is devoted to

the automatic analysis and improvement of programs. The
central theme explored in this dissertation is gsymbolic

evaluation: the determination - of general, symbolic

representations for values of text within programs, holding
over all executions. These representations are called
covers and are terms (i.e. expressions containing no

predicates) in a first order logical langUage.

We are interested in egffjcient techniques for symbolic
evaluation since applications (such as the optimization of
source code before compilation) require results swiftly and

inexpensively.

Our approach is combinatorial in nature; this reflects

‘our view that the discovery of: the combinatorial structure
of symbolic evaluation is crucial to the development of

efficient methods for carrying it out.

We assume a global flow model of a program P wherein
the flow of control through P is represented by a directed
graph with nodes corresponding the blocks of 1linear blocks
of code and the edges indicate possible flow of control

between the blocks.

In Chapter 1, we define the relevant graph terminology,

review the global flow model, and formally define the notion

viii

of a cover. Further, we give a construction demonstrating
that the problem of computing a minimal (best possible)
cover in the domain of integers is recursively unsolvable.
This implies that various global flow problems are also
unsolvable in the arithmetic domain, including constant
propagation, discovery of redundant computations, and loop
invariants. Previous results by Kam and Ullman[KU2] showed
certain global flow problems in abstract (nonarithmetic)

domains to be unsolvable.

Kildall's iterative method[Ki] for symbolic evaluation
may be used to compute a class of good, approximately
minimal covers. In Chapter 2, we show that the minimal
cover of this class is unique. Also, we present a direct
(noniterative) algorithm for computing this cover with
considerably less time and space complexity than the method
of Kildall. This direct method is based on the use of a
special class of graphs, called global value graphs, similar
to those used by Schwartz[Sc2] to represent the flow Qf
values (rather than control) through the program. Certain
key lemmas and theorems in this chapter characterize the
cover which we wish to construct in'terms of a global value
'graph and reduce the symbolic evaluation to computing
dominator trees (trees used to represent the path structure
of digraphs) for which there is a very efficient algorithm
due to Tarjan[Th].

Chapter 3 extends our techniques for symbolic analysis
to a class of programs (such as those written in LISP 1.0)
which have operations for the construction of structured
objects (such as cons), and seiection of subcomponents (such
as car and c¢cdr), but no "destructive"™ operations (such as
replaca or reglagd in LISP 1.5). A key problem here is the
"propagation of selections" which is the determination . of
all objects which a selection operation may reference. The
propagation of | selections was previously used by
Schwartz[Sc2] for a different purpose, but he gave no
explicit algorithm for carrying it out. We show that this
problem is at least as hard as transitive closure, but give
a relatively efficient bit vector algorithm for its
solution. We define a class of covers similar to those df
Chapter 2, but which take into account reductions due to
selections of subcomponents. The computation of covers of
this sort is reduced to the téchniques of Chapter 2. We
also iniroduce the concept of a type cover: an expressioﬂ
for the type (rather than value) of a text expression and
holding over all executions of the program. We show that.a
type povér of a program P is equivalent to a (value) cover
.of progrém derived from P by substituting types for atoms
and with an appropriate interpretation containing a universe

of types, rather than structured values.

Chapter U4 presents an algorithm for symbolic evaluation

which is very fast (requiring an almost linear number of bit

vector operations for all flow graphs), but gives in general
less powerful results than the method of Chapter 2. The
results of this chapter may be used to speed up the method

of Chapter 2.

Finally, in Chapter 5 we discuss in detail a particular
cbde 'optimization, called code motion, which requires the
covers we have computed in the preceding chaptébs. Code
motion is the process of moving computations as far as
possible out of cycies, to locations in the program where
they are executed less frequently. Covers help us determine
how far we may move computations before they are no longer
defined. We present two formulations of code motion and
also give algorithms for carrying them out in almost linear
time (our algorithm for the first version is restricted to
reducible flow graphs, but the other runs efficieﬁtly on all

flow graphs).

x1

CHAPTER 1
INTRODUCTION

1.1 Qverview.

We rely on a global flow model of a computer program.

Ther only statements in the programming language retained in
the model are assignment statements whose 1left-hand sides
are variables and whose right-hand sides are expressions
built up from fixed sets of variables, function signs, and
constant signs. All intraprogram control flow is reduced to
a directed graph called a control flow graph indicating
which blocks of assignment statements may be reached from
which others, but giving no information about the conditions
under which such branches might occur. Executions of the
program correspond to paths through the control flow graph
beginning at a distinguished start blog¢k, although not every
such path in this graph need correspond to a possible
execution of the program. Section 1.3 describes this global
flow model in‘detail and in Section 1.5 we extend the model

to allow for subroutining.

Figure 1,1 A control flow graph.

1-2

1-3

The utility of the global flow model is that many
program analysis and improvement problems may be formulated
as combinatorial problems on digraphs. A central program
analysis problem of interest is symbolic evaluation: the
discovery, for each expression t in the text of the progranm,
of a closed form expression ¢« for the value of t which is
valid over all executions of the program. Such an
expression o will be said to cover t. We assume that 4
holds over all paths from the start block to the block where
t 1is located and furthermore, o is a term in a first order
language; that is an expression containing no predicates and
built from function signs, constant signs, and variables on

input to particular blocks of assignment statements.

We now consider Kildall's[Ki) "expression
optimizations™ for improving the efficiency of object code
derived from ieXt expressions, and relate these
optimizations to covers.

1) constant propagatiop (or folding) is the
substitution of constant sigﬁs_for text expressions covered
by constants. |

2) More generally, a text expression t located at block
n 1is redundant if on all paths from the start block to n
another text expression t' yields a computation equivalent
to that of t. Thus t may be replaced by a load operation
from a temporary address containing the result of some such

equivalent previous computation. In a somewhat restricted

1-4

version of this optimization, each such t' has the same
cover as t.

3) Code motion is the process of moving code as far as
possible out of cycles in the control flow graph (i.e. out
of program loops). The birth point of text expression t is
the eafliest block n in the control flow graph (relative to
the partial ordering of blocks by domination with the start
block first) where the computation of t is defined. Any
block n occurring between (relative to this domination
ordering) n and the original location of t has a cover for t
in terms of covers for the variables at n. The earliest
such block m, with the further property that the computation
of t can induce no new errors at block m, is called the gsafe
'gging of t; the computation of t may safely be moved to m.
(The text expression appropriate at node n may not be
lexically identical to t, but is given by the covér of t in
terms of the variables on input to m.) The safety of code
movement is also discussed in [CA,G,E,Ke1] and in Chapter 5
we discuss other restrictions to code motion in detail.

| 4) A covef for a variable on exit from a block in a
program loop is a iggn ipvariapnt. This problem is dicussed
in détail in Fong and Ullman[FU] and Wegbreit[Ww].

Various algorithms[A,C,GW,HUZ,KU1,KeZ,Ke3,S, TM,U] have
been developed for solving "easy" versions of global flow
problems where the transformations. through blocks can be

computed by bit vector operations. Kildall{Ki] formulates

—

1-5

the above expression optimizations in a more general manner
so that transformations through blocks are computed by
operations on expressions, rather than on bit vectors.
Kildall's expression optimizations may give considerably
mdre'powerful results than the easier code improvements;
however, we shall demonstrate in Section 1.4 that it is not
possible in general to compute exaét solutions of Kildall's
expression optimization problems in the arithmetic domain.
(Kam and Ullman[KU2] have recently demonstrated that there
exist global flow problems posed in certain non-arithmetic
global flow analysis frameworks which are unsolvable.) It
follows that we must look for heuristic methods for good,

but not optimal, solutions to these problems.

In ordér to'compare our methods with others we must fix
the relevant parameters of the progranm and control flow
graph. Let n and a be the cardinality of the node and edge
sets, respectively, of the control flow graph; and let o be
the number of variables occurring within more than one block
of the program (if we built into the programming language a
construct for the declaration of variables local to a block,
then the parameter ¢ is the number of global variables); and
let 1 be the 1length of the program ‘text. Qur careful
consideration of the parameter ¢t - avoiding, for example,
redundant represehtations of the same expression - is one of
the novelties of our approach; previous authors have

analyzed their algorithms primarily from the point of view

1-6

of the control flow graph parameters n and a.

Kildall[Ki] presents an algorithm, based on an
iterative method, for computing approximate solutions to
vérious expression optimization problems. & vérsion of the
Kildall algorithm used for the discovery of constant text
expressions may require 2(o(t+a)) elementary steps and 2(ca)
operations on bit vectors of length O(e2). (a(f(x)) is a
function bounded from below by k<f(x) for some k. See
Knuth(Kn2].) Kam and Ullman [KU2] show that the Kildall
algorithm discovers only a restricted class of text

expressions covered by constant signs.

Eigure 1.2. (From [KU2]) Zn* = X*nsy*n is a text expression

which is covered by a constant sign but is not discovered by

Kildall's algorithm.

1-7

Kildall's algorithm may also be wused to compute a
certain class of covers, which we characterize as fixed
points of a functional vy mapping approximate covers to
improved covers. Fong, Kam, and Ullman[FKU] give another
algorithm, based on a direct (noniterative) method which
gives weaker results than Kildall's algorithm and is
restricted to reducible flow graphs. Kildall's algorithm
may require 2(tn2) elementary steps and Fong, Kanm, and
Ullman's algorithm may require a(ta log(a)) elementary
~steps. A main inefficiency of both of these algorithms is
in the representation of the covers. Directed acyclic
graphs' (dags) are used to represent expressions, but
separate dags are.needed at each node of the flow graph.
Since a dag representing a cover may be of size a(1) the
total space cost may bé a(gn). Various operations on these
dags, which are considered to be "extended" steps by Fong,
Kam, and Ullman[FKU], cost g(1) elementary steps and cannot
be implemented by any fixed number of bit vector operations.
In general, any global flow algorithm for symbolic
evaluation which attempts to pool information separately at
each node of the flow graph will have time cost of n(za),=
since the pools on every pair of adjacent nodes must be
compared. Since ¢t 2 D, such a time cost may be unacceptable

for practical applications.

The global value graphs used in Chapter 2 are related

to a structure used by Schwartz[Sec2] to represent the flow

1-9

of values through the program. The use of a special global
value graph GVG*® leads to a relatively efficient direct
method for symbolic evaluation which works for all flow
graphs. The method derives its efficiency by representing
the covers with a single dag, rather than a separate dag at
each node. GVG* is of size O(ca+t), although the results of
Chaptér 4 may be used to build a global value graph GVG*
which in hany cases is of size O(a+i) but may grow to the
same size as GVG*. In elementary operations, the timé cost
of our algorithm for the discovery of constants (the
constants found by Kildall's algorithm) is 1linear in the
size of GVG*+, and our algorithm for finding the cover which
is the minimal fixed point of ¥ requires time almost 1linear
in the size of the GVG*. (Our algorithms work for all
flowgraphs.) Ihus our algorithm for symbolie evaluation

takes time almost 1linear in ‘ca+t (a+t in many cases), as

compared to Kildall's which may require 8(tn2) steps.

1.2 Graph Theoretic Notions.

A digraph G = (V, E) consists of a set V of elements
calied nodes and a set E of ordered pairs of nodes called
ggggg. The edge (u,v) departs from u and enters v. We say
u is an jimmediate predecessor of v and v is an jipmediate
§ggg§§§g; of ﬁ. The outdegree of a node v is the number of

immediate successors of v and the jpdegree is the number of

immediate predecessors of v.

A path fromu to W in G 1is a sequence of nodes
p = (u=vq,v2,...,vk=w) where (vi,vi+1) ¢ E for all i,
1 ¢ 1 < k. The length of the path p is k-1.

The path p may be built by composing subpaths:

P = (Vi,...,vi) * (Vi,...,VK).

The path p is a cycle if u = w. A strongly connected
component of G is a maximal set of nodes contained in a

cycle.

A node u is reachable from a node v if either u = v or

there is a path from u to v.

We shall require various sorts of special digraphs. A
LQQ&QQ digraph (V, E, r) is a triple such that (V, E) is a
digraph and r is a distinguished node in V, the root. A
flow graph is a rooted digraph such that the root r has no

predecessors and every node is reachable from r. A digraph

o Al i b S N R

1-11

is labeled if it is augmented with a mapping whose domain is
the vertex set. A orjented digraph is a digraph augmented
with an ordering of the edges departing from each node. We

shall allow any given edge of an oriented graph to appear

more than once in the edge 1list.

A digbaph G is acyclic if G contains no cycles, c¢yeclic

otherwise. Let G be acyclic. If u is reachable from v, u

is a descendant of v and v is a ancestor of u (these
relations are proper if u # v). Nodes with no proper

ancestors are called roots and nodes with no proper
descendants are Jleaves. Immediate successors are called

SQng. . Any total ordering consistent . with either the

descendant or the ancestor relation is a ‘Lgpglggiggl
ordering of G.

A flow graph T is a tree if every node v other than the

root has a unique immediate predecessor, the father of v. A
topological ordering of a tree is a preordering if it

proceeds from the root to the leaves and is a postordering

if it begins at the leaves and ends at the root. A spanning

tree of a rooted digraph G = (V, E, r) is a tree with node

set V, an edge set contained in E, and a root r.

. na n3 (5

Figure 1.3. A flow graph and its dominator tree.

Let G = (V, E, r) be a flow graph. A node u domjinates

a node v if every path from the root to v includes u (u

properly domjinates v if in addition, u £ v). It is easily

shown that there is a unique tree Tg, called the domjpator

nggvdf G, such that u dominates v in G iff u is an ancestor
of v in Tg. The father of a node in the dominator tree is
the immediate dominator of that node. The symbols %, 3, -
denote the dominator, proper dominator, and immediate

dominator relations, respectively.

All of the above properties of digraphs may be computed
very efficiently. An algorithm has lipear time cost if the
algorithm runs in time O(n) on input of 1length n and has
almpost 1linear time cost if the algorithm runs in time
O(na(n)) where o is the extremely slow growing function of
[T3] (a is related to a functional inverse of Ackermann's
function). Using adjacency lists, a digraph G = (V, E) may
be represented in space O(|V|+|E}). Knuth[Kn1] gives a
1ihear time algorithm for computing a tépological ordering
of an acyclic digraph. Tarjan [T1] presents linear time
algorithms for computing the strongly connectedA components
of a digraph and a spanning tree and in [T4] gives an almost
linear time algorithm for computing the dominator tree of a

flow graph.

1-14

1.3 The Global Flow Model.

Let P be a program to which we wish to apply various
global code improvements. In this section we formulate a
global flow model for P, similar to a model described by Aho
and Ullman[AU1] and others.

The control flow graph F = (N, A, s) is a flow graph
rooted at the start node s ¢ N. A control path is a path in
F. -Hereafter':, :, + will denote the dominator, proper
dominator, and the immediate dominator relations with

respect to the fixed rooted digraph F.

As described in Section 1.1, each node n ¢ N is a blogk
of assignment statements. These blocks do not contain
conditional or branch statements; control information is

specified by the control flow graph.

Program variables are taken from the set {X, Y, Z,...}.

An assignment statement of P is of the form
X = a

where X is a program variable and o is an expression built
from program variables and fixed sets C of gonstant signs
and»e of function signs. A program variable occurring
within only a single block n ¢ N is local to n. Let ; be
the set of program variables occurring within P and not
local to any block. For each program variable X ¢ g and

block n ¢ N-{s} we introduce the jpput variable X' to

denote the value of X on entry to block n. We use the
symbol X*S, considered to be a constant sign, to denote the

value of X on input to the program P at the start block s.

Let EXP be the set - of expressions built from input
variables, C, o. Thus, a« ¢ EXP is a finite expression
consisting of either a constant sign ¢ e C, an 1input
variable X’n representing the value of program variable x’n
on input to block n, or a k-adic function sign 6 ¢ 6
prefixed to a k-tuple of expressions in EXP. The text
expressions as well as the covering expressions sought are
expressions in EXP. For each X ¢ £ and block n ¢ N such
that X is assigned to at n, let the output expression Xn+* pe
an expression in EXP for the value of X on exit from block n
in terms of constants and input variables at block n. A
text expression t is an output expression or a subexpression
of an output expression. Note that each text expression t

 06rresponds to a string'of text on the right hand side of an

assignment statement of P.

For example, let n be the block of code:

X := X - 1
Y := Y + U4
Z := X %Y,

Then ZD* = (X*n-1)#(y*n+l4) (or in the more proper prefix
notation, (# (- XN 1) (+ YN U4))) is the text expression

"associated with the string of text "X * YY" at the last

assignment statement of n.

An jnterpretation for the program P is an ordered pair
(u, 1). The universe U contains a distinct value I(e) for
each constant sign ¢ ¢ C. For each k-adic function sign e ¢
6, there is a unique k-adic operator I(e) which is a partial
mapping from k-tuples in UK into U. We assume I(cq) # I(c2)
for each distinct €1, c2 ¢ C (every value has at most one
name). A program is in the arithmetic domajp if it has the
interpretation (Z, Iz) where Z is the set of integers and Ig
maps signs +, -, *, / to the arithmetic operations addition,

subtraction, multiplication, and integer division.

An expression in EXP is put in reduced form by
répeatedly substituting for each subexpression of the form
(® eq...cx),» that constant sign ¢ such that I(ec) =
1()(I(c1),...,I(ck)), until no further substitutions of
this kind can be made. We assume the blocks are reduced in
the sense of Aho and Ullman[AU1], so each text expression is
a reduced expression. We also assume that the output

expressions Xn* are reduced (and thus uniquely determined).

A global flow svystem n is a quadruple (F, g, U, TI)
where F is the control flow graph of P, ¢ is the set of
progfam'variables and (U, I) is an interpretation. The next
définitibns deal with a fixed global flow system g = (F, g,

u, 1).

We now define origin(a«), where o ¢ EXP, which
intuitively is the earliest point at which all the
quantities referred to in o are defined. Let N(a) = {n
the input variable XN occurs in «}. If N(o«) is empty then
origin(a) is the start block s and otherwise origin(e) 1is
the earliest (i.e. closest to s) block in N(«) relative to
the domiﬁator ordering 3. The origin need not exist for
arbitrary expressions in EXP, but will be well—défined in
all the relevant cases (i.e. origin exists for all text
expressions and their co#ers). Note that if a text
expression t contains no input variables the origin(t) = s,
and otherwise origin(t) is the block in N where that

assignment statement is located.

Let 4 be an expression in EXP and let p be a control
path beginning at the start block s and containing
origin(a). Then note that each node in N(a«) is contained in
P- We give a recursive definition for EXEC(a,p), the
expression for the value of o« in the context of this control
path p; EXEC(a,p) is defined formally as follows:

i) ifp ; (s) then EXEC(a,p) is the reduced expression
dérived fﬁom a. |

i1) otherwise, if p = p'c(m,n) then EXEC(a,p) =
EXEC(a;,p') where a' 1is the expression obtained from a by
substituting the oUtputb expression Xm* for each input

variable_x*n, and putting the result in reduced form.

1-18

An expression o ¢ EXP covers a text expression t if
EXEC(t,p) = EXEC(a,p)
for every control path p from s to origin(t). Hence, if a
covers t then a correctly represents the value of t on every
execution of program P. For example in Figure 1.1, Zzn#> is
covered by Z'ni#y’s. Note that the origin of any cover a of
a text expression t is always well defined since the

elements of N(a) will form a chain relative to i.

A cover is a mapping y from the text expressions of P
to. expressions in EXP in reduced form such that for each
text expression t, y(t) covers t.

Lemma 1.3 If o« ¢ EXP covers text expression t then origiﬁ(u)
> origin(t).

Proof by contradiction. Suppose origin(a) does not dominate
origin(t). Then o must contain an input variable x*N such
that n is not a dominator of origin(t). Hence, there is an
n-avoiding control path p from the start block s to
origin(t) such that EXEC(e,p) contains X*n put EXEC(t,p)
does not, so EXEC(u,p) # EXEC(t,p), contradicting ‘the

assumption that o« covers t. O

We extend 3 to a partial ordering of covers. For each

* .. *
pair of covers ¥q1 and ¥2, %1 + v iff origin(y1(t)) >
origin(yo(t)) for all text expressions t.

We wish to compute covers minimal with respect to this

partial ordering.

1-20

1.4 Unsolvability of Various Code Jmprovemenis
Within the Arithmetic Domain

The introduction listed a number of code improvements
which are related to the problem of determining minimal
covers of text expressions. Here we show that éven constant
propagation, the simplest of these improvements, is
recursively unsolvable in the arithmetic domain.
Previously, Kam and Ullman {KU2] have shown related global
flow problems to be insolvable in an abstract, nonarithmetic
ddmain.

Theorem 145. In the arithmetic domain, the problem of
discovering all text expressions covered by constant signs
'is undecidable. ,

Proof. The method of proof will be to reduce this problem
to that of the discovery of text expressions covered by

constant signs within the arithmetic domain (2, Igz).

Let {xo,x1,x2,,.,,xk} be a set of variables, where k >

5. Matijasevic[M] has shown that the problem of determining

if a polynomial Q(X{,Xz,...,xk) has a root in the natural

| " numbers (Hilbert's 10th problem) is recursively unsolvable.

Consider the flow graph Fq of Figure 1.4. Let t be the
text expression X3f/(1+Q(X¥f,...,X%f)2) located at block f.
We show t is covered by a constant sign iff Q has po root in

the natural numbers.

2
f (< ’=X0/(I+Q(X],X2,"',Xk))

Figure 1.4. The control flow graph FqQ-

1-21

1-22

For any control path p from the start block s to the
final block f and for i = 0,1,...,k let Xxi(p) =
I(EXEC(XZf,p)) = the value of Xi just on entry to [relative
to p. Also, let X(p) = (X1(p),...,Xk(p)). Observe that for
any k-tuple of natural numbers z, there is a contrdél path p
from s to f such that z = X(p).

IF. Suppose Q has no root in the natural numbers. Then for
each control path p from s to f, Q(X1(p),...,xk(p)) # 0, so
EXEC(t,p) = 0. Thus, t is covered by the constant sign 0.
ONLY IF. Suppose Q has a root z in the natural nﬁmbers.
‘Then it 1is possible to find execution paths p and q from s
to f such that z = X(p) = X(q) and such that X(p) = 0, X(q)
= 1. Hence EXEC(t,p) = 0 and EXEC(t,q) = 1, so t is not
covered by a constant sign. [
Corollary 1.4. In the arithmetic domain, the following
global flow problems are unsolvable: discovery of minimal
covers, bibth and safe points of code motion, redundant text
expressions, and loop invariants.
Proof. It is easy to show that the problem of discovery of
constant text expressions reduces to each of these problems.
"Add the édge (f,n1) to the control flow graph F of Figure
1.4, so t is contained is a cycle of F. Then by Theorem
1.&, Q has po root in the natural numbers iff t 1is covered
by 0| -
iff s is the birth point of t

iff s is the safe point of t

iff t is redundant on entry to f

iff t is a constant loop invariant.
Thus, the problem of discovery of whether text expression ¢t
is covered by a constant reduces to each of the above global

flow problems. (Note that the problem of safety -of code

motion is also hard for other reasons; if we add the text

expression t' = 1/Q(x?f,...,x§f)vto block £ then Q has no
root in the natural numbers iff t' is safe at f.) O

The above reéults indicate that we must 1look for

methods for computing approximations to minimal covers. The

method of Kildall[Ki] may be applied to compute such a class

of covers. In Chapter 2 we define a functional Y mapping

(as each iteration of Kildall's algorithm might) covers to

covers by comparing covers of input variables at given

blocks in N to dovers of corresponding output expressions of

variables at immediately preceding blocks. We show that the

minimal fixed point of v exists, is wunique, and give an

efficient algbrithm for computing this cover.

In Chapter 3 we extend our results to programs ‘which

manipulate lists and expressions, such as LISP 1.0.

An extremely efficient algorithm is presented in

Chapter 4; this almost linear time algorithm yields a cover

which is weaker than the minimal fixed point of ¥ computed

in Chapter 2, but 1is probably good enough for most
applicatiohs.

1-24

Finally, in Chapter 5 we investigate in some depth a

program improvement called code motion which is the process

of moving computations as far as possible out of control
cycles into new locations whieh the computations are

executéd less frequently. Covers computed by methods of

previous chapters are useful here since we must discover the

earliest block (relative to the domination ordering) in the

control flow graph where the computations are defined.

1.5 Adding Procedure Calls to the Global Flow Model

This section describes how the global flow model of
Chapter 1.3 may be extended to take into account
non-recursive procedure declarations and calls. That is, we
now extend thé programming language so as to incluée in
addition to assignment statements, procedure declarations
and procedufe call statements, and then show how to
construct appropriate control flow graphs for programs in
tﬁe extended language. We assume dynamic binding of
prdcedure variables and call-by-value, though this scheme
could be modified to allow static binding or

call-by-reference.

We assume a majin body M of program text with associated

control flow graph (Nm,AM,SM)-

A procedure declaration is of the form
procedure R(X4,...,Xy) <procedure body>

where the procedure body contains an arbitrary string in the
programming language, followed by a statement of the form:
result tg; |

where tp is a text expression. The associated control flow
graph Fp = (Ng, AR, SR) and node fR ¢ NR specify the flow of
control within the procedure body of R; all invocations of R
start at sp and finish at fg. We assume the result
statement is the only statement located at f and f has no

departing edges in AR. Each call to R (which may be located

1-26

within the main program or in the body of any procedure
including that of R itself) is an assignment of the form:
X iz R(t1,...,tk)

where t1,.;.,tk are text expressions, and the execution of
this call ¢to R invokes an execution of the body of R, with
Xj set to the current value of tj Just before entering R,
for j = 1,...,k.> (Hence, we assume call-by-value rather
than call—by-réference.) Let r be the value of the result
expression +tgR- | On exit from the body of R, the values of
the variables X1,...,Xx are reset to their original values
just before entering R on this invocation. (Hence, we
assume dynamic binding rather than static binding.) Finally,

the program variable X assigned to R(t1,...,tk) is set to

value r.

The control flow graph Fp for program P is constructed

by
(1) first merging the control flow graph of the main body
and the control flow graphs of all procedure bodies,
(2) setting syM to be the étart block,
(3) for each result statement

result tp
substitute the assignment

Xgp := tR
where Xg is a new program. variable not assigned anywhere
else in the program, and

(4) for each block‘n of the form:

stmq;...;8tmj_q;stmj;...stmk
where stmj is a procedure call X := R(t1,-..,tk)

(a) delete block n and substitute in its place the blocks

n1 "Stm{;...stmi-1;X1:=t13%X:=X15 - X=Xk Xk:i=tk"

n2 = "X1:=%¥1;...:Xk:=Xk; X:=XR;stmis+1;...;stmk"

where X{,...,Xx are new program variables.

(b) Add edges (n1,sR) and (fR,n2) to the edge set and- for
each edge (m,n) entering n substitute an edge (m,n1t)

entering n1, and for each edge (n,m) departing from n

substitute the edge (np,m) departing from n2-.

CHAPTER 2

SYMBOLIC EVALUATION AND THE GLOBAL VALUE GRAPH

2.0 Summary.

As ip Chapter 1, we assume a global flow model in which
the expressions computed dre specified, but the filow of
control is indicated only by a directed graph whose nodes
are blocks of assignment statements. We develop a direct
(non-iterative) method for finding general symbolic values
for expressions in the text of the program. Our method
gives results similar to an iterative method due to
Kildall[Ki] and a direct method due to Fong, Kam, and
Ullman[FKU]. By means of a structure called a global yvalue
graph which compactly represents both symbolic values and
the flow of these values through the program, we are able to
obtain results that are as strong as either of these
algorithms at a lower time and space cost, while retaining

applicability to all flow graphs.

e e

2-2

2.1 Introduction.

Let us review the basic definitions of the global flow
model defined in Section 1.2. Let P be the program which we
wish to analyze and improve. The flow of control through P
is represented by the control flow graph F = (N, A, s) where
N is a set of blocks of assignment statements, A is a set of
edges specifying possible flow of control immediately
between blocks, and s ¢ N is the+*start plggk from which all
flow of control begins. A control path is a path in F. Let

->

, 3, 3 denote respectively the immediate dominator

relation, proper dominator relation, and the dominator

ordering, which is a partial ordering.

Let {X, Y, Z,...} be the set of pfogram variables, and
let : be the set of program variables occurring within more
than one Block of N. For each n e N-{s} and prégram
variable X ¢ I we introduce the input varjable X’ to denote

the value of X on entry to block n. Also, X'S represents

the value of program variable X € I on entry to the program

P at the start block s; X*S is considered to be a constant

sign rather than an input variable. Let EXP be a set of
expfessions built from input variables and fixed sets of
constant and k-adic function signs. For each program
variable X ¢ : and block n ¢ N such that X is assigned to at
n, let Xn* denote the expression in EXP for the value of X

on exit from n in terms of constants and input variables at

2-3

n. Xd* 1is called the output expression for X at m. The
lext expressions of P are the output expressions plus their
subexpressions. Note that input wvariable X*P is a text
expression only if X occurs in the right hand side of an
assignment statement of block n before X is assigned to. 1In
this section and the next, it will be useful to assume that
the text expressioné include agll input variables; for each X
€ Zvand block n € N-{s} such that X*n is not an input

variable, add at n the dummy assignment X := X.

An jnterpretation was defined in Section 1.2 to contain
a universe U of values and mappings from contant signs to U,
and from k-adic function signs to mappings from UK ¢to U. An
expression in EXP is reduced relative to an interpretation
by repeatedly substituting constant signs for constant

subexpressions.

For each o ¢ EXP, origin(a) is the earliest block n
relative to the domination ordering 3 (with the start block
s first) such that every block referred.to in 4 is contained
on all control paths from s to n. For each control path p
from s and containing origin(a), EXEC(a,p) is intuitively
the expression in EXP for the value of o relative to p. An
expression o« ¢ EXP govers text expression t if

EXEC(t,p) = EXEC(a,p)
for all contfol paths from s to origin(t); A cover v is a

mapping from text expressions to EXP such that y(t) covers t

2-4

for each text expression t. We use origin to induce the

partial ordering > of covers; for each pair of covers y and
* *

v', v > ' iff origin(¢(t)) - origin(y'(t)) for all text

expressions t.

.‘In Chapter 1 we showed that the problem of computing
covers vminimél with respect to 3 over arithmetic domains is
unsolvable; hence we consider a simple class of covers that
might be computed by an algorithm due to Kildall. To
construct this class of covers, Kildall's algorithm would
first take a pass through the program and construct a
mapping yg from text expressions to EXP; vp may not be a
cover bﬁt has the property that for all text expressions t,

EXEC(yg(t),p) = EXEC(t,p)
for some (rather than all) control paths p from s to
origin(t). The algorithm would then jteratively compare
possible covering expressions bf input variables at
particular blocks to the corresponding output expressions of
pfeceding blocks, and'propagate the results to predecessor
blocks. -More precisely, for any mapping ¢ from text
expressions to EXP, let Y(v) be the mapping ¢' from text

expressions to EXP such that for each input variable X*n,

vI(X*h) = o if o = ¥(X"7) for all blocks m immediately

preceding n in the control flow graph F,

_ X+n, otherwise.
and ¢'(t) is the reduced expression derived from text

expression t after substituting ¢'(X*n) for each input

2=5

variable X'0 occurring in t. Kildall's algorithm computes
tk(vg) for k = 1,2,... until a fixed point of ¥ is
obtained. Note that Y maps covers to covers; but ¥ need not
be monotonic, i.e.} for some cover y and text expression t,
it ﬁay happen that y(y)(t) 3 v(t).
Theorem 2.1. Each y which is a fixed point of vy is a covér,
i.e. EXEC(y(t),p) = EXEC(t,p) for all text expressions t
and control paths p from s to the block where t is located.
Proof by construction. Let p be the shortest control path
from s to a block n where there is located a text expression
t such that N
EXEC(v(t),p) # EXEC(t,p).
Thus t must contain an input variable X’D such that
EXEC(¥(X*D),p) # EXEC(X’N,pP).
Clearly, v(x*n) £ x*n. Let m be the next to last block in
p, so p = p'*(m,n). By definition of ¥, (X)) = v(xm?).
Since ¥(X*N) contains no input variables at n,

EXEC(¥(X*M),p) = EXEC(v(X*D),p')

EXEC(%(X®*),p'), since v (X*D) = v (xm+) .
EXEC(Xm+,p') by the induction hypothesis,

EXEC(X*N,p) by definition of EXEC. [

In Section 2.2, we show that ¥ has a wunique minimal
fixed point v*, We then show (Sections 2.3-2.7) that while
the problem of finding minimal covers is hopeless, that of

finding v* is not only solvable but can be done efficiently.

Thus‘we provide an efficient algorithm for finding the

2-6

minimal cover among those of the type computed iteratively

by Kildall's algorithm.

'In fact the rest of this chapter is presented in a more
general setting than is suggested above, so as to lay the
foundation for related algorithms in Chapter 3 which deal
with programs that operate on structured data. The overall
plan is to introduce (in Section 2.2) a special class of
graphs called global value graphs which represent the flow
of values (rather than gcontrol) through the program P; and
we define, for each global value graph GVG, a set rgyg of
approximate covers associated with it. rgyg is in each case
a finite semilattice which thus has a unique minimal element
VGVG, and which is efficiently calculated by the algorithm
presented in Sections 2.3-2.7. As we show in Sections 2.2
and 2.8, for a particular choice of GVG, wgyg is actually
, the minimal fixed poinf of the functional ¥, so our
general algorithm can be used to find v¥ efficiently.
(Indeed, the whole presentation could be made uniform by
replacing the functional ¥ in an apppfopriate way by a
functional Ygyg that depends on the particular global value
graph; then Vgyg, the minimal element of Tgyg, would be in
each case the minimal fixed point of ¥gyg. We have chosen

not to do so, since only Y as defined here has any

historical significance.)

2-1

‘Figure 2.1.. A fixed point of ¥ covers 20* with the

expression X’ n#y*m,

2-8

2-22ax§9_n_¢§lmllalmmm;-

A labeled dag D = (v, E, L) 1is a labeled, acyclic,
oriented digraph with a node set V, an edge list E giving
the qrder of edgés departing from nodes, and a l1abeling L of
the nodes in V. A rooted labeled dag (D,r) represents an
expression a if a is the parenthesized l1isting of the labels
of the subgraph of D rooted at r in topological order from r
to the leaves and from left to right. (Where D is fixed, we

simply say r represents ¢ if (D,r) so represents a).

The dag D is minimal if each node r ¢ V represents a
distinct exﬁression. Any expression or set of éxpressions
‘may be represented, with no redundancy, by a minimal labeled
dag D. In particular, Qe use the minimal dag p(n) to
represent efficiently the set of text expressions located at
block n. We have assumed that'each block is reduced, SO
each néde in D(n) corresponds to a unique text expression.
Aho and Ullman{AU1] describe the use of dags for
‘representing computations within blocks. Kildall[Kil ahd
Fong, Kam, Aand 'Ullman[FKU] have applied dags to various

»global flow problems.

\2-9

Figure 2.2. (D,r) represents (5+(5%#x*n)) (or more properly
in prefix notation (+ 5 (® 5 X*n))) where D is the above

dag.

We now come to the central definition. To model the
flow of values through a program P, we introduce a class of
labeled digraphs called global value graphs derived by
combining the dags of all the blocks in N and adding a set
of edges called value edges which pair nodes 1labeled with
input variébles to other nodes. More precisely, a global
valué graph is a possibly cyclic, labeled, oriented digraph
GVG = (V, E, L) such that:

| (1) the node set V is the union of the node sets of the
dags of N,

(2) E is an edge list containing (a) the edge 1list of
each D(n) and (b) a set of pairs in v2 (the yalue edges of
GVG) such that (i) the first node of each pair is 1labeled
with an input variable and (ii) for each v ¢ V labeled with
an 1nput variable X°n, and éontrol path p from s to n, there
is some value edge departing rfrom v and'entering a node
located at a block in p and distinct from n.

(3) L is a labeling of V compatible with the 1labeling
of each D(n).

Note that for each v ¢ V, if-v represents a constant
sign ¢ then v is labeled with ¢ and has no departing edges;
if v represents a function application (6 tq...tK) then v is
labeled with the k-adie function sign e and uy,...,ug are
the immediate successors of v in GVG representing tq,...,tk
respectively; if v represents an input variable X*N then v

is labeled with X*N and all the edges departing from v are

2-11

value edges. For each node v ¢ V, let loc(v) be the block
in N where the text expression which v represents |is

located.

A iglgg path is a path in GVG traversing only nodes
linked by Qalue edges; a value path is maximal relative to a
fixed beginning node if its last node has no departing value
edges.

Lemma 2.2.1 For any v ¢ V labeled with an input variable and
any control path p from the start block s to loc(v), there
is a maximal value path q from v such that all the nodes in
q have distinct loc values in p.

Proof. We consider (t) to be a trivial value path. Suppose
we have constructed a value path (v=uq,...,uj) such that
loc(uif, loc(uj-1),...,10oc(uq) are distinct blocks occurring
in this order in p. If uj is not labeled with an input
variable (and thus has no departing value edges) then
(t=u1,...,ui) is a maximal value path. Otherwise, let pj be
the subpath of p from s to the first occurrence of block
loc(uj) and 1let (uj,uj,1) be a value edge such that
loc(uj,1) occurs strictly before 1loc(uj) in p. Then
(t=uq,...,ui,ui+1) is a value path and loc(uj4q) is distinct

from blocks loc(uq),...,loc(uj). The result thus follows

from induction on the length of p. O

We assume here, as in Section 2.1, that the set of text

éxpressions of each block n ¢ N inciude all input variables

at n. Let Tgyg be the set of mappings ¢ from V to EXP such
that for all v € V,

(1) if L(v) is a constant sign c then y(v) = ¢, or

(2) if L(v) is a function sign 8 and v has immediate
successors uf,...,uk (in this order) then 4(v) 1is the
reduced expression derived from (e w(u1)...¢(uk)), or

(3) if L(v) is an input variable then either (a) ¢(v) = L(v)

or (b) y(v) = y(u) for all value edges (v,u) departing from

v.

Note that for any node v satisfying (2), ¢(v) is
determined from the input variables occurring in the text
expression which v represents. Hence any Vv ¢ Tgyg is
uniquely specified by the set of input variables satisfying
case (3a), so rgyg has at most 2/NI1Zl elements.

Lempa 2.2.2. For any y ¢ rgyg and v ¢ V, origin(v(v)) 3
loc(v). |

Proof by contradiction. Supﬁosé for some v ¢ V,

origin(y(v)) ! 1oc(v).

Hence, there must be an input variable X*N occurring in v(v)
such that n 2 loc(v), and so there is an n-avoiding path p
from the start block s to loc(v). Also, there must exist
some u ¢ V labeled with an input variable and also located
at block n, such that y(u) = X’n, By Lemma 2.2.1, we can
construct a maximal value path (u=uq,...,ux) such that

loe(uq),...,loc(uy) are distinct blocks in p. Let j be the
maximal integer < k such that ¥(uq) =...= w(uj), if L(Uj)

is an input variable, then ¥(ujy) = L(uj) = X', so loc(uj) =
n is contained in p, contradicting the assumption that p
contains n. Otherwise, if L(uj) is not an input variable

then neither is ¥(v) = #(uj), a contradiction with the

assumption that v(u) = X°%. O

We shall show that Igyg is a finite semilattice with
ordering :, and hence has a minimal element. Then we shall
define a global value graph GVG¥ such that the minimal fixed
point of ¥, the functional defined in the last section, is

the minimal element of rgyg*.

We define a partial mapping min: EXp2 -> EXP such that

for all q,a' ¢ EXP,

e pin o' = o if origin(a) 3 origin(a')
= a' if origin(a') 3 origin(ea)

or if origin(a) = origin(e') and

(i) if o = o' then o min « = a =a', Or

(ii) if « is a constant sign and e' is a function
application, then o min a!'! = o' Rin ¢ = a, OF

‘(iii) if a,a' are function Applications (e u1...uk):
(¢ a}...af) respectively, and T = @oj pin o} is
defined for 1 = 1,...,k then o min o' = (® T1...9K)

and otherwise, o mipn o' is undefined.

We extend min to the partial mapping from pairs of

elements of rgyg to rgyg defined thus: for ¢,¥' e TGVG, if
for all #le V ¢(v) min y'(v) = ¥(v) is defined then ¢ min ¢'

= ¥V and otherwise ¢ min v' is undefined.

Theorem 2.2.1. Tgyc is a semilattice with ordering 3.

Proof It is sufficient to show mjin is well defined over
TGvG. We proceed by induction. Suppose for ¥,v' ¢ rgyg and
some o« in the domain of v, y(u) min ¢'(u) is defined for all
u ¢ V such that ¢(u) is a proper subexpression of 4.
Consider some text expression v such that y(v) = 4. By
Lemma 2.2.2, both origin(y(v)) and origin(y*(v)) are
contained on all control paths from the start block s to
loc(v), so we may assume without loss of generality that
origin(y(v)) ¥ origin(¥'(v)). Observe that w(v) min v'(v) =
v(v) if origin(v(v)) 3 origin(¥'(v)) so we further assume
that origin(v(v)) = origin(v'(v)).

‘Case 1. If L(v) is a constant sign ¢ then ¢(v) = v'(v) = ¢
so v(v) min ¢'(v) = c.

Case 2. Suppose L(v) is a function sign ¢ and v has
immediate successors u1,...,uk~: By the induction hypothesis
e = ¥(ui) min v'(qi) is defined for 1 = 1,...,k. Hence
v(v) nmin w'(v) is the reduced expression derived from (e
al...al)-

Case 3. Otherwise, suppose L(v) is an input variable. . Let
p be a control path from the start block s to loc(v). By
Lemma 2.2.1, we can construct a maximal a value path
(v=u1,...,ux) such that for i = 1,...,k each loc(uj) 1is
contained in p. Let j be the maximal integer such that

w(u1)=.;.=W(UJ)-

Case 3a. If v'(v) = v(uq) =...= v(ui) # ¥'(uis+1) for some
i, 1< 1i < j, then by the definition of rgyg, ¥(v) = ¥'(ui)

= L(ui). Hence origin(¥'(v)) = nji # nj = origin(v(v)),
contradicting our assumption that origin(y*(v)) =
origin(y(v)).

Case 3b. Otherwise, Suppose vi(v) = ¥'(uq) =...= w'(uj) so
we have ¥(v) = ¥(uj) and ¥'(v) = t'(uj). Applying Cases 1
and 2, ¥(v) pin v'(v) = ¥(uj) min v'(uJ) is defined if L(uj)
is either a constant sign or function application, so we
assume L(uj) is an input variable. Since j is maximal, viv)
= ¥(uj) = L(uj). If ¥'(v) = ¥'(uj) = L(uj) then y(v) min
v'(v) = L(uj). Otherwise, suppose %'(uj) # L(uj). For each
value edge (uj,v'), by the definition of rgyg, v'(uj) =
v'(v') and by Lemma 2.2.2, origin(y*'(v')) 3 loe(v'). Hence
origin(w'(v)) = origin(v'(uj)) is distinet from
oriéin(v(v)), contradicting our assumption that

origin(v¥'(v)) = origin(y(v)). O

Theorem 2.2.1 immediately implies that:

Corollary 2.2. Tgyg has an unique minimal element pin TgygG.

Now we shall define a specjal global value graph such
‘that v%, the minimal fixed point of vy, the functional
defined in Section 2.1, is the minimal element of r applied
tq this graph. ' Again we assume that the text expressions
include all the input variables, and add dummy assignments

to satisfy this 'assumbtion} Let GVG" be the global value

graph containing the value edges {(v,u) | v represents input

variable X’D and u represents the output expression X®* for

each program variable X ¢ ¢ and edge (m,n) ¢ A of the

control flow graph F}.

Control Flow Graph Global .Value Graph

Figure 2.3. The global value graph cvc®.

We have shown that Tgyg* is a finite semilattice and
hence has a minimal element; we now show that this minimal
element is the unique minimal fixed point of v.

Theorem 2.2.2 V¥, the minimal fixed point of v, is identical
to ¥, the unique minimal element of rgvg* -

Proof. Observe that any fixed point of ¥ is an element of
Igyg®. By Corollary 2.2, Tgyg* has a unique minimal element
¥ = min Tgyg*. Suppose ¢ is not a fixed point of .
Observe that since ¥ ¢ TIgyg*, for each input variable X+,
if v(X*D) £ X*D then ¥($)(X*N) = ¢(X*N). Hence there is an
input variable X*P such that $(X*0) = X»0 but ¥(¥)(X*N) = a
where o = 3(X®*) for all blocks m immediately preceding

block n in the control flow graph F.

We are going to construct a mapping v € rgyg* distinct
from § such that ¥ : ¥, which will contradict our assumption
that § is the minimal element of TIgyg*. For each text
~expression t, let v(t) be derived from %(t) by substituting
a for »each occurrence of an, and then reducing the
Eesulting expression. We now show v ¢ rgyg*. Consider any
input variable Y*n',

Case a. Suppose (Y*n') = y*n', If y*0' 4 X*0 then v(Y'N')
= Y*n'_ Otherwise, if Y*D' = XP* then for each block m
immediaﬁely preceding block n' = n, y(Y*n') = H(YM™*) = «a,
and since X*D is not contained in a, ¥(Y*P') = ¢(Y®*) = «a,

Case b. 1If $(Y*n'} £ YD then for each block m immediately

preceding n' in F, $(Y*n') =z $(Y®*) so v(Y*n") :Vt(Ym’).

2-19

Thus ¥ € Tgyg®. For each block m immediately preceding n in

F, a = $(X*0) = ¢(XB*) so

origin(v(X*1)) = origin(y(X®*))

+ %

loc(Xm*), by Lemma 2.2.2

and hence origin(v(X*n)) n= origin(v(x*n)).

This implies

that ¥ is not the minimal element of rgyg*, a contradiction.

¥

2-20

2.3 Propagation of Constants

Let v be a minimal element of Tgyg where GVG 1is an
arbitrary global value graph (V, E, L). We wish to compute
a new labeling L' of V such that forreach velV, if ¥(v) 1is
a constant sign then L'(v) = c and otherwise L*(v) = L(v).
Nodes thus relabeled with constant signs may be discovered
by phopagating possible constants through GVG, starting from
nodes originally 1labeled with constant signs, and then
testing for conflicts. This leads to an algorithm for
constant propagation with time cost linear in the size of

the GVG.

Recall that a spanning tree of the control flow graph F
= (N, A, 8) is a tree rooted at s, with node set N, and edge
set contained in A. A preordering of a tree orders fathers
.before sons. Let < be a preordering of some spanning tree
of F. We construct an acyclic subgraph of GVG Dby deleting
value edges which are oriented between nodes in V whose loc
values are compatable with <. More formally, let E¢ be the
set of all value edges (v,u) such that loc(v) < loe(v).
Observe that (V,E-E<) is acyclic. We shall propagate
constants in a topological order of (V, E-E¢), from leaves

to roots.

OQur algorithm for computing the new labeling L' 1is

given below.

Algorithm 2A.
INPUT GVG = (v, E, L), F.
OUTPUT L'.

declare L' := array of length |V|;
Let < be a preordering of a spanning tree of F;
Q := E¢ := the empty set {};
all value edges (v,u) ¢ E such that loc(v) < loc(u)
do add (v,u) to Eg;
- comment propagate constants;
LO:for each v ¢ V in topological order of (V, E-E¢)
from leaves to roots do ‘
if L(v) is a constant sign c then L1i: L'(v) := c;
else if L(v) is a k-adic function sign o,
' u1,...,uk are the immediate successors of v in
GVG, and (® L'(uq)...L"(uk)) reduces o a
constant sign c then L2: L'(v) := ¢;
else if L(v) is an input variable and there
is a constant sign c such that L'(u) = ¢
for all value edges (v,u) departing from Vv
thep L3: L'(v) := ¢;

else begin add v to Q;L'(v):=L(v) end;

end; .
comment test for conflicts; |
L4:for each v ¢ V labeled with an input variable do
v has a departing value edge (v,u) such that
L' (v)#L'(u) thep add v to Q;
£ill Q = the empty set {} do
begin
delete some node v from Q;
if L'(v) is a constant sign then

L5:
t(v) := L(v);
add all immediate predecessors of Vv in GVG to Q;
end;
end;

end.

Lemma 2.3.1. If y(v) is a constant sign then L'(v) 1is set
to v(v) at L1, L2, or L3.

Proof, by induction on the topological order of (V,E-E¢)-
Basis step. Suppose v is a leaf of (V, E-E¢). Then L(v) is
a constant sign and so L'(v) is set to L(v) = v(v) at L1.
Inductiopn step. Suppose v is in the interior of (V, E-E<¢)
and L'(u) has been set to v(u) for all u occurring before v
in‘the topological order where v(u) is a constant sign.
Then v represents either a function application or an input
variable.

Case 1. Suppose L(v) is a k-adic function sign ¢ and
u1,...,ux are the immediate successors of v in (v, E-E<)-
If ¢(v) is a constant sign ¢ then by definition of r,
v(u1),..,v(ug) are constant signs cq,...,ck respectively and
(8 ¢q...ck) reduces to c. By the induction hypothesis
L'(uy),...,L'(ug) have been previously set to ¢1,...,Ck and
so L'(v) is set to v(v) = ¢ at L2.‘

Case 2. Otherwise, L(v) is an input variable x*n. If w(v)
is a constant sign c then ¥(v) £ X*D so by definition of
rgyGg: © = ¥(u) for all value edges (v,u) departing from V.
By the induction hypothesis, L'(u) has been set to c = v(u)
for eacﬁ value edge (v,u) ¢ E-E¢. Now we must show V has
some departing ‘value -edge (v,u) ¢ E-E<- Let T be the
spanning tree of F with preorder <. Consider the path p in
T from the start block s to n. By definition of GVG, there

is a value edge (v,u) such that loc(u) is distinct from n

2-23

and 1is contained in p. Hence (v,u) ¢ E-E¢ and L(v) is set

to ¢ at L3. 0O

Let Q@ be the value of Q Just after LY. Then v e V is
eventually added to Q and L'(v) reset to L(v) iff some
element of Q is reachable in GVG from v. If v ¢ V is
lébeled by L' with a constant sign at L4, then we show
Lemma 2.3.2. y(v) is not a constant sign iff some element
of Q is reachable in GVG from v.

Bzggﬁ. IF. Suppose ¥(v) is not a constant, but no element
of ‘U is reachable from v. Then let ¥ be the mapping from V
to EXP such that for each u V, V(u) is the reduced
expression derived from ¢(u) after substituting y(w) for
each input variable represented by a node w (i.e. w is the
unique node labeled with that input variable) from which an
element of U is reachable. Then V e TGvG but origin(¥(v)) =
s + origin(v(v)), .contradicting the assumption that ¥ is the
minimal element of rgyg.

ONLY IF. Suppose some element of Q is reachable from v in
GVG. Clearly if v ¢ U, then ¢(v) is not a constant sign.
Assuﬁe for some k > 0, if there is a path of 1length 1less

than k in GVG from some u ¢ V to an element of Q, then v(u)

is not a constant sign. Suppose there is a path

(v=wg,wq,...,wk) of length k from v to wy ¢ Q. If k = 1,
then wy ¢ T, and otherwise if k > 1, then (wq,...,wk) is a
path of 1length k-1. By the induction hypothesis, ¥(wq) is

not a constant sign. But (v,w1) € E and by the definition

2-24

of rgyg, v(v) is not a constant sign. [
Theorem 2.3. Algorithm 2A is correct and has time cost
linear in the size of the GVG.

Proof. The correctness of Algorithm 2A foliows directly

from Lemmas 2.3.1 and 2.3.2.

In addition we must show Algorithm 2A has time cost
linear in |V|+|E}l. The initialization costs time linear in
{Vl. The preordering < may be computedsin time 1linear in
IN|+|A] by the depth first search algorithm of [T1]. The
time to process each Vv ¢ V at steps LO and L4 1is
0(1+outdegree(v)). Step L5 can be reached at most |V| times
and the time cost to process each node v at step L5 i§>
0(1+indegree(v)). Thus, the total time cost is linear in

|VI+|E}. O

Figure 2.14. A simple example of constant propagatiocn

through the global value graph. 2-25

2-26

In some cases, we may improve the power of Algorithm 24
for particular interpretations by applying algebraic
identities to reduce expressions in EXP more often to
constant symbols. For example, in the arithmetic domain we
can use the fact that .0 is the identity element under
integer multiplication to mbdify Algorithm 2A so that if
node v is labeled by L with the multiplication sign and a
successor of .v in GVG is covered by 0, then at step L3 we

may set L'(v) to the constant sign corresponding to 0.

_ From the new labeling L' and GVG = (V, E L), we
construct a reduced global value graph GVG' = (V, E', L")
with labeling L' and with edge set E' derived from E by
deleting all edges departing from nodes labeled by L' with
constant signs. This corresponds to substituting constant
signs for constant text expressions in the program P. ﬁe
assdme throughout the neit three sections that GVG is so

reduced.

2.4 A Partial Characterization of &,
the Minimal Element of IGVG

Let GVG = (V, E, L) be a reduced global value graph as
constructed by Algorithm 2A of the last section and let v be
the minimal element of Tgyg. Let V be the set of nodes in V
representing constant signs and function applications (i.e.
nodes labeled with constadt and function signs). Observe
that rgyg characterizes exactly the values of any such v
over nodes in ¥ in terms of the values of ¢ over the nodes
in V-¥, i.e. in terms of the nodes labeled with input
variables. The following Theorem characterizes ¢ over v-V

in terms of y over V.

We require first a few additional definitions. Recall

that a value path is a path p in GVG traversing only nodes

linked by value edges and is maximal relative to a fixed
beginning ﬁode if the last node of p has no departing value
edges. For any node V ¢ V labeled with an input variable,
let H(v) be the set of nodes in V lying at the end of
maximal value paths from v. Note that H(v) is a subset of
9. Call two paths almost disjoipt if they have exactly one

node in common.

2-28

2.4: all maximal value

Case (b) of Theorem

paths from

v contain u and p1,p2 are almost disjoint maximal

value paths from u to uq,u2 € H(v).

2-29

Theorem 2.4. If v is labeled with an input variable, then

either
(a) ¥(v) = v(u) for all u ¢ H(v), or
(b) ¥(v) = L(u), where u is the unique node such that

(i) u lies on all maximal value paths from v but
(ii) there are almést disjoint maximal value paths from u

to nodes ui,u2 € H(v) such that ¥(u1)£¢(u2)-
Proof. Suppose y(v) is not an input variable, so there
exists a maximal value path p from v to some ui ¢ H(v) such
that v(v) = v(u1)- Assume there exists another maximal
value path p' from v to some u2 ¢ H(v) such that y(v) #
v(u2). Let z be the first element of p' such that y(z) #
v(u) and let z' be the immediate predecessor of z in p', so
¢(z') = v(v). Then by definition of rgyg, ¢(v) = y(2') =

L(z') is an input variable, contradiction.

Suppose ¢(v) is an»input variable, so ¢(v) = L(u) for
some u ¢ V. For any maximal value path p from v, let z be
the first element of p such that v(z) £ L(u) and let z' be
the immediéte predecessor of z in p. Then by definition of
rgvGg, v(z') = L(z') = L(u) so z' = u is contained on p. Now
suppose that there is a node w ¢ V distinct from u and
contained on all maximal value paths fﬁom u. Let 1loec map
from nodes in V to the respective blocks 1n.the control from

graph where they are located.

_Consider any control path q from the start block s to

2-30

block loc(u). By Lemma 2.2.1, we can construct a maximal

" value path (u=wt,...,wk) such that loc(wi),...;loc(wk) are

distinct blocks in q. Hence, loc(w) 3 10c(u).

Let ' be the mapping from V to EXP such that for all
vl ¢ V, y'(v') is derived from v(v') By substituting L(w)
for each input variable 1labeling a node from which all
maximal value paths contain w. Then ' ¢ TrGVG. But
origin(v‘(v)) = loc(w) 3 loc(u) = origin(y(v)),

contradicting our assumption that ¢ is minimal over TIgyg. o

Theorem 2.4 suggests a procedure for calculating ¢, but
there is an impliecit circularity since the calculation
(using Theorem 2.4) of ¥(v) for v ¢ v-¥ requires the
determination (using the definition of rgyg) of v(u) for u e
H(v); but since u ¢ ¥, the calculation of ¥(u) may require
the determination of ¥(w) for some other w ¢ V-U. The way
out is by the rank decompositioh discussed in the next
section. | There will remain the problem of finding almost
disjoint paths, which we consider in Section 2.5. This

'allows us to apply Theorem 2.4 withoht circularity.

2-31

2.5 Rank Decomposition of a Reduced GVG

This section describes a decomposition of the nodes of
a reduced GVG = (V, E, L) into sets for which we may
completely characterize the minimal ¥ ¢ Tgyg. This leads to

an algorithm for the construction of v.

Fong, Kam, and Ullman[FKU] describe the rank
decomposition of a dag; this provides a topological ordering
of a dag from leaves to roots over which the dag may be
efficiently reduced. Here we generalize the rank
decomposition to a possibly cyclic GVG; this provides wus a
method of partitioning V into sets of text expressions over
which y may have the same value; it also allows us to apply
Theorem 2.4 without circularity, characterizing completely
the minimal v ¢ rgyg. In Section 2.7 we apply the rank
decomposition to implement our direct method for symbolic

evaluation.

The rapk of a node v ¢ V is defined:

rank(v)

0 if v is labeled with a constant sign

1 + MAX{rank(u) | (v,u) ¢ E} for v labeled

:with a function sign

MIN{rank(u) | u ¢ H(v)} for v labeled with an

input variable.

X:=4+(2%X

Figure 2.6.
(The integer

its rank.)

)

Rank

on

2-32

decomposition of a global value graph.

the upper right hand side of each node is

2-33

Observe that in the very simple case where P containé
only a single block of code, (i.e. the start block s) then
GVG consists of the dag D(s). Hence the rank of a node v ¢
V is the 1length of a maximal path from v to a leaf of the
dag D(s); inducing a topological ordering of the dag D(s)
from leaves to roots.

‘Lemma 2.5. v(v) = v(v') implies rank(v) = rank(v').

Proof. We proceed by induction on rank of v.

Bg;i;'gign. Suppose v is of rank 0, so ¥(v) = ¥(v') is a
constant sign c¢. But since GVG is reduced, L(v') = ¢ and v!'
is also of rank O.

Inductive step. Suppose for some r > 0, rank(w) = rank(w')
for all w,w' ¢ V such that rank(w) < r and y(w) = (w').
Consider some v,v' ¢ V such that rank(v) = r.

Case a. Suppose y(v) = y(v') is the functibn application (g
a1...0k)- Then by Theorem 2.4, y(v) = y(u) for all u ¢
H(v), and similarily, y(v') = y(u') for all u' ¢ H(v'). Fix

some u ¢ H(v) and u' ¢ H(u'). By definition of TIgvG, L(u)

L(u') = ¢ and if w1,...,wk are the immediate successors of u

and wi,...,wﬁ are the immediate successors of u', then aj
V(wi) = #(wi) for i = 1,...,k. By the induction hypothesis,

rank(wy) = rank(wl) for i = 1,...,k.

Hence, rank(v) = rank(u)

1 + MAx{rank(w1),...,rank(wk)}

1 + MAx{rank(wi,...,rank(wk)}

rank(u')

2-34

= rank (v').
Case b. Suppose ¥(v) = v(v') is an input variable. By
Theorem 2.4, v(v) = w(v') = L(u) for some u ¢ V contained on
all value paths from v and v'. Hence, rank(v) = rank(v') =

- rank(u). DO

To compute the rank of all nodes in GVG we use a
modified version of the depth first search developed by
Tarjan[T1]. Because the search proceeds backwards, we
require reverse adjacency lists to store edges in E. Note.
that the RANK(V) is used in two different ways; first to
store the number of successors of node v which have not been
visited, and later RANK(v) is set to rank(v). Let V., ¥, be
the nodes in V, ¥ of rank r. We initially compute %0 and on

the r'th execution -of the main loop we compute V.-V, and

vr‘+1-

Algorithm 2B.
- INPUT GVG = (v, E, L)
QUTPUT RANK

declare RANK:= an array of integers of length |V]|;
for all v ¢ V do

RANK(v) := - outdegree(v);
r := 0;
Q' := {v | L(v) is a constant sign };
untill Q' = the empty set {} do
begin
Q := Q'; Q' the empty set {};

compent Q = Vp;

¥

L: untill Q = the empty set {} do
: begin

delete v from Q;
for each immediate predecessor u of v do
if L(v) is a function sign theg
if RANK(u) = -1 then
begin
gomment u e Vp,q;
RANK(u) := r+1;
add u to Q' ‘

end
else RANK(u) := RANK(u) + 1;
else if RANK(u) < 0 then
begin

ggmm%n% u e Vp-Vr;
RANK(u) := r;

add u to Q

2-35

2-36

Iheorem 2,5. Algorithm 2B is correct and has time cost
linear in |V|+|E}].

Proof by induction on r.

Basjis step. Initially, RANK(v) is set to - (outdegree of v)
for each v ¢ V. So if L(v) is labeled with a constant sign

then RANK(v) is set to 0. Also, Q is initially set to Vg
just before label L.

Inductive step. Suppose for some r > 0, Qe have on entering

the inner loop at label L on the r'th time:

(1) Q = ¥p,

(2) For each v ¢ V, RANK(v) = rank(v) if rank(v) < r or v
Vp, and RANK(v) = - (number of successors of v with
rank > r) if rank(v) > r or v ¢ Vp-Vp.

In the inner loop we add to Q exactly the nodes fovp = {v e

V-V | some element of ¥, is reachable by a value path from

v}. For each such v c Vpe-Tp added to Q, RANK(v) is set to

r. Also, for each v ¢ §, if rank(v) > r+1 then RANK(v) is

incremented by 1 for each immediate successor of v of rank

r; if rank(v) = r+1 then all immediate successors of v are

of rank < r so RANK(v) is set to r+1 and v is added to Q.

Thus, (1) and (2) are satisfied entering the loop on the r+1

time.

Now we show that Algorithm 2B may be implemented in
linear time. For each node v e V we keep a list (the
reverse adjacency list), giving all predecessors of v. To

process any v ¢ Q' requires time 0(1 + indegree(v)). Since

2-37

each node is added to Q' exactly once, the total time cost

is linear in |V|+|E|. O

This suffices for the construction of y¢; y{(v) for vV ¢

v0, Vo;ﬁo, V1, V1-§1,... may be determined by alternately
applying the definition of rgyg and Theorem 2.4.

Using this method could be inefficient, since Theorem
'é.u could be expensive to apply and the representations of
the values could grow rapidly in size. The first problem is
solved by reducing it to the problems of»P-graph cqmpletion
and decomposition as described in the next section. The
second problem is solved by constructing a specialblabeled
dag; the construction of this dag and the final algorithm

are given in Section 2.7.

2-38

2.6 P-graph Completion and Decomposjtion.

Let GVG = (V, E, L) be a reduced global value graph as
above. This section presents an efficient method for
applying Theorem 2.4 to nodes in Vp_Vp (i.e. nodes of rank
r labeled with input variables). Now to compute ¥, the
minimal element of Tgyg, it suffices to find the
- partitioning of V such that v(v) = w(u) iff v, u are in
the same block of +the partition. To represent such a
partitioning, we distinguish one node of each block of the
partitioning to be the value source of all other nodes of
that block. We require that if v ¢ V- (i.e. v is labeled
with an input variable) then y(v) = L(v) iff v is a value
source. Let V* be the set of valué sources and let VS be a
mapping from nodes in V to their value sources. Hence the
fixed points of VS are the value sources and VS-1[{v*] is a
partitioning of V. Note that, in general, the definition of
"value source" is not uniquely determined, so the definition
of V* and vs depends on our particular choice of value

sources.

We shall find value sources by reducing this problem to
the problems of P-graph completion and decomposition stated

below.

Let G = (Vg, Eg) be any directed graph and let S £ Vg

be a set of vertices of G such that for each vertex v ¢ Vg

there is some vertex u ¢ S from which v is reachable.

2-39

P-Graph Completion Problem. Find
S* =swu {v € vg| there are almost disjoint paths from

distinct elements of S to v not containing any

other element of S}.

This form of the problem is due to Karr[K], who shows
that it is equivalent to the original formulation due to
Shapiro and Saint[SS]. (Actually, this form is slightly
more_ general than Karr's; Karr satisfies our restriction on
S by stipulating that there is a singler ¢ S from which
every v ¢ Vg is reachable.) Karr proves that for each v ¢ Vg
there is one and only one element of S* from which v is
reachable (and his proof extends directly to our slightly
more general problem).

P-Graph Decomposition Problem. Given G and S*, find, for

each v ¢ Vg, the unique u ¢ S* from which v is reachable.

We first show these problems can be solved efficiently.

Shapiro and Saint give an 0(|vg|2) algorithm, while Karr
gives a more complex O(|Vgllog|Vg|+|Eg|) algorithm. Here we
reduce these problems to the computation of a certain
dominator tree, for which there is an almost 1linear time
algorithm as noted in Section 1.2. (This construction was

discovered independently by Tarjan([T6].)

Let h be a new node not in Vg, and let G' be the rooted

directed graph

(Vg v {n}, Eg Y {(h,v)IveS}-{(u,v)luevg, veS}, h).

2-40

Thus G' is derived from G by adding a new root h, linking h
to every node in S, and removing the edges of G which lead
to nodes in S. Let T be the dominator tree of G'.

. Lemma 2.6.1. The members of S* are the sons of h in T.
Proof. IF. Let v e S*. If v e S then h is a predecessdr
of v in G' so h is the father of v in T. If v ¢ S*-S then
by definition of S* there are almost disjoint paths p1, P2
in G from distinct elements of S to v not containing any
other element of.S. Clearly pi and p2 are also paths in G
since they contain no edge entering a member of S. Then
(h,p1) and (h,p2) are paths from h to v in G' which have

only their endpoints in common, so V is a son of h in T.

-QNLI IF. Suppose v is a son of h in T. ‘If h is a
predecessor of v in G' then v ¢ S ¢ S*. Otherwise there are
in G' paths (h,pq) and (h,p2) from h to v which have only
their endpoints in common. - Moreover these paths contain no
element of S except for the first nodes of p4¢, p2, since no
edge of G' enters an element of S except from h. Hence pj,
P2 are almost disjoint paths in G' from distinct members of
S tov hot containing any other element of S, and hence v ¢
st. O
Theorem 2.6.1. For each v ¢ Vg, the unique node in S* from
which v is reachable in.G is-the unique node which is a son
of h and an ancestor of v in T.

Proof. Let w be that ancestor of v which is a son of h in

T. - By Lemma 2.6.1, w ¢ S*, and clearly v is reachable from

2-U41

W in G since it is reachable from w in T. Conversely, if w
¢ S*Y is reachable from v in G then w is a son of h in T by
Lemma 2.6.1, and w must be an ancestor of v since otherwise

v would be reachable from some other member of S*. O

Now we establish the relation of these problems to the
problém of finding V* and VS as stated above. Fix some V*
" and VS by choosing one node of GVG for each value of y on V
consistent ﬁith our definition of value sources. For each
rank r, let Gp = (Vp, Ep), where Vp is the set of all nodes
of a reduced GVG of rank r as defined in Section 2.5 and Ep
is the edge set derived from E by

(1) deleting allledges except value edges between nodes
of rank r,
(2) for those remaining value edges (v,u)'entering u e

V., substituting instead the edge (v,VS(u)),

(3) finally reversing all edges.

Note that any edge of GVG departing from a member of Vr
enters a node of rank r-1. Let Sp be the set of all value
sources of ¥p plus all nodes of rank r labeled with input
variables which have a departing value edge entering a node
of rank greater than r. Note that for each node v of Gn»
there is a node in Sp from which v is reachable in Gr-
Finaliy, let S; be defined from Sy as in the statement of
the P-graph completion problem.

Lemma 2.6.2. The members of S;'are the value sources of

2-42

rank r.

Proof. JIF. Suppose v ¢ St.

Case 1. By definition, all elements of {VS(v) | v ¢ Vp} are
value sources. Hence we need only consider the case where Vv
is a node of rank r labeled with an input variable which has
a depariing value edge (v,z)' entering a node z of rank
greater than r. Since v is of rank r, v must also have a
départing value edge (v,u) leading to a node of rank r. By
Lemma 2.5, ¥(z) # ¥(u), so by the definition of TGvG, ¥(V) =
L(v) and v is a value source.

Case 2. Suppose there are in Gp almost disjoint paths
(x1;x2,.§.,Xj) and (y1,y2,.--,¥k) in Gr from distinct x1, y1
e Sp to v. By construction of Gp, there exist distinct
¥1,¥1 ¢ H(v) such that VS(¥q1) = x1, VS(¥1) = y1, and (x2,%1)
and (y2,71) are value edges, and so P1 =
(V=X§,Xj-1s..-,%X2,X1) and p2 = (V=YK Yke1s+---,¥2,¥1) are
almost disjoint value paths. Now suppose v is not a value
source, Applying The&rem 2.4, there is a value source u
(distinct from v) such that ¥(v) = ¥(u) = L(u). Since pj
and pp are almost disjoint they can not both contain u.
Suppose; without loss of generality, that p1 avoids u. Then.
all maximal value paths from Xy contain wu. Also, by
definition of Sp, X1 = x1 and there is a value edge (v,z)
such that z is not of rank r. Since any maximal value path
from z must contain u, rank(z) = rank(u) implying that u is

not of rank r. But; by hybothesis, all maximal value paths

2-43

from v contain u, so rank(v) = rank(u). This implies that v

is not of rank r, contradicting our assumptions. 0.

By Karr's proof [K] of the uniqueness of the P-graph
decomposition of Gp on Sr, we have
Iheorem 2,6.,2. For all nodes v ¢ V of rank r and labeled

with an input variable, VS(v) is the unique value source

contained on all paths in Gp from elements of Sp to v.

Thus the problem of computing VS reduces to the problem
of decomposing the reduced global value graph by rank and
then constructing domihator trees. The former can be done
in linear time by Algorithm 2B of Section 2.5, the latter in

almost linear time by Tarjan's Algorithm([T4].

2-4y

2.7 Ihe Alegorithm for Symbolic Evaluation.

In this section we pull together the various pieces
developed in Sections 2.3-2.6 to give a unified presentation
of our algorithm for symbolic evaluation. Instead of using
the GVG directly to represent v, as suggested in the
beginning of Section 2.6, we more economically represent
by a dag D* derived from GVG by collapsing nodes into their
value sources; more precisely D* - (y*, E* L*) where

VE - {(VS(v)Iv € V} = the set of value sources,

E* {(VS(V),VS(u))l(v,u)eE and L(v) is a function sign},

L* is the restriction of L to V¥,
Recall from Section 2.2 that rooted dags may be wused to
represent expressions in EXP. |
Lemma 2.7. for each node v e V,
(D*, vS(v)) represents ¢(v).
Egggﬁ; Note that by definition of VS, for each v ¢ V
v(VS(v)) = ¢(v)
for each v ¢ V, so we need only show for v ¢ V¥
(D*, v) represents ¥(v).
We proceed by induction on a topological ordering of D',
from leaves to roots. | _
Basis step. If v is aAleaf of D', then (D%, v) represents
the contant sign L(v)'=_¢(V)¢'vvv
Induction step. Suppose v is in the interior of D* 3and
(D*,u) represents ¥(u) for all Son$ u of v.. Thus v must be

labeled in L with a function sign 6 and have immediate

2-45

successors uq,...,uz in GVG. Then VS(u1),...,VS(uk) are the

sons of v in D¥ and for i = 1,...,k by the induction
nypothesis (D*,VS(ui)) represents ¥(VS(ui))

= ¥(uil-
Thus (D*,v) represents (® ¥(ut)...¥(uk))

= v(v) by definition of TIGVG-

Our algorithm for symbolic evaluation is given below.
As in‘ Section 2.6, we compute y and VS in the order of thg
rank of nodes in V. The array COLOR is wused to discover
nodes with the same y.
Algorithm 2C.
INBQI GVG = (v, E, L)
QUTPUT VS and D* = (v*,g¥*,L%).
begin
initialize:
declare VS,COLOR := arrays of length |VI];

procedure COLLAPSE(S,u):
for all v ¢ S do

VS(v) := u;
if uf v then
begin
for each edge (w,v) entering v do
substitute (w,u);
for each edge (v,w) departing from v do
substitute (u,w);
delete v from the edge set;
end;
end;

2-46

Compute new labeling L' of V by Algorithm 2A
and reduce GVG as described in Section 2.3;

Compute rank of nodes in V by Algorithm 2B
of Section 2.4;

for r := 0 to MAX{rank(v) | v ¢ V} do

begin
Let Vp, Vp be the nodes in Vv, V¥ of rank r;
for all v ¢
r =0 Lngg OLOR(v) := L'(v)

if
eglse COLOR(v) := <L(v),uq,...,ux> where
ui,...,uk are the current immediate
successors of v; _
radix sort nodes in ¥p by their COLOR;
for each maximal set S ¢ Vp containing nodes
with the same COLOR do
begin
choose some u ¢ S;
~comment u is made a value source;
COLLAPSE(S,u);
end; -
Let h be some node not in Vp:;
Er := Sp := the empty set {};
for all v ¢ ¥ do add Vs(v) to Spi

for all v e Vr-Vr do
for each node u which is currently an

immediate successor of v do
if u is of rank r then
add (u,v) to Ep;
else add u to Sp;
Let Tr be the dominator tree of Gp =
(Vp v {h}, Ep v {(h,V)lV € Sr'}y h ’
for all sons u of h in Tp-do
begin
comment By Theorem 2.6.1 and Lemma 2.6.2,
u is a value source;
COLLAPSE({the descendants of u in Tp},u);
delete all edges departing from u;

_:_rLQ;

end
Let V‘, E* be the node set and edge list derived from V, E
by the above collapses,
for all v e V* go L¥(v) := L'(v);
end.

LAL_.

2-u7

Iheorem 2.7. Algorithm 2C is correct and can be implemented
in almost linear time.

Proof. The correctness of Algorithm 2C follows directly
from Theorems 2.6.1, 2.6.2 and Lemmas 2.6.2, 2.7.

In addition, we must show that Algorithm 2C can be
implemented in almost linear time. The storage cost of GVG
is linear in |V|+|E[. The initialization of Algoritﬁm 2C

‘costs time 1linear in [N| + |A]. Algorithms 2A and 2B cost
linear time by Theorems 2.3 and 2.5, respectively. The time
cost of the r'th execution of the main loop, exclusive of
the computation of Tp, is linear in Vel + |Ep|l, plus the
sum of the outdegree of all v ¢ Vp-Vp. (Here we assume that
elements in the range of L' are representable in a fixed
number of “ machine words and that the number of
argument-places of function signs is bounded by a fixed
constant, so a radix sort can be used to partition Y+ by
COLOR.) The computation of the dominator tree Tr requires by
(T4] time cost almost 1linear in |Vpl + |Epl. Thus, the

total time cost is almost linear in |V| + |E|]. O

This completes the presentation of our algorithm. The
next . section explains how with the aid of the preprocessing
stage of Chapter 4 costing '0((|A|+g)a(|A|+;)) bit vector
operations, we may construct a global value graph GVG+ of
size O(d|A|{+2) where d 1is often of worder 1 for

block-strucfured programs but may grow to |rj. (Thus this

2-u8

preprocessing stage offers no theoretical advantage but in
practice often leads to a glbal value graph of size linear
in the program and flow graph.) GVG*+ has the property that
the minimal element of TGVG* is the minimal fixed point of
the functional y defined in Section 2.1. In contrast to
Kildall's iterative ﬁethod, which for a large class of
programs has storage cost 8(t|N|) and time cost a(e|N|2),
our direct method has storage cosi linear in the size of
GVG+ and time cost almost linear in the size of GVG*.
Although either method may be improved somewhat through thé
use of domain-specific identities, as shown in Section 1.4,

there is in general no algorithm for computing an_Optimal

symbolic evaluation.

In Chapter 3 these methods are extended to programs
which operate on structured data in a language such as

PASCAL or LISP 1.0.

2-49

2.8mmm$mamwﬁmum
for Symbolic Evaluation

The primary goal of this Chapter was to construct the
minimal fixed point ¥* of the functional Y. Actually, Y was
defined relative to a program P' derived from the original
program P by adding dummy assignments of the form X := X at
every block where some program variable X ¢ 1 is not
assigned (recall that is the set of global program
variables occurring in P). This does not change the
semantics of the program but requires the addition of
o(|z||N|) text expressions whose covers we are not actually
concerned with; in practice we need the covers given by ¥

only over the domain of the original text expressions of P.

The methods of Sections 2.3-2.7 allow us to construct,
for any global value graph GVG, the unique minimal element
of TI'gyg in space linear in the size of GVG and time almost
linear -in the size of GVG. Section 2.2 defines a global
value graph GVG* of size o(lz|]Al+2%) and with the property
that v* is the minimal element of Tgyg®. Now we shall
define a global value graph GVG* of size often considerably
less but with the property that a restriction of v* is the

minimal element of TGVG*-

A path is m_gxgiglng if the path does not contain node

m. Consider blocks m, n in the control flow graph such that

m dominates n. A program variable X e £ is definition-free

2-50

betyeen m and @, if (1) m=nor (2) m* nand X is not
assigned to on any m-avoiding control path from an immediate
successor of m to an immediate predecessor of n {otherwise X
is defined between m and n). Let W be a function from text
expressions which are input variables to blocks of the
control flow graph; for each input variable X*n which is an
text expression, W(X*D) = m, where m is the first block on
the dominator chain of the control flow graph from the start
block s to n such that X is definition-free between m and n.
An algorithm in Chapter 4 computes W in a number of bit

vector steps almost linear in INj+2.

It will be convenient to assume that for each text
expression which is an input variable X*n such that w(x*n)
n, X is assigned to at each block m immediately preceding n.
We must add O(d|{N|) dummy assignments to accomplish this; d
is often constant for block structured programs but may grow
to |zi. Let VE be the set of pairs of text expressions
(t,t') such that
(1) t is an input variable X*D
(2) t' is an output expression Xm-+
(3) either (a) W(X*?) = n and m is an jmmediate predecessor

of n in F, or (b) W(X*0) =m M n.

Note that VE contains O(dlAl+t) edges. Let GVG+ be the
global 'value graph with value edges VE. The nodes in GVG*

will be identified with the text expression which they

2-51

represent. Let d = |VE|/|A] and observe that d ¢ j£| . Then
GVG+ is of size O(|VE[+1) = O(d|A|+2).

Let ¢+ be the minimal element of rgyg+ and let ¥ be
the minimal fixed point of v.
Ibeorem 2.8. v+ = ¥*, where ¥* is the restriction of ¥* to
the domain of ¢+,
Proof Suppose ¥* ¢ rgyg+, so there must be an input variable
X*0 such that ¥*(X*P) £ X*D and v*(X*N)£¢(t) for some value
edge (X*N t) ¢ VE. Then n' = W(X*N) M n and furthermore, n'
H birthpoint(y(X*n)), Let ¥ be the mapping from text
expressions to EXP such that for each text expression ¢t,
v(t) 1is derived from (t) by substituting XB'* for each
input variable X*® guych that W(X*™) = n°'. Thus ¥ is an
element of I'GVG+, a contradiction with the assumption that

v* 1s the minimal element of TGVG+.

Let ¥+ be the eXtension.of v+ to the domain of ¢
defined thus: for each input variable X*D not in the domain
of ¥+, let ¥+(X’N) = ¥+(XU?) where m = W(X’N). We claim ¥+
€ Tgyg+. Suppoée ¥+ ¢ Igyg+, SO0 there is an input variable
X’ such that ¥+(X*D) # X*D and ¥+(X*N) # ¥+(x0*) for some m
immediately preceeding n. in the control flow graph F.
Henée, V+(X*n) = v+(x'*) where n' = W(X*n) 1 n. But X is
definition-free between n' and n, hence (x*m x*n') is the
unique value edge in VE departing from X*m. Let ¢ be the

mapping from text expressions to EXP such that for each text

2-52

xpression t, ¥(t) is the reduced expression derived from
+(t) 'by substituting X0'® for each input variable X*D such
hat W(X*®) = n'. Then ¢ € Tgyg+, implying that ¥+ is not

he minimal element of TIgyg+, a contradiction. [

2-53

2.9 Further Applications of Global Value Graphs:
Live-Dead Apalvsis

A concept related to the value edges of VE defined in
Section 2.8 1is due to Schwartz{Sw2]: a pair of text
expressions (t,t") is a use-definition link if t is an input
variable X*n, t* is an output variable X®*, and X is not
defined on some (rather than all) m-avoiding control path
from an immediate successor of m to an immediate predecessor
of n. Unfortunately there may be 2(t2) uyse-definition pairé

whereas there are at most 0(|z||A]+%) value edges in VE.

A method for live-dead analysis has been described by
Schwartz[ScZ]; his method uses use-definition 1links and
would requibe a(12) operations even if implemented wusing
efficient depth first search techniques. The global value
graph GVG* with value edges VE may be also applied to
live-dead analysis thus: We distinguish a set V ¢ V which
are text expressions corresponding to yital computations
(for example all text expressions appearing in print
statements). Then text expression t is live if t is
involved in the computation of EXEC(t',p) for some vital
text expression t' ¢ V and control path p from s to the
block where t is located (otherwise t is dead). Deleting
all dead text expressions would thus not interfebe with the
vital computations of the program. It follows that text

expression t is live iff some element of V is reachable from

2-54

L. Live text expressions may thus be discovered in time
linear in the size of GVG+ by a reverse depth first search
backwards from elements of V. All text expressions not

reached are dead, and may be deleted.

CHAPTER 3

SYMBOLIC ANALYSIS OF PROGRAMS WITH STRUCTURED DATA
3.0 SQummary

We discuss the symbolic analysis of a class of programs
such as those of LISP 1.0, which have a fixed interpretation
for various operations on structured data including:
operations for construction of structured objects (such as
cons in LISP) and the selection of subcomponents (such as
car and c¢dr in LISP), but no ndestructive" operations (such
as replaca or replacd in LISP 1.5). We continue to use the
global flow model of Chapter 1, 1in which assignment
statements are the only variety of statements and the

program floﬁ graph represents the flow of control.

A central problem here is the propagation of
selectjons: the determination of the set SP of ordered pairs‘
of selection operations and the objects which they may
reference. The elements of SP are called selection pairs.
We show that this propagation problem is at least as hard as
transitive closure of a binary relation and we give an
efficient algorithm, using bit vector operations, for
computing SP. Schwartz[Sc2] requires the set SP for his
method for the automatic cohstruction of recursive type
declarations, though he gave no explicit algorithm for

propagating selections.

3-2

We consider further applications of propagation of
selections including: the determination of selection
operations that, when executed, always result in an error
(i.e;, they attempt to access non-existant subcomponents),
the propagation of constanté, and more generally the
determination of covers (symbolic representations of values
of text holding for all executions of the program). The
methods of Chaptef 2 for the determination of covers are
improved so as to take into account reductions due to the

selection of subcomponents of structured objects.

We apply these improved methods also to the
ponstruction of type covers which are representations of
types (rather than values) of text expressions and hold for
all executions of the program. Type covers are useful for
the discovery of construction obehations which are redundant
in the sense that they have -values of the same type as
values previously computed but are now dead (no longer

referenced) .

Finally, we discuss Schwartz's method of recursive type

determination.

3-3

3.1 Introduction

This Chapter is concerned with the analysis of programs
which manipulate structured data; for example:
the 1lists of LISP
the strings of SNOWBALL

and the arrays in FORTRAN, ALGOL, and PL/1.

Though -we allow general operations for construction of
structured objects and selection of subcomponents, our

analysis is restricted to programs with no destructive

operations: they must not modify subcomponents (i.e.,
install new sublists, insert or delete new characters of
strings, or modify elements of arrays). Hence our methods
are only applicable to a restricted subclass of the above
programming languages with 1list, string, and array data
sfructures. We believe our methods can be extended (with a
certain increase 1in time and épace cost) to programs which
allow modification of subcomponents. (At any rate, there
exist certain simple programing languages, such as LISP 1.0,

which do not allow modification of subcomponents.)

As in the preceding Chapter, we discuss the analysis of

a program P relative to a global flow model in which the

flow of control is represented by the control flow graph F =

(N, A, s) where the nodes of N correspond to contiguous
sequences of assignment statements called blocks, the edges

in A specify possible flow of control between blocks in N,

3-4

and all control flow begins at the start block s ¢ N.

Lei r = {X,Y,Z2,...} be the non-local program variables
of P. For each X ¢ I and block n ¢ N-{s}, we introduce the
input variable X*N denoting the value of X on input to block
n. Also, for each X e £, X*S is a distinct constant sign
denoting the value of X on input to the program P at the
start block s. As in Chapter 1, we require a first order
1énguage without predicates to represent computations of P
and their covers. Let EXP be the set of expressions built
from input variables, and fixed sets of constant signs C and
k-adic function signs e; here @ is partitioned into the
sets: | |
(1) op, a set of operator signs used for | elementary
operations on atomic values,

(2) CONS, a set of constructor signs wused to build wup
structured values,
(3) SEL, a set of 1-adic selector signs wused to select

subcomponents of structured values.

A function application is an expression of the form
@ = (8 af,...,0k)y
whefe o is a k-adic function sign in © and aq,..,ak ¢ EXP.
o is an elementary operation if e is an operator sign op ¢
OP, o« is a gonstruction operation if ¢ is a constructor sign
cons ¢ CONS, and o is a selection operation if k = 1 and ¢

is a selector sign sel ¢ SEL. For each k-adic constructor

3-5

sign cons ¢ CONS and i, 1 < i £ k, there exists an unique

selector sign sel ¢ SEL called the jth selector of cons.

As described in the examples below, in LISP there is a
simple constructor (gons), two selectors (car and c¢cdr), and
elementary operations depending on the particular version of
the 1language (none in _LISP 1.0, arithmetic and logical

operations in LISP 1.5).

SELECT(sel,a) gives the result of selection by 2
selector sign sel ¢ SEL on expression g4 ¢ EXP:
(1) if o is a construction operation

(cons @1 ... ak)

whebé sel is the ith selector of constructor sign cons, then
SELECT(sel,c) = aj.
(2) If o is a construction 6peration for which sel is pot a
selector, 6r e 1is a constant:sign, or ¢ is an elementary
operation then SELECT(sel,a) = error, where error is a
distinguished constant sign in C denoting an error
condition.
(3) In all other cases (e.g., where a is itseif a selection

or an input variable) SELECT(sel,q) is left undefined.

For example, in LISP,

SELECT(cdr, (cons aq a2)) = ap.

We assume an ipterpretation (U, I) such that
(1) U is an upjverse of values consisting of

3-6

(a) ATOM, a set of atomic values (atoms), and

(b) structured values constructed by prefixing k-adiec
constructor signs in CONS to k-tuples in the
universe U.

(2) I is a homomorphic mapping from EXP to U such that
(a) For each constant sign ¢ ¢ C, I(c) ¢ ATOM. We

.assume the constant signs in C are in one-to-one

correspondence to atoms in ATOM. The distinguished

constant sign error is also an atom and is freely
interpreted: I(errqor) = error.
(b) For each k-adic function sign e ¢ e, I(e) is a

partial mapping from UK to U.

(i) Each k-adic operator sign op ¢ OP is interpreted
as a mapping I(op) from k-tuples of atoms into
individual atoms (note that such mappings may
not take structured objects as arguments). |

(ii) k-adic constructor signs cons ¢ CONS are freely
interpreted:

I(cons)(z4,...,2x) = (cons z9,...,2zk)
for all z1y...,2x € U.

(iii) Each selector sign sel ¢ SEL is interpreted to
map from éxpressions in the universe U to their
corresponding subexpressions, or where this is
not possible, to error. More formally, for each
¢ ¢ EXP such that SELECT(sel,a) is defined:

I(sel)(I(a)) = I(SELECT(sel,a)).

Example 3A (LISP 1.0)
ATOM = {the empty list nil}l
OP = the empty set {}
CONS = {the list constructor g¢ons}
SEL = {car, the first selector of cons}

u {cdr, the second selector of cons}
Example 3B
(similar to LISP 1.5 but without replaca and replacd)
ATOM = {the empty list nil}

v {the integers}

v {the boolean truth values gruth and falsel
OP = {and, or, plus, minus, mult, and div}
and apd or are interpreted as 1logical conjuncton and
disjunction; the other operator signs in OP are interpreted
as the usual arithmetic operations. CONS, SEL are as in
Example 3A. |
Example 3C (Vectors of fixed length)
ATOM = {a1,a2s---}
SEL = {the positive integers}
CONS = {vector?,vector2,...}
where vectorK is a k-adic constructor sign and the.integer i
is the ith selector of yectork for each 1 < 1 < k. Note
that the number of function places of each yectork is fixed;
" so it is not possible to construct variable 1ength
sequences; However we can easily extend the model to allow

function signs with a variable number of arguments.

3-8

In Chapter 1 we defined a gconstant reductjon on an

expression in EXP to be the repeated substitution of
constant signs for constant subexpressions (relative to a
fixed interpretation); that is if o« ¢ EXP contains a
elementary operation

a' = (op ¢1 ... ck)
~ where op € OP and c1t,...,ck ¢ C and there exists a constant
sign ¢ ¢ C such that

I(e) = I(op)(I(e1),...,I(ck))>

then we substitute ¢ in the place of a'.

In additioh, we define selection reductions to be the
result of substituting SELECT(sel,a'), where it is defined,

for each selection operation (sel a').

An expression is reduced by repeated constant and

selection reductions.

For each program variable X ¢ r defined (i.e., assigned
to) at block n ¢ N, the output variable Xn* is a reduced
expression in EXP for the value of X on exit from block n in
terms of the constants and input variables at n. For
example, YB* =z (cons (car X*M) Y*N) in the program of Figure

3.1.

The text expressions of P are the output variables and
their subexpressions. We assume the text expressions are

reduced expressions. For each reduced expression‘ a ¢ EXP

3-9

and control path p, EXEC(e,p) is intuitively a reduced
expression in EXP for the value of a relative to p. For a

more precise definition, see Section 1.3.

X:=(cons ZX)
Z:=(plus Z21)

~ Y:=(cons (car X) Y)
~X:=(cdr X)

Figure 3.1.

Reversal of a list in LISP.

3.2 Propagation of Selections

Our immediate goal 1is to determine all "sgelection
pairs® Loosely speaking, these are péirs (w,u)} where w is a
selection operation (sel t) and u is a text expression whose
value, relative to some execution of the program, may be
obtained from the value of t by the use of the selector sign
sel. More precisely, for text expressions t and t', let t'
be accessible from t if EXEC(t,p) = t' for some control path
p from loc(t') to loe(t). Note that selection sequences are
generalizatlons of the value paths of Chapter 2. A
selection pair is an ordered pair of text expressions (w,u)
consisting of a selection w = (sel t) and u =
SELECT(sel,t'), where SELECT(sel,t') is defined for some
teit expression t' accessible from t. We assume that the
constant sign error is a text expreSsion‘located.at the
start block, so t has a departing selection pair (t,error)
if EXEC(t,p) = error for some control path p from s to
loe(t). we also assume there are no selections at the start
" block s, so each selection in the text has at least one

debarting selection pair.

Figure 3.2-

(yn*,1) and (yn*

,2) are selection pairs.

3-13

Selection propagation is the task of discovering all
selection pairs.
Inggggm 3,2.1 Selection propagation in the interpretation of
Example 3A (LISP 1.0) is at least as hard as computing the
transitive closure of a binary relation.
Proof Let R be a binary relation on {n1,...,nr} and let R* =
{(niq,niy) l(ni1,n12),...,(nik_1,n1k) ¢ R, k 2 1} be the
reflexive transitive closure of R. Consider the control
'flow'graph FR = (N, A, 8) of Figuré 3.2 where
N = {s=ng,nt,...,n3r!}
ahd the edge set A consists of
(1) R and
(2) for i=1,...,r edges (ng,nps+i), (npsi,nils
and (ni,n2r+i)-
Let the text of ng be empty.
For i = 1,...,r
(1) the text of ni is-empty
(2) the text of nr+i is X := (cons nil X).

(3) the text of n2psi is the selection
X := (edr X). '

It follows that (nj,nj) ¢ R*
iff there is a value path from X’N2rs+j to XPr+i”

iff (Xn2r+j*,X*Nr+i) is a selection pair. O

Y

3-14

X:=(cons nil X)
r+l

WO w0 O

X:= e

Figure 3.3. The control flow graph FR-

As in Chapter 2, we use a ggg D(n) (an acyelic,
oriented digraph) to represent computations local to a
linear block of code n ¢ N. Each node of D(n) represents an
unique text expression located at block n. A global value
graph GVG = (V, E, L) is a possibly cyclic, oriented.digraph
consisting of |
(1) the dags of all the blocks in N, and
(2) a set of edges, called value edges of GVG, departing
from nodes labeled with input variables. For each node v ¢
'V labeled with an input variable and control path p from the
start block s to loc(v), there is a value edge (v,u) such
that loc(u) is distinct from loc(v) and is contained in p.
(the labeling L is consistent with that of the dags.)

A yalue pg&h of GVG is a path transversing only nodés linked

by value edges.

In Section 2.1 we defined a special global value graph
GVG* = (v, E, L) with value edges defined so as to properly
represent the flow of values of program variables between
blocks of code; that is (1) the nodes in GVG* are identified
Qith the text expressions which they represent and (2)
(t,t') is a value edge of GVG* iff t is an input variable
X*D and t' is the output variable Xm+ for some (m,n) ¢ A.
This definition ‘requires that the text expressions include
all the input variables; forleach input variable X?n ot
originally a iext expression at block n ¢ N-{s}, add a

"dummy" assignment of the form

X := X.
Let V be the set of the resulting new text expressions

corresponding to these dummy assignments.

An access sequence is a sequence of text expressions
(t1,...,tk) such that for 1 < i < k, each (ti,ti+1) is
either a value edge of GVG* or a selection pair.

Theorem 3,2.2 For all t,t' ¢ V, there is an access seqﬁence
from t to t' iff t' is accessible from t.
Proof Suppose there exists an access sequence
(t=tq,...,tk=t'). Then for i = 1,...,k-1 whether (ti,tis+1)
is a value edge or a selection pair, there is always a
control path pj from loc(tijs1) to loc(ty) such that

ti+1 = EXEC(ti,pi).
Hence t' = EXEC(t,px_1°pk.2°...°p1) so t' is accessible from
t.

On the other hand, suppose there is a control path p of
minimal 1length such that there exists text expressions t,t’
such thatlp begins at ioc(t') and ends at loc(t) and

t' = EXEC(t,p) |
but there is no access sequence from t to t'. If t is an
input variable, t has a departing value edge (t,T) such that
loc(T) is distinct from loc(t) and loc(T) is contained in p.
If t 1is a sélectioﬁ, then there is a departing selection
pair (t,T) where loc(Tt) is contained in p. In either case

if p = py°po where po is a subsequence of p from loc(T) to

loc(t), then by the induction hypothesis

t' = EXEC(T,p1)
so t' is accessible from T and by the induction hypothesis
there is an access sequence q from T to t'. Hence, (t,t)eq

is an access sequence from t to t', a contradiction. [

3-18

We now present an efficient algorithm for the discovery
of all selection pairs.
‘ —_—

INPUT GvG* = (V, E, L) and 7V, the set of added text
expressions corresponding to dummy assignments.

QHIEQI SP, the set of selection pairs of P.

begin
declare for each t ¢ V

VPt ,ASt,KSt := sets of maximum size |V]| each
represented as bit vectors of length | V|
(3]V| sets, initially all empty);

brocedure PROPAGATE(t,t'):
begin

add t' to ASt;
add t to 'K'Stv;
add (t,t') to Q;
~ end;
Q := the empty set {};
Let VE be the edges in E departing from nodes labeled
with input variables;
Compute the transitive closure VE* of VE;
vE* is represented by a family of sets {VPt|t ¢ V}
where for t,t' ¢ V, t' ¢ VPt iff there exists
a value path in GVG* from t to t';
for all t ¢ V do
for all t' e yP¢ do
if t,t' ¢ V-V thep LO: PROPAGATE(t,t');
untill Q = the empty set {} do

begin
L1: Choose some (t,t') ¢ Q and delete it from Q;

for every selection w ¢ V where w = (sel t) do
if u = SELECT(sel,t') is defined do

add (w,u) to SP;
L2: PROPAGATE(t,u);

for §§%’u ¢ ASt1-ASt do L3: PROPAGATE(t,u):
for all w ¢ KSy-ESg¢+ do LA: PROPAGATE(w.t'};
end;
returnp SP;
end;

3-19

We require two Lemmas to demonstrate the correctness of
Algorithm 3A. |
Lgmma 3.2.1 On every execution of Algorithm 3A we have for
all t,t' ¢ v-¥ at label LO: v

(i) t € AStr iff t' e ESt
(ii) if (t,t') ¢ Q then t ¢ ASt!

(iii) if t ¢ ASt' then there exists an access
sequence from £t to t'.

Egggi by induction on the number of executions of the main
loop of Algorithm 3A.

Basis step Initially, Q = the set of all pairs (t,t') such
thét t,t' ¢ V-V and there exists a value path from t to t',
(i),(ii) hold by the calls to PROPAGATE(t,t') at LO, and
since any valueApath is also an access sequence, (iii) also
initially holds.

Inductive step Suppose (i),(ii), and (iii) have held over
previous executions of the main loop of Algorithm 3A, and
consider some (t,t') deleted from Q at L1. By (ii) and
(iii), there is an access sequence from t to t'. Observe
that if there is an access sequence from text expression y
to some text expression z, then after any call to
PROPAGATE(y,z), (i),(ii), and (iii) still hold, and for our
purposes that call is considered gorrect.

Case 1 If w is the selection (sel t) and u = SELECT(sel,t')
is defined, then (w,u) is a selection pair, which is also an
access‘sequence. Thﬁs, the call to PROPAGATE(w,u) at L2 is

correct.

3-20

Case 2 If u € ASt'-ASt, then (ii) implies that there 1is an
access sequence from t' to u, and hence there is an access
sequence from t towu. Thus, the call to PROPAGATE(t,u) at
"L3 is correct.

Case 3 If w € ASt-ASyr+ then (iii) implies that t ¢ ASy 2and
(iii) implies that there is an access sequence from t to w.
Hence, there is an access sequence from w to t' and the call
to PROPAGATE(w,t') at LY is correct. [

Lenma 3;2¢2 For all t,t' ¢ V, if there is an access sequence
p from t to t' then (t,t') is eventually added to Q.

Proof by contradiction. Suppose (t,t') is not eventually
added to Q, and let p be of minimal length. Note that if we
have.a éall to PROPAGATE(t,t') theh (t,t') is added to Q.
Qggg 1 If p'is a value path from t to t' then there must be
a call to PROPAGATE(t,t') at LO.

Case 2 If p is a selection pair then there exist text
expressions“ ysz such that t is 6f the form t (sel y), t' =
SELECT(sel,z), and furthermore there is an access sequence
p' from y to z. Since p' is of 1¢ngth less than p, p' does -
not violate Lemma 3.2.2, so (y,z) is eventually added to Q,
~ and hence there is a call to PROPAGATE(t,t') at L2.

Case 3 Otherwise p = p1°p2 where pq is an access sequence
from t to y and p2 is an access sequence from y to £,

Since p{ and pzlabe of length less than p, Lemma 3.2.2 holds
overr p71 and p2, so both (t,y) and (y,t') are eventually

added to (and later deleted from) Q.

3-21

Case 3a If (t,y) is deleted from Q after (y,t') then

t' © ASy-ASt .
and so there is a call to PROPAGATE(t,t') at L3.
Case 3b If (y,t') is deleted from Q after (t,y) then

t e FSy—KSt' A
and thus there is a call to PROPAGATE(t,t') at L4. [
Theorem 3,2.3 Algorithm 3A correctly computes SP in
0(22+|z||A}) bit vector operations, where 1 = |V-V| 18 the‘
the number of original text expressions before the Y"dummy"
asSignmentéiare added.
Etggf Suppose (t,t') is a selection pair. By Lemma 3.2.2,
(t,t')» is added to Q at the call to PROPAGATE(t,t') at L2,
and hence (t,t') is also bdded to SP at L2.

- Now suppose that (t,t') is added to SP at L2. Then
(t,t') is added to Q in the call to PROPAGATE(t,t') at L2,

and by the proof of Lemma 3.2.1, (t,t') is a selection pair.

New we consider the lower time bounds of Algorithm 3A.
The computation of VP by -[T1] costs O(|V|+]E]) = 0(s+|z]]|A])
bit vector steps. Also, the processing associated with each
(t,t') added and then deleted from Q is a constant numbef of
bit vector operations. There may be 0(:2) such pairs and no
‘such pair vis added to Q more than once. Hence, the total

cost of Algorithm 3A is 0(22+|z||A]) bit vector operations.
g

3-22

3.3 Constant Propagation and Covers of Programs
with Structured Data.

Let P be a program with a fixed.interpretation for the
éonstructor and selector signs as in the Introduction of
this Chapter. Here we wish to determine text expressions
which are constant over all executions of P, and more
genérally we wish to determine covers: symbolic expressions
in EXP for the value of text expressions which hold over all
‘executions of the program. The main difference between the
covers of this section and those of Chapter 2 is that here
we define a reduced expression to be derived from repeated
‘selection reductions of the sort described in Section 3.1,
as well as the usual conéghnt reductions. A reduced
expression o ¢ EXP gcovers text expression t if

EXEC(a,p) = EXEC(t,p)
for all control paths p from the Etart block s to 1loc(t),
the block in N where t |{is llocated. A cover of P is a
mapping v from the text expressions to EXP such that for

each text expression t, v(t) covers t.

3-23

X:=(cons 2X)

Figure 3.4. ¥n* = (cdr X°N) is covered by X*D.

3-21

Recall that the origin of an expression o ¢ EXP 1is
intuitively the earliest point at which o is defined;
formally origin(e) = s if o contains no input variables and
otherwise origin(a) is the earliest block n ¢ N (relative to
the dominator ordering of the control flow graph F with the
start block s first) such that an input variable XD appears
in a (provided that this block is wuniquely determihed).
Also, recall that 3 is the partial ordering of nodes in N by
dominator relative of the control flow graph F = (N, A, 3).
We extend 3 to a partial ordering of covers. For covers v,
V', v 3 ' iff origin(y(t)) 3 origin(v'(t)) for each text
expression ¢t. It follows from the results of SecEion 1.3
that if the program P is interpreted in the integerL/domain
(i,e., ATOM is the set of natural-numberé and the elementary
"operator signs in OP are interpreted as the usual arithmetic
operations: addition, subtrgction, multiplication, and
division) then constant propagation is recursively
unsolvable, and hence the determination of the covers
minimal with respect to 3 is also impossible within the

arithmetic domain.

Good, but not minimal, covers may be computed by an
algorithm due to Kildall[Ki] (his algorithm is actually much
more general; here we consider a specific application).
After computing an approximate cover yg, Kildall's algorithm
iteratively compares the approximate covers of input

variables to the - approximate covers of the output

3-25

expressions'of the corresponding variables at preceding
blocks, and propagates the changes to succeeding blocks. 1In
Chapter 2, we define the covers computed by his algorithm as
fixed points of a functional Y. Here we define a similar
functional ¥'. For any mapping ¢ from text expression to
EXP, let ¥'(y) be the mapping from text expressions to EXP
such that for each text expression t, ¢'(y) is derived from
t by repeatedly |

(1) substituting expression o for every input variable x»n
such that o = (X®*) for all (m,n) ¢ A.

(2) substituting the expreséion o« for any selection u in t
such that o = v(u') for all selection pairs (u,u').

(3) reducing (by both selection and constant reductions) the

resulting expression.

We shall show, as we did for a similar functional ¥ in
Chapter 2, that the fixed points of ¥' are covers and that
there exists a unique, minimal fixed point of ¥'.

Theorem 3,3.1 Each fixed point of ¥' is a cover.
Proof by contradiction. Suppose y is a fixed point of ¥!'
and ¢ 1is not a cover. Let‘p be the shortest control path
from the start block s to a block n ¢ N containing a text
expression t such that
EXEC(y(t),p) # EXEC(t,p).
Furthermore assume for each proper subexpression t' of t,
EXEC(y(t'),p) = EXEC(tf,p).

The case where t is an input variable was shown (in the

3-26

proof of Theorem 2.1) to be an impossible case. Otherwise,
v(t) = y(t') for all selection pairs (t,t'). But there is a
selection pair (t,t') such that

EXEC(t,p2) = V'
for p = pi°p2 where p1 ends and p2 begins at loc(t').

Hence, EXEC(t,p) = EXEC(t',p1)

EXEC(¥(t'),p1) by the induction hypothesis

EXEC(¥(t),p1) since v(t) = v(t!)

EXEC(%(t),p). O

Let GVG = (V,E,L) be an arbitrary global value graph as
defined in Section_3.2. In Section 2.2 we also defined the
set rgyc of mappings from the nodes of GVG to EXP such that

for each y ¢ rgyg and node v ¢.V in GVG,

(1) If v is labeled with a constant sign c then w(v) =

(2) If L(v) is a k-adic function sign ¢ and wuq,...,ugx are
the immediate successors of v in GVG then ¢(v) is the
expression derived by constapt reductions from (e
v(uq)...v(ug)).

(3) If v is labeled with an input variable, then either w(#)
= X0 or ¥(v) = ¢ where o« = ¥(u) for all value edges (v,u) €

E departing from v.

Let r'GVG be a set of mappings v from V to EXP such
that for all v ¢ V, v(v) satisfies cases (1), (2), (3), or
the additional case

(3') L(v) is a selector sign and v(v) = o where a = v(u) for

3-27

all selection pairs (v,u) departing from v.

Note that the set of nodes satisfying cases (3) and

(3') are sufficient to characterize an element of r'cvg; and

hence r'gyg is finite.

Let cvg® = (V, E, L) be the special global value graph
defined in Section 2.2 where each node v ¢ V is identified
with the text expression which it represents (hence, the
node set V is considered to be the set of text expressions)
and the value edges of GVG® represent the flow of values
through the program. Recall that (t,t') is a value edge of
GvG* iff t is an input variable X*M and t' is the output
expression XM for some (m,n) ¢ A. For any text expression t
€ V that is a selection, and ¥ ¢ r'gyg*, if (3') holds for t
then t is simplifed by ¥%. If in addition, ¥(t) # error,
then t is properly simpljfied by v. Selection t is
(properly) simplifiable if t is (properly) simplified by

some element of T'gyg®.

Our proof that selection simplifications actually
improve elements of I'gyg* (Theorem 3.3.2) will allow us to
show that r'gyg* is a semilattice with respect to the.
~partial ordering 3 (Theorem 3.3.3). The unique minimal
element of r'gyg* will then be shown in Theorem 3.3.4 to be
the minimal fixed point of vy'. We require first some

technical Lemmas.

Lemma 3,3.]1 For each t ¢ V which is 'a selection or input

3-28

variable, and every control path from the start block s to

loc(t), there is a maximal access sequence (t=u1,...,uk)
such that loc(ut),...,loc(uk) are distinct blocks in p.

Progof by induction. We consider (t) to be a trivial access
sequence. Suppose we have an access sequénce (t=u1,...,ui)
such that loc(ui),...,loc(ui) are distinct blocks in p. We
further assume that loc(ui) ocecurs in p ~ before
loc(ui),...,loc(uj-1). If ui is neither a selection or
input variable then (t=ui,...,ui) is a maximal access
sequence. Otherwise, let pi be the subsequence of p from s
to the first occurrence of block loc(uj). Then there is a
textvexpreSSion ui+1 such that (1) loc(uj4+t) 1s contained in
pi and distinct from loc(uj) and (2) (ui,uisq) is either a
value edge (in the case uj 1is an input variable) or a
;election pair (if ui 1s a selector sign). Hence
(t=uq,:..,ui,ujis+1) 1is an access sequence and loc(ui+q) 1s
- distinet from 1loc(ui),...,loc(uj). Since p is finite, we

have our result. O

Lemma 3.3.1 will be used to construct maximal access
sequences relative to fixed control paths. The next Lemma
is analogous to Lemma 2.2.2 of Chapter 2.

Lemma 3.3.2 For each ¢ ¢ I'gyg* and t ¢ V, origin(¥(t)) >

loc(t).

Proof by cbntradiction. Suppose for some t ¢ V,
origin(w(t)) ; loc(t).

‘Then there must exist an input variable X*0 in ¥(t) such

3-29

that n ; loe(v), and hence there is an n-avoiding control
path p from the start block s to loc(t). Also, there must
exist an u € V also located at n such that ¥(u) =z X*R. By
Lemma 3.3.1, there is a maximal access sequence
(t=u1,...,uk) such that 1loec(ut),...,loc(uk) are distinect
blocks in p. Let j be the maximal integer £ k such that
¥(u1) = ... = ¥(uj). If L(uj) is an input variable the
¥(uq) = ¥(uj) = X’0, so loc(uk) = n 1is contained on p,
contradicting the assumption that p avoids n. Otherwise, if
L(uj) is a function sign or constant sign, then y(u) = v (uk)

3 X*D, a contradiction with y(u) = x*R. g

The following Lemma shows that certain covers of
simplifiable selection operations have a very special form.
Lepma 3.3.3 For each properly simplifiable selection t ¢ V,
and v € r'gycg*, if t is not simplified by ¥, then ¥(t) is of
the form (selq ... selky " X’D) where sely,...,selx are
éelector signs and XN is an input variable.

Prgof by inductipn on subexpreséions of v(t).

 Basis Step. By assumption t = (sel u) is not simplified by
v, 80 y(t) is of the form (sel ¢(u)). Also, note that since
t is simplified by some element of TI'gyg%, t has no
departing selection pairs entering error.

Induction step. Suppose for some i, 1 < i < k, v(t) is of
the form (selj .o selk «a). Consider any selector
operation t' =z (selj u') such that w(u') = «a. We also

assume in our induction hypothesis that t' has no departing

3-30

selection pairs entering error.

Suppose y(u') = o is not a selection operation or input
variable. |
Case 1. Suppose u' %s an input variable. Let p be a
control path from the start block s to loc(u'). By Lemma
3.3.1 we can construct a maximal access sequence from u' to
some U ¢ V. From this we can show that t!' has‘a departing
selection pair entering error, a contradiction with the
induction hypothesis.
Case 2. Suppose u' is not an input variable. If u' is a
construction operation for which selj is a selection, then
t' is not a reduced expression, which is impossible.
Otherwise, if u' is a constant sign or some other sort of
- function application other than a selection, then t' has a
departing selection pair entering error, a contradiction

Wwith the induction hypothesis.

Hence y(u') is either a selection or input variable.
To complete our induction proof, for any selection T such
that ¥(T) = a, if T has a departing selection pair entering

error, then so does t', a contradiction. [

Now we show that simplification of selection operations
always improves an element of r'gvc*.
‘Theorem 3.3.2 For v, v' e T'gvg* and selection operation t €
V, if t is pot simplified by ¥ and t is properly simplified
by %' then origin(%'(t)) 3 origin(w(t)).

3-31

Proof. For any N' < N, let LCA(N') be the latest
(furtherest from the start block s) common ancestor of the

nodes in N' relative to the dominator tree of the control

flow graph F. By Lemma 3.3.2, ¥(t) is of the form (selil

selk x*n). We proceed by induction on subexpressions of

v(t).

Suppose for some i, 1 < i £ k, if i < k, for every

selection T ¢ V such that w(E) = (seljsq...selgx X°1) then

. +
LCA{W | (T,W) is a selection pair departing from T} * n.

Consider any selection t' ¢ V such that y(t') = (selj...selk

X+*N). Let u' be the immediate subexpression of t', so
origin(y(t')) = origin(y(u")). Then there exists a
(possibly trivial) maxiﬁal access sequence from u' to some T
such that y(u') = (). By the induction hypothesis, LCA{W
| (t,%) is a selection pair departing from T} 3 hn. We can
then show that origin(v'(t)) 3 LCA{w'](t',w') is a selection

+
pair departing from t'} =+ n.

Since t is simplified by ¥', ¢'(t) = o where v'(t') = a
for all selector pairs (t,t'). Hence,

origin(v'(t)) = origin(a)

+ %

: +
LCcA{w | (t,w) is a selection pair} -+ n.

3 n = origin(y(t)). O

In,Seétion 2.2 we defined a partial function min from
EXP2 to EXP; we extend min to a partial mapping from

(r'gyg*)2 to r'gyg* so that for each v,¢' ¢ TI'gvG*, if w(t)

3-32

= ¥(t) min v'(t) is defined for each text expression t, then
v min v' = ¥, and otherwise v min ' is undefined.

Iheorem 3,3.3 r'gyg* forms a finite semilattice with respect
to :.

Proof. 1t is sufficient to show that mjin is well defined
over TI'Gyg*. Suppose for ¥', ¥ e r'gyg*, v min ¢' is
defined, so there is a text expression t such that y(t) min
v'(t) is undefined but v(u) minp v'(ﬁ) is defined for all u
which are proper subexpressions of t' such that (t)- =
v(t'). Thus t is either a selection operation or an input
variable. Consider any control path p from the start block
8 to loe(t). By Lemma 3.3.1, we can construct a maximal
access sequence (t=uq,...,uy) such that loe(uq),...,loc(uk)
are unique blocks of p. Let J be the maximal integer Lk
such that ¥(uq) = ... = ¥(uj). By the proof of Theorem
2.2.1 of Section 2.2, we need only consider the case wheré
tj is a selection operation (sel u). Since J is maximal, tj
is not simplified by v and v(tj) = (sel w(u)). If tj is
also not simplified by ¥' then v'(tj) = (sel y'(u)) and by
the 1induction hypothesis o = v(u) min ¢'(u) is defined, so
v(tj) min v'(ty) = (sel a). Otherwise, suppose tj is
simplified by v'. .If v'(tj) = error then v(t3j) min v'(tj) =
grror. If t is properly simplified by ¢' then by Theorem
3.3.2,_0rigin(t'(tj)) 3 origin(v(tj)), so v(tj) min t'(tj) =
¥ (t3). O | | |
Ihggﬁgm 3.3.4 ¥' has a unique, minimal fixed point v* which

3-33

is the minimal element of r'gyg®.

Proof Clearly, any fixed point of ¥' is an element of
T'Gvg*. By Theorem 3.3.3, TI'gyg*® has a unique minimal
element ¥* - min T'gve*. Let ¥% = wvr(y*). In proof of
Theorem 2.2.1, we showed:that V'(X*n) =z X*n for each input
variable X*N such that v¥(X*N) = x*n. Now suppose there is
a selection t € V such that ¥*(t) = o where a = ¥*(t') for
all selection pairs (t,t'), but ¥*(t) # a. Let ¢ be the
mapping from text expressions to EXP such that for each text
expression u, ¥(u) is derived from ¥*(u) by substituting
for each occurrence of ¥(t) in ¥*(u), and reducing the
resulting expression. Hence ¥ ¢ r'gyg* but by Theorem 3.3.2
origin(y(t)) 3 origin(v¥(t)), a contradiction with the

assumption that w' is the minimal element of r'gyg*- O

In the next section we describe a method for actually

constructihg v*, the minimal eleﬁent of r'gyg®*.

3-34

3.4 The Computation of ¥, the minimal fixed point of ¥'

Now we describe a method for actually constructing ¥,
the minimal fixed point of ¥' which was shown in Theorem
3.3.4 to be the minimal element of r'GVGk. There are two
main steps. We first reduce constant propagation with
selection and constant reductions to constant propagation
with only constant Eeductions; the latter problem is solved
efficiently by the methods of Chapter 2. We then find v¥ by
cohstructing, by the methods of Chapter 2, the minimal

element of rgygy, rgygy, ... TGVGg where GVGo, GVG1, ...,

GVGR is a sequence of global value graphs derived from GVG¥.

Associate with each text expression t which is a

selection (sel u), a new , distinct program variable SVt

called the gselection 1§gi§hl§'gﬁ 1. The corresponding input
variable svzloc(t) will be wunambiguously represented by

dropping its superscript. The selection variable Svty 1is
installed in place of t in GVG* by relabeling t with the
selection variable SV¢, deleting the edge (t,u) originally
departing from t and adding the selection pairs departing
from t to the edge set. Conversely, the selection variable

SVt is replaced by t by reversing this process.

Let GVG be a 1labeled digraph derived from GVG* by
replacing apy number of selections with their corresponding
selection variables. Note that by definition of selection

pairs, for any seléction't relabeled in GVG with selection

3-35

variable SVt, if p is a control path from the start block s
to loc(t) then t has a departing selection pair (t,u), which
is also a value edge of GVG, such that 1loc(u) is distinct
from loc(t) and contained in p. Hence, GVG is a global
value graph.' Also, note that since the node set of GVG 1is
V, the node set of GVG¥, we continue to identify the nodes
in V with text expressions. However selections in V may now
be 1labeled in GVG with selection variables rather than
selector signs. By Theorem 2.2.1, Tgyg has a unique,
minimal element y. Chapter 2 gives an efficient method for

the construction of ¢. Let us review these results.

GVG is reduced if ¢(t) is the label of t in GVG for all
t ¢ V such that y(t) is a constant sign. A reduced global
value graph may be derived from GVG by the simple constant
propagation algorithm presented in Section 2.3. We now

assume GVG is reduced.

Recall that our method proceeds by induction on rank of

text expressions. The rapk of t ¢ V labeled in GVG with a
constant sign in GVG is 0. If t is labeled in GVG with a
function sign ¢, and ut,...,uk are the immediate successors
of t in GVG, then the rank of t in CVG is

1+MAX{rank(ut),...,rank(ug)},
and by definition of Igvg:

v(t) = (8 ¥(uq) cee ¥ (uk)).

Note that the rank induces a topological ordering (from

3-36

leaves to roots) of the dags of blocks from which GVG is
built.

The case in which t is labeled with an input variable
X*nvis more difficult. Recall that a value path in GVG is a
path p traversing only nodes linked by value edges and p is
maxjmal relative to a fixed beginning node if p ends at a
node with no departing value edges. The rank of t is

MIN{rank(w) | w lies at the end of a maximal
value path in GVG from t}.

This t ¢ V is a yalue source relative to v if y(t) = x»n,

We have from Chapter 2
Theorem 2.4. t is a value Source of y iff there exist two
maximal, almost disjoint (containing only one element in
common) value paths in GVG from t to ut,u2 € V such that
V(uq) £ ¥(up). Furthermore, for each t ¢ V labeled with an
input variable X;na either
(1) ¥(t) = ¥(u) for all u contained at the end of maximal
value paths in GVG from t, or
(2) ¥(t) = y(u) where u is the unique value source contained
on-all maximal value paths in GVG from t.
The problem of discovering the value sources of ¢ is reduced
in Section 2.6 to the computation of dominator trees, for

which there is an efficient algorithm due to Tarjan[T4].

The next Theorem reduces constant propagation with

selection and constaht reductions, to constant propagation

3-37

with only constant reductions.

For this we will require two special mappings
M1(GVG): rgvg to Tr'gygH*

M2(GVG); r'Gvg* to rgyg

For any Vv € Tgyg, let M1(GVG)(¥) be the mapping v1 from
V to EXP such that for all t ¢ v, v1(t) is derived from t by
repeatedly
(1) substituting (sel ¥(u)) for each selection w = (sel u)
such that ¥(w) = SVt is the selection variable of t. “
(2) substituting w(u) for each u ¢ V labeled in GVG with an

input variable.

Observe that ¥q € r'gyg®.

Let vo = M2(GVG)(¥) be the mapping from V to EXP such
that for each t ¢ V, |

(1) t' is derived by substituting selection variable SV, for
each nonsimplifiable selection u ¢ V such that u is labeled
in GVG with the selection variable SV,

(2) vo(t) is derived from t' by substituting ¢*(u) for each
u labeled with an input variable in GVG and such that v¥(u')
= ¢(u') for each u' ¢ V such that v*(u') is a proper
subexpression of v¥*(u).

dbserve that v, é rgvg.

Ihggggm 3.4.1 If GVG is derived from GVG® by substituting
selection variables for all selections, and ¥ is the minimal

element of rgyg, then for each t ¢ V, v®(t) is a constant

3-38

sign ¢ iff y(t) = c.

Proof IF. Suppose ¥(t) is a constant sign c, but v®(t) £ c
Let ¥1 = M1(GVG)(¥). Hence ¥1(t) > ¥*(t) and ¥1 ¢ T'ayg*s
contradiction with the assumption that +¥ is the minima
element of T'gyg¥.

ONLY IF. Suppose v¥*(t) is a constant sign ¢, but ¢'(t) £ ¢
Let V2 = M2(GVG)(¥). Then ¥2(t) 3 ¥(t) and v2 ¢ rgye
contradiction with the aSsumption that ¥ 1is the minima

element of rgyg- O

We now define a sequence of global value graphs
GVGp,GVGy, .

derived from GVG. GVGp is the reduced graph derived fro
GVG. For r = 0,1,... let NSS(r) be the set of selection
of rank r which are not simplifiable and let GVGp,i b
derived from GVGr by restoring each t e NSS(r); i.e., if t
(sel u) then the label of t is set to sel, all selectio
pairs departing from t are deleted, replaced by the ohigina
edge (t,u). Let VYp be the minimal element of TGVGp. Let
= MAX{r | GVGp contains a node of rank r}.
Theorem 3.4.2 vg = v*,
Proof Observe that each selection t ¢ V is 1labeled with
selection variable SVy {iff t is not simplifiable. Alsow
have ¥ ¢ FGVGg which impliés that v": VR, and we have ¥R

T'GVG* which implies that VR 3 w’. Hence w* = yr. O

The remaiﬁing problem is ‘ the | determination o]

3-39

simplifiable selections in V.

Iheorem 3.4.3 For all selections t ¢ V of rank r and labeled
in GVGr with a selection variable, t ¢ NSS(r) iff t is a
value source relative to ¥p-. _

Proof IF. Suppose t ¢ NSS(r) but t is not a value source of
Vp, so ¥p(t) = & where a = yp(t') for all selection pairs
(t,t'). Let ¥p = MI(GVGr)(¥p). Then ¥p ¢ rgyg* and t is
simplified by ¥p, so by Theorem 3.3.2, origin(vpr(t)) 3
origin(¥*(t)), a contradiction with the assumption that %
is the minimal element of rgyg*.

ONLY IF. Suppose t is simplified by #*, so there exists an
expression ¢ such that v¥*(t) = v*(t') = o for all selection
pairs (t,t'). Let ¥r = M2(GVGp)(¥p). Then $p(t) = $p(t') =

o for all selection pairs (t,t') and §, ¢ rgygg: If t is a

++

value source of ¥p, then by Theorem 3.3.2, origin(ép)
origin(vp), a contradiction with the assumption that vp is
the minimal element of IGVGpr+ Thus t is not a value source

of vp. U

Let a trivial value path be of the form (t) where t e V

is a node labeled with either a constant or function sign.
Corollary 3.4,1 For each t ¢ V, t is of rank r in GVGgr iff
there is é_ (possibly trivial) maximal value path in GVG,
from t to a node of rank r in GVGr and such that p avoids
all elements of NSS(r). |

Proof Observe that for any t ¢ V labeled in GVGr with a

constant or function sign, t is of rank r in GVGp iff t is

3-40

of rank r in GVGR. Otherwise, suppose t ¢ V is labeled with

an input variable in GVGr-

Suppose t is of rank r in GVGpg. Then there is a
maximal value path p from t to some t' ¢ V such that all
nodes of p are of rank r in GVGpg, Hence, p avoids all
elements of NSS(r), and p is a maximal value path in GVG,,
Since t' is labelédAwith a constant or function sign, t' is

also of rank r in GVGp,

'Suppose, on the other hand, that there is in GVGr 2
maximal value path p from t to some t!' or rank r in GVGp
such that p avoids all elements of NSS(r). It 1is always
possible to. find such a p containing only nodes of rank r in
 GVGp. Hence, p is a maximal value path of GVGp and t is of

“rank r in GVGR. O

3-41

Our algorithm for computing v*, the minimal fixed point

of ¥', is summarized below.

Algorithm 3B.

INPUT GVG*.

QUTPUT v*, the minimal fixed point of ¢'.

ml—. -n .
Discover all selection pairs by Algorithm 3A;
Let TVC be derived from GVG*® by installing a seletion
variables in the place of each selection;
éggly Algorithm 2A to construct GVGg, the reduction of

for r = 0 by 1 to oo do
begin

Apply Algorithm 2B to construct Vp, the set of all text
expressions of rank r in GVG;;

if Vr is empty then return ¢°;

Compute by Algorithm 2C, +¥p, the minimal element of

r .
GVGp? .
Le¥ fss(r) be the set of selection of Vr which are value

sources relative to V¥p; '

comment By Theorem 3.4.3, NSS(r) 1is the set of

nonsimplifiable selections of rank r in GVGp;

for all t ¢ Vp contained on a (possibly trivial) maximal

value path in GVGp avoiding all elements of NSS(r) do
begin

: By Corollary 3.4.1, t is of rank r in GVGR:
v (t) = vp(t); '
end;
Let GVGpr,1 be derived from GVGr by replacing each

selection variable SVt in VSyr with the original
selection t;

end;
‘end;
Let ;5 be the length of the text of program P and recall
that GVG* is of size O(JV|+|E}) = 0(p+|z||A]).
Theorem 3.4.4 Algorithm 3B is correct and costs O(£2+|z||A|)
bit vector and O(e(e+|z]|A|)) elementary operations.

Proof The correctness of Algorithm 3b follows directly from

Theorems 3.4.1-3.“.3.

3-142

By Theorem_3.2.2, the computation of all selector edges
by Algorithm 3A costs 0(22+|z][A]) bit vector operations.
For each r =1,2,... the computation of ¥pr ®may cost
0(2+|z||A|) elementary operations by the results of Chapter
2. Since the maximum r such that Vp is not empty is £ g,
the total time cost of Algorithm 3b is 0(22+|Z|[A]) bit

vector and 0(t(t+|Z||A])) elementary operations. U

Figure 3.95.
Figure 3.4.

The global value graph GVG® for the program

of

3-43

3-45

3.5 Iype Covers and Type Declaratiops.

lypes are expressions used to specify the shape of
structﬁred objects. A type cover of text expression t is a
closed form expression for the type of t which holds on alil
executions of the program P. We show that the methods of
the last section.ﬁay be applied to the construction of type
covers. Type éovers have applications analogous to the
;usual sort of covers used to represent yvalues of text
expressions. For example, if the type cover of teif
‘expression.t is a constant type, then the value of t has a
fixed type over all executions of P. Text expressions which
have the same type cover have values of the same shape on
each fexeCution of P (whereas, text expressions given the
same type declaration may have different values of different
shape over particular executions of P; see the latter part
of this Section). A text éxpression t which is a
construction operation is redundant if (1) every execution
of P from the start block s to loec(t) passes thru a block
containing a text expression t' with type cover common to t
and fur;hermore, (2) the structured object computed by t' is
dead (not referenced) on every execution path following
loc(t) (in other words, the Storage allocated for t' could

be used to storevt).

A type declaration of program P is used to specify, for

each text expréssion t, the set of all types of values that

3-46

t may evaluate to, over all executions of P. A recursiv

Lype ggg;g;g&igg uses recursion to specify infinite sets of
types. 1In the latter part of this Section we discuss
‘methods due to Tennenbaum[Te] and Schwartz[Sc2] for the
automatic construction of type declarations for "type-free"
programs (programs written without explicit type
declarations). The method due to Schwartz is vdirect
(noniterative) and mére powerful than Tennenbaum's iterative
method since it results in recursive type declarations for
text which may have an infinite set of types (whereas, the
method of Tennenbaum results in weaker, non-recursive type

declarations).

We shall observe that the set of all possible types of
a given text expression, over all executions of the program
P, need not be a context-free language although the type
declaration facilities of most brogramming languages are
essentially context-free grammars. Hence, it is not
possible to construct "tight" (exact) type declarations

within most programming languages.

Fix (U,I) as an interpretation of program P as
described in Section 3.1. Recall that the unjverse of
sStructured values U is built from a set of atoms 1in the
fixed set ATOM and k-adic constructor signs in CONS. Also,
recall that EXP is the set of expressions built from input

variables (representing the value of program variables on

3-47

input to blocks in N), constant signs in C, and k-adie
function signs in e (including operator signs in oP,

constructor signs in CONS, and selector signs in SEL).

Let v be a mapping initially of domain ATOM v g into
EXP such that |

(1) For each a ¢ ATOM, t(a) is a symbol denoting the type of
a.
(2) For each program variable X ¢ g, there exists an unique

variable «(X) = TX.

Extend ¢ to a homomorphic mappihg from EXP to EXP

thusly:
(a) for each coﬁstant sign ¢ ¢ C, if ¢ is of the form X*S
(representing the value of program variable X on input to
the start block s)'let t(X*s) = 1(X)*s = Tx*S, Otherwise,
let t(c) = t(I(e)). f
(b) for each input variable x*“,‘r(x*n) = v(X)*0 = Tx*n.
(e) r distributes over function applications thus:

(6 aq ... ep) = (o 1(aq) ... 1t(ak))-
Also, extend r to subsets S of EXP and U:

1(S) = {+(a) | « ¢ S}.

A &ing gover of program P is a mapping ¢y from the text
expressions of P to +{(EXP) such that for each text
expression t 6f P, |

~ EXEG(y(t),p) = ¢(EXEC(t,p))

for all control paths p from the start block s to loc(t).

3-48

For example, consider the control flow graph of Figure
3.7. Let 7(1) = int. Note that ZP* and X@” do not have the

same covers but do have the same type cover (cons int TY*W).

Let P, be the program derived from P by substituting
1(t) for each text expression t. Fix («(U), I,) be the
interpretation of P, where I, is the identity mapping over
r(ATOM), and for each k-adic elementary operation sign op
OP (recall that I(op) is a mapping from ATOMK to ATOM) and
a1,...,ak € ATOM,
L:(op)(x(ay),...,x(ak)) = *(I(op)(aq,...,ax)).

Theorem 3,5.1 ¢ is a cover of Py iff y is a type cover of P.
Proof Consider any text expression t and control path from

the start block s to loc(t). By the fact that t is a
hbmomorphism over EXP,
| EXEC(<(t),p) = <(EXEC(t,p)).
If y is a cover of P, then
EXEC(4(t),p) = EXEC(t(t),p),
= t(EXEC(t,p)).
On the other hand, if y is a type cover of P then
EXEC(v(t),p)) = t(EXEC(t,p))
= EXEC(<(t),p). [.

3-4g

X :=(cons 1Y)

X:= (plus(car X) 1)
Z:= (cons X Y)

" Figure 3.7. The control flow graph of a program P in LISP.

3-50

TX: = (cons int TY)

TX:=(plus (car TX)int)
TZ:= (cons TX TY)

igure 3,8. The type program P, derived from the program P
f Figure 3.7.

3-51

Let TV = {T1,T2,...} be a set of type variables; in the
following we assume TV and the special symbol opeof is
distinet from the elements of {(ATOM) and CONS. We
.'distinguish the type variable apy ¢ TV which will represent
the set of all types. Let TEXP be the set of expressions
built from t(ATOM), TV, and CONS. We shall assume that for

a fixed program P, CONS and 1(ATOM) are finite sets.

A Lype declaratjon for input variable X’n consists of a
statement of the form
declare X*N type o
where o« ¢ TEXP.

A type declaration is interpreted in the context of a
type varjable definition block TDEF,I consisting of a
seqﬁence of stateménts of the form
T = opeoff{aq,...,ak!}
(or just T = aq if k=1) where T « TV-{any} and a1,...,ax ¢
TEXP. We assume no T ¢ TV occurs more than once on the left

hand side of a statement in TDEF.

We now construct a set of productions (in the sense of
formal language theory) by substituting for each statement
T = oneof{aq,...,ax}
of TDEF, the context-free productions
T+ a1,T*ap,..., T+ ak.
Also, for the special symbol any we have the productions

any + «(a)

3-52

for each a ¢ ATOM, and
any + (cons any ...k-times... any)

for each k > 0 and k-adic constructor sign cons ¢ CONS. For
each T e TV, 1let TDEF[T] be the context-free language
generated by these productions with T considered to be the
start symbol, the type variables as nonterminals, and the
terminal symbols are taken from CONS v t(ATOM). Note that
TDEF[T] is a subset of +(U) and TDEF(any) = :(U). Also, for
eééh e ¢ TEXP, let TDEF[«] be the set {a' ¢ <(U) | o' |is
 derived from « by substituting some element of TDEF[T] for

each type variable T occurring in al.

For eaéh.q e 1(U), let EXPAND(a) = {a' ¢ (U) | o' is
'deriyed from o« by substituting some element of 1(U) for each
constant sign of the form X*Sj. For each input variable
XN, let TYPES(X*M) = {a | o ¢ EXPAND(T (EXEC(X*N,p)) and
such that p is some control path from the start block .s to

n}.

Congider again the type declaration
declare X*P type . | |
This type declaration is proper in the context of TDEF if
| TYPES(X*D) ¢ TDEF[q]
and is tight if
- TYPES(X*N) = TDEF[o]

For example, a proper type declaration for input

variable Xn+ of Figure 3.7 is

3-53

declare x*n type (cons int any).

Although the type definition facilities of many
programming languages employ essentially the above scheme,
it is interesting to note the scheme is not even powerful
enough to give tight type definitions of programs without
selection operations. Let f, g, and h be constructor signs
of arity 1,1, and 3 respectively. Also, let ¢(0) = int. 1In
Figure 3.9,

TYPES(Zm*) = TYPES(Z™n)
= {h(fk(int),gk(int),rk(int)) | k > 1}
which is clearly not a context-free language language and

hence is not definable by the above type declaration scheme.

o

3-54

‘igure 3,9. There is no tight type declaration for input

7rariable Z»*D,

3-55

We now describe a simplified version of the method of
Schwartz[Sc2] for constructing proper (but not necessarily
tight) type declarations. We require the special global
value graph GVG* and selection pairs of Section 3.2. To
simplify the method, we assume that for each k-adic
elementary operation sign op ¢ OP, there exists a unique eop

€ ©(U) such that ®op = t(I(op)(a1,...,ak)) for all a1,...,ak
¢ ATOM.

For each text expression t which is a selection, 1let
SVt ¢ TV be the unique selection varjable. Let T be the
mapping from text expressions to TEXP such that,
(1) For each constant sign c ¢ C,

(a) if ¢ is of the form X*s (representing the value of
program variable X on input to the start block s)
then 1(c) = any,

(b) and otherwise, let 7(c) = t(c).

(2) For each input variable X*n, 3(x*0) = rx*n,
(3) For each function application t = (g a1...ay),

(a) if ¢ is a elementary operator op ¢ OP then.

(t) = aop.

(b) if ¢ is a constructor sign cons ¢ CONS then +(t) =
(cons ?(a1),,,?(ak)),

(c) if o is a selector sign in SEL then

1(t) = SVg,

the unique selection variable associated with t.

3-56

We assume that TX”D ¢ TV, for each input variable X*R.
Consider the special type variable definition block TDEF¥
such that for each input variable X*N, we have the
statement:

- TX*P = oneof{T(t) |

(X,t) is a value edge of GVG*},
and for each text expression t which is a selection, there
is a type declaration statement:

SVt = gn_gg_{{?(u)l |

(t,u) is a selection pair}.
Iheorem 3.5.,2 For each text expression t and each control
path from the start block s to loc(t), EXPAND(< (EXEC(t,p)))
is contained in TDEF*[T(t)].
Proof Let p be.the shortest control path from the start
block s to some block n containing a text expression t such
that EXPAND(t(EXEC(t,p))) is not contained in TDEF*[3(t)].
Clearly, n # s. We proceed by induction on>éubexpressions

of t.

Consider a constant sign ¢. If ¢ is of the form X*S
then‘ T(X*S) = any and so EXPAND(T(EXEC(X™*S))) = t(U) =
TDEF[any]. Otherwise t(EXEC(c,p)) = '1(c) z t(e) and so
EXPAND(+<(EXEC(c,p))) = {x(c)} = TDEF¥*[Z(c)].

For each inbut variable XN, EXEC(X*n,p) = EXEC(Xm*,p')
where p = p"(m,n); By the induction hypothesis,
EXPAND(t(EXEC(X®*,p'))) is contained in TDEF*[i(X®*)]. By

3-57

definition, TDEF*[T(X*D)] contains TDEF*[T(xm*)]. Henc.
EXPAND(T(EXEC(X*M,p))) = EXPAND(t(EXEC(X®*))) is containe
in TDEF*[T(x*n)].

If u is a selection contained within t, then u has

ns

departing selection pair (u,u') such that EXEC(u,p)
EXEC(u',pP) for some control path P which is a subsequence of
P starting at s. By definition, :(u) is the selectior
variable SV, and TDEF'[svu] contains TDEF*[7(u')]. Also, by
the induction hypothesis EXPAND(:(EXEC(u',p))) is contained

in TDEF*[I(u')]. Hence, EXPAND(t(EXEC(u,p))) is contained
in TDEF*[Z(u)].

Now suppose t is a function application (e tq...tg)
such that @ is not a selection and t(EXEC(ti,pP)) is
contained in T(tj) for i = 1,...,k. But
T(EXEC(t,p)) = EXEC((® t(t1)...t(tK)),p)

(8 v(EXEC(t1,p))...T(EXEC(tk,P)))

Hence t(EXEC(t,p)) is contained in 7(t) = (s T(t1)...T(tk)),
a contradiction. ({.

This immediately implies that

Corollary 3.5 For each input variable x*N,
declare X*Nn type TX*P
is proper, relative to type variable definition block TDEF®.

The above method for constructing type declarations 1is
due to Scwartz[Sc2]. We conclude by listing TDEF" for the

program of Figure 3.1. Let t(nil) = null, «(0) =z int, t =

(car X*N), and t' = (edr X*0).

TDEF® -

(TX?® = opeof{null, (cons int TX*m)},

TY’™ = null,

TZ'm = int,

TX*D = SV¢r,

TY’P =z oneof{TY’™, (cons SVt TY'n)},

svy = oneof{error, int},

SVt' = oneoff{error, null, Tx*m})

3-58

CHAPTER 4
SYMBOLIC PROGRAM ANALYSIS IN ALMOST LINEAR TIME
4.0 Summary

We continue to assume a global flow model in which the
flow of. control is represented by a digraph called the
coptrol flow graph. We present an algorithm for symbolic
evaluation requiring O(p+aa(a)) bit vector operations on all
flow graphs, where a is the number of edges of the control
flow graph, ¢ is the length of the text of the program, and
a is Tarjan's function. This algorithm is based on a static
analysis of the program and yields a cover called the simple
cover which is somewhat weaker than the the covers
obtainable by Kildall's algorithm, but still quite useful.
Our algofithm may be used to obtain good, approximate birth
pdints for code motion and in addition, this simple cover
may be used to speed up the algorithm for computing the more

powerful cover of Chapter 2.

4-2

4.1 Introduction

As usual, the flow of control through the program P 1is
represented by the gontrol flow graph F = (N,A,s) where each
node n ¢ N is a block of assignment statements and each edge
(myn) € A specifies possible flow of control between n and
m, and all flow of control begins at the start block s € N.
A path in F is a sequence traversing nodes in N linked by
edges in A. We assume that for each n ¢ N-{s}, there is at
least one path from s to n. For m,n ¢ N, m domipates n if

all paths from s to n contain m (m properly dominates n if
in addition, n # m).

Let ¢ = {X,Y,Z,...]} be the set of program variables
occurring globally within P. A program variable X ¢ g is
defined at some node n ¢ N if X occurs on the left hand side
vof an assignment statement ofAn.- For each n ¢ N-{s} and
program variable X ¢ £, we have an jpput variable x*n to
denote the value of X on entrance to n. Let EXP be a set of
expressions built from input variables and fixed sets of
Eonstant signs C and k-adic function signs e. For each n ¢
N and progrém variable X ¢ I defined at n, 1let the output
expression X0* be an expression in EXP for the value of X on
exit ton. A text gxnngggigﬁ is an output expression or a

subexpression of an output expression.

For each m c. N such‘ that n dominates m, program

variable X is defined between nodes n and m if X is output

4-3

- on some n-avoiding path from an immediate successor of n to
an' immediate predecessor of m (otherwise, X is
definition-free between p and m). For each n ¢ N-{s}, let
IN(n) be the set of program variables X ¢ r such that X
occurs within the bight hand side of an assignment statement
of n before being defined at n. The weak environment is a
partial mapping W from input variables to N; for each input
variable X*B such that X ¢ IN(n), W(X*D) is the earliest
(i.e., closest to the start node s) dominator of n such that
X 1is definition-free between W(X*N) and n. We now discuss
various applications of the weak environment.

(1) For each text expression t 1located at n ¢ N, the
birthpoint of t is the earliest dominator of n to which the
the cohputation associated with f may be moved. (Code motjion
is the process of moving code as far as possible out of
control cycles, into new locations where the code in wused
less frequenty. This code improvement requires birthpoints;
as well as other knowledge including of the cycle structure
of the control flow graph. (We may not wish to move code as
far as the biﬁthpo;nt since the birthpoint may be contained
in control cycles avoiding n; see [CA, AU2, E, G] and the
next Chapter for further discussion of code motion
optimizations.) In Chapter 1 we showed that in the
arithmetic domain, the problem of determining birthpoints is
recursively unsolvable. We now use the weak environment W

to define a function BIRTHPT mapping text expressions to

4-4

- approximations of their respective birthpoints. For each

text expression t, BIRTHPT(t) is the 1latest (as far as

possible from the state node s) node in {W(X*P | X*n0 occurs

in n}, relative to the dominator relation.

(2) An expression a ¢ EXP govers text expression t if 4

represents the value of t over all executions of the
program. The orjigin of o is the earliest node in the
dominator chain occuring within e« <(i.e., in the supér
scripts of the input variables contained in a). A cover is
a mapping from ;ext expressions to covering expressions, and
is mpinjmal if the obigin of the covering expressions in its
range are as early in the dominator ordering (i.e., as close
as possible to the start node s) as possible. Note that the
origin of the minimal cover of a text expression is the

birthpoint of that text expréssion. From the weak

"environment W we can compute the simple cover which is a

cover y such that for each text expression t, ¢(t) is
derived from t by substituting w(Xx®*) for each input

variable X™? such that m = w(x*n) properly dominates n.

‘Note that this definition requires that X be defined at m;

if not we add at block m the dummy assignment X := X so that

Xxm* - x*™M {s a new text expression. At most O(t) dummy

assignments must be so added.

Figure 4.1 Zn® = z?ng(x’n#*y*n) has simple cover
2PNy (X*s#E(x*s,y*m)).

4-5

-6

(3) A further application of the weak environment involves
the global value graphs of Chapter 2 to represent the flow
of vﬁlues through the program. Recall that for ceréain
Special global value graﬁhs, the algorithm of Chaptér 2
constructs a cover in time almost linear in the size of GVG.
By a simple, bup somewhat inefficient method, we can
construct such a special a global value graph GVG® of size
OCIz||A]+2). However, by another method which utilizes the
weak environment we can construct a global value graph GVG*
of size O0(da+t), where d is a parameter of the program P
which may be as large as |z| but is usually constant for
block-structured programs. Hence, the very efficient (but
weak) symbolic evaluation of this section may serve as a
preprécessing step, to speed up the more powerful method for

symbolic evaluation presented in Chapter 2.
The organization of this chapter is as follows:

In the next section we ‘describe an algorithm which
constructs a function IDEF giving those program variables
defined between nodes and their immediate dominators. The
- IDEF computation is of a class of path problems that may be
efficiently solved by an algorithm due to Tarjan[{T5] on
reducible flow graphs; however, we extend his algorithm so

as to compute IDEF efficiently on all flow graphs.

'Section 4.3 presents an algorithm for constructing the

weak environment; this ‘algorithm requires the previously

-7

computed function IDEF and contains an interesting data
structure for efficiently maintaining multiple symbolic

environments.

Finally, Section 4.4 concludes the chapter with the
construction of the simple cover from the weak environment.
As in Chapter 2, we wuse a . large, global dag (labeled,

acyclic digraph) to represent the simple cover.

4-8

4.2 Ihe Computation of IDEF

Let F =H(N, A, s) be the control flow graph and let DT
be the dominator tree of F. For each node n ¢ N let OUT(n)
be the set of program varaibles defined at n and for each
node m properly dominated by n, let DEF(n,m) be the set of
program variables defined between n and m. Also, for each n
¢ N-{s} iet IDOM(n) be the immediate dominator of n, and let

IDEF(n) = DEF(IDOM(n),n) | |
i.e. the set of program variables defined between IDOM(n)

and n. The above equation may be inverted as follows:

k
DEF(n,m) = U IDEF(zi))
i=2k1
U o (21)
i:ZOUT zil.

where (n=zq,z5,...,zx=m) is the dominator chain from n to m.
Thus, given the dominator tree DT, DEF and IDEF can be

computed from each other.

An algorithm by Tarjan[TS] may be used to computé IDEF
in a number of bit vector Steps almost linear in |A| for a
special class of flow graphs called reducible; but his
algorithm may cost 2(|N|2) bit vector S£éps for general flow
graphs. Here we extend Tarjan's algorithm so as to compute

IDEF in almost linear time for all flow graphs.

Our algorithm for computing IDEF will proceed in a
postorder (leavés to root) séan of the doﬁinator tree DT of
F. We compute in one pass IDEF(n) for all sons n of a fixed

node w; clearly ﬁhis is trivial' if w is a leaf of the

4-9

dominator tree ("son" and "father" refer to the dominator |
tree_DT). The essence of the method is to form a digraph by
connecting together those sons of w in DT that are connected
in F by paths that avoid w (such paths pass through proper
descendants in DT of w only). The strongly connected
components of this digraph may then be processed in
topological order; as each is processed, it is identified
with the parent node w itself. Thus when all sons of w have
been processed, all have been collapsed into w, and the

procedure may be repeated on the sons of some other node w'.

Tb be precise, a set of nodes S € N is condensed by the
following process:
(1) Delete the nodes in S from the node set N and add in
their place the set S (which is considered:to be a new
node) .
(2) Delete each edge entering a node in S and substitute a
corresponding edge entering the new node S.
(3) Similarly, substitute an edge departing from the new
nodeiS'for any edge departing from an element of S.
(4) Finaliy, delete any new trivial loops which both depart

from and enter the new node S.

Now let Ay consist of the set of edges in A departing
from a node other than w and entering a son of w. Such an
edge must depart from a proper descendant of w; otherwise

the node it enters would not be dominated by w. For each

4-10

proper descendant m in DT of w, let H(m,w) be the unique son
in DT of w on the domiﬁator chain from w tom, i.e. w
immediately dominates H(m,w) which dominates m. Let Gw =
(IDOM-1[w],Ew) be a digraph with nodes the sons in DT of w
and edges '
Bw = {(H(m,w),n) | (m,n) ¢ Aw}.

It is easy to show that:

Lemma 4.2.1 For each n,n' ¢ IDOM-1[w], there exists a path
in Gw from n to n' iff there exists a w-avoiding path in F

fromn to n'.

The digraph G&, derived from Gw bY _condensing each
strongly connected region, is called the ggnggg§ggig§ of Gw
and is obviously acyclic. We shall process éach‘ Strbngly
connected region S of Gy in topological order of Gy (from
roots to leaves). In the specigl case where each such S
consists of the singleton set, then F is called reducible
([HU1) give various othér characterizations of flow graph
reducibility), and Tarjan{T5] provides an efficient method
for computing IDEF(ﬁ). Howéver, in the case that F is
'nonreducible, various such S will contain two or more nodes
and Tarjan's algorithm becomés considerably more expensive
and complex. The Theorem below expresses IDEF(n) in terms
of DEF on previously computed domains; this Theorem holds
even when |S| > 1, giving an efficient method for computing

IDEF for al]l F, both reducible and hbn-reducible.

Let m ¢ N be a descendant of w in DT such that H(m,w)
is either (1) in S or (2) in some strongly connected region
S' of Gw such that there is a path in Gy from S' to S (i.e.
S' preceeds S in topological order). Then let H'(m,w,s) be
H(m,w) in case (1) and w in case (2). That is, H'(m,w,S) is
Just H(m,w), the unique son in DT of w which is an ancestor
of m in DT, unless S' contains H(m,w), in that case; H(m,w)
is to be viewed as collapsed into w. The function H'(m,w,S)
plays a critical role in the inductive correctness proof of

our algorithm.

Call a strongly connected region S of Gy trivial if S
contains a single node {n} and (n,n) ¢ Ey and otherwise
nontrivial. |
Now define

Qg = {} if S is trivial
‘and otherwise, if S is nontrivial let

Q = rJOUT(n).

Also, define

v°§ = }J (DEF(H'(m,w,S),m) Y OUT(m)).
Ry
(m,n)ehy

412

Case (1)

| Case (2)

----» is an edge of Gw
——» is an edge of DT

Figure 4,.2.

Cases (1) and (2) of the definition of H'.

4-13

Iheorem 4.2,1 For each n ¢ S, IDEF(n) = od v of-

(Note that this characterization of IDEF(n) provides an
algorithm for computing IDEF(n) for all sons n of w, by
induction on the topological ordering of Gg.)

Proof Suppose X IDEF(n), so there is a path p =
(w=u1,...,uk=n) such that X e QUT(ui) for some 1 < i < k.
Case 1. ‘if,ui e S, then S must be nontrivial and X .
0UT(uj) € of-

Case 2. Otherwise, suppose uj ¥ S. Let uj be the first
node ‘occurring after uj in p such that uj € S; then
- (ujo1,ug) € Ay |

Case 2,1. If uj = uj-1 then X € QUT(uy) = OUT(uj-q) < Q§°
Case 2.2. Otherwise, suppose uj # uj-1. Then H'(ui,w,S) is
some ujr, 1< j' < i such that uj and uj.1 are descendants
of ujr in DT. Also note that uj' = H'(uj-1,¥,S). Then X .

'OUT(ui) c DEF(uiv,u3_1) z DEF(H'(pj-1,w,S),uj_1) < Qg-

Now we must show that X ¢ Qd v Q§ implies X ¢ IDEF(n)

for each n ¢ S.

If X ¢ Qg, then X is output from Some node n' € S and S must
be nontrivial. Since n' 1is a son in DT of W, there is a
w-avoiding path in F from an.immediate sSuccessor of w to n'.
Also, since S 15 a nontrivial strongly connected region of
Gy, there must be a path in Gy from n' ton. So by Lemma
4.2.1, ‘there is a w-avoiding pa;h in F from n' to n. Thus,
we can construct a w-avoiding path in F from an immediate

successor of w to an immediate predecessor of n, and so X ¢

Y14

IDEF(n).

On the other hand, if X e Qg then X ¢ DEF(H'(m,w,S),m)
U OUT(m) for some (m,n') ¢ Ay and n' ¢ §. Since w dominates
H'(m,w,S), DEF(H'(m,w,S),m) S DEF(w,m). Also, since there
1s an edge (m,n') ¢ A, DEF(w,m) U OUT(m) € DEF(w,n').
Finally, since n,n' are both in S, IDEF(n) £ DEF(w,n) =
DEF(w,n') and we conclude that X ¢ IDEF(n). [

Now we use the techniques of Tarjan[Th] to implement
our algorithm based on Theorem 4.2.1. We construct a foreéi
of labeled trees, ﬁith node set N. Each edge (n,m) has a
label VAL(n,m) containing a set of program Variabies (in our
implementation, the set will be represented by a bif
véctor). Initially, there 1is a forest of |N| trees, each
consisting of a single node. We shall requife three typés
of instructions: |
(1) FIND(n) gives the root of the tree currently containing
node n.

(2) EVAL(n) givesi§2VAL(ni,ni+1)‘where (r=nq,ns,...,nk=n) is
the unique path -to h from.the cﬁfrent'root r of the tree
containing n.

(3) LINK(m,n,z) combines the trees rooted at n and m by
adding edge (n,m), so n is made the father of m, and séts

VAL(n,m) to z.

TarjanfT3] has shown that a 'certain algorithm for

processing a sequence of r FIND and LINK instructions costs

O((|Nj+r)a(|N|+r)) elementary operations. This algoriths
involves path compression on balanced trees and 1i:
frequently used in the implementation of UNION-FIND disjoin:
set operations. Also, 'Tarjan[TM] gives an almost linea:
time algorithm (again wutilizing the method of patl
compression) for processing a sequence of FIND, LINK, anc
EVAL instructions, given ‘that the sequence is knowt
béfoféhand, except for the values which are to label the

edges in the LINK operations.

The following algorithm for computing IDEF uses, 1like
the algorithm of [T5], a preprocessing stage that execute:
ail FIND and LINK instructions but not EVAL instructions;
this allows us in the sechd pass to efficiently process the

EVAL as well as the FIND and LINK instructions.

Algorithm 44 |
INPUT Program flow graph F = (N, A, s) and OUT..
QUTPUT IDEF.

begin
declare IDEF: sequence of integers of length |N|;
Compute the dominator tree DT of F; '
Number the nodes in N by a postordering of DT;
Scan the below so as to determine the sequence
of EVAL, FIND, and the first two arguments of the
LINK instructions;
for w := 1 to |N| do
begin '
LO: Ey := Ay := the empty set {}: .
L1: for all (m,n) ¢ A such that 1pOM(n) = w
and m # w do

n
add (m,n) to Ay;
add (FIND(m),n) to Ey;
comment FIND(m) = H(m,w);

end;
L2: Let G be the condensation of
Gw = (IDOM-1[w],Eu); |
L3: for each strongly connected region S of Gy
in topological order of Gg 4o
begin

gomment FIND(m).= H'(m,w,S);
QS := the empty set _{};
con set Qe to Qéé
E% g is nontr§v131
for all n ¢ S do
Qg := Qg Y 0UT(n);

<ol t ;
famsht st gyte &
for all (m,n) € Ay do

Qs := Qs Y EVAL(m) Y OUT(m);
for all n ¢ S do
begin

L4: LINK(n,w,Qs); ,
compent apply Theorem 4.2.1;
IDEF(n) := Qs

end; _
, end;
end;
end;

Theorem U4.2.2 Algorithm Y4A correctly computes IDEF.

Proof (Sketch). By induction in postordering of DT.
‘Initially, each node n ¢ N is contained in a trivial tree
with root n and EVAL(n) gives the empty set {}. Suppose, on
entering the main loop at LO on the w'th iteration, for any

- node m dominated by w

(1) FIND(m) = H(m,w),

DEF(H(m,w),m).

(2) EVAL(m)

We require a second induction, this one on the

tépological ordering of Gy, We assume that just before
processing the strongly connected region S in Gy, for each m
dominated by w

(1') FIND(m)

H'(m,w,S)
(2') EVAL(m)

DEF(H'(m,w,S),m).
By the primary induction hypothesis, (1') and (2') élearly
hold for the first strongly connected region in the
topological ordering. |

We first set Qg to Qg

{} if S is trivial

= AJSOUT(n) if S is nontrivial.
€ .
and then add to QS the set

PES(EVALm) ¢ 0UT(m)) .
m,njely '

= U_(DEF(H'(m,w,S),m) v OUT(m)).
(HeB) e, ~

=Q§

4-18

Hence by Theorem 4.2.1, for each n ¢ N, IDEF(n) is correctly

set to Qg = Qg v o§'

Let S' be the strongly connected region immediately

following S in the topological ordering. After executing

LINK(“'W’QS) at L4, for each node m dominated by w such that
H(m,w) ¢ S, FIND(m) now gives w = H'(m,w,S) and EVAL(m) now

gives DEF(H(m,w) ,m) v Qq

DEF(w,m)

DEF(H'(m,w,S'),m)
thus completing the second induction proof. Furthermore;_
just Dbefore visiting node w, we have visited all the
elements of IDOM-1[{w], and so for each m properly dominated
by w | | |

(1) FIND(m) = w = H(m,w),

(2) EVAL(m) = DEF(w,m) = DEF(H(m,w),m)

ihus completing the first induction proof. [

Iheorem 4,2,3. Algorithm YA costs an almost linear number
of bit vector operations.

Proof The dominator tree may be constructed in almost linear

time by an algorithm due to Tarjan[T4].

Now consider.the w'th iterétion of the main 1odp. Let

rw = |IDOM-1[wll+lAyl. Step L1 clearly costs O(rw)
elementary and FIND operations. Step L2 costs o(ry)
elementary steps to discover the strongly connected regions

of Gy using an algbrithm due to Tarjan{T1] plus time 1linear

4-19

in ry to condense each stongly connected region in Gu-
Finally, at step L3, we require O(ry) elementary steps to
popologically sort the condensed, acyclic‘digraph Cw by‘ah
algorithm due to Knuth[Kn1], plus O(ry) bit vector, EVAL,
and LINK operations in the loop at L3. The total time cost

of this execution of the main loop is this O(ry) bit vector,

EVAL, LINK, and FIND operations. But 2|A]+1 2g§ﬁw- Hence,
the preliminary scan of Algorithm 4A requires O(JA]) LINK

and FIND operations implementable in time almost linear in a
by the method analyzed in [T3]. With thé symbolic sequence
of EVAL, LINK, and FIND operations now determined, the
second (primary) execution of Algorithm U4A requires

O(1Ala(jA])) bit vector operations by the method of [T4]. O

4-20

4.3 Ihe Weak Environment.

We present here an algorithm for computing the weak
environment. The usual stack operations will be required:
(1) TOP(S) gives the top element of stack S,

(2) PUSH(S,z) installs z as the toﬁ element of stack S,
(3) POP(S) deletes the top element of S.

 For each n « N, let IN(n) be the set of program

variables input at n. An array of stacks WS will be used to
implement W; so that just before processing node n

W(x*n) = TOP(WS(X))
for all X ¢ IN(n). This stack implementation of W allows us
fo maintain W over input variables at n efficiently while
visiting proper descendants of n in DT. Note that

W(X*0) = wW(x»n')
for all n' on the domination chain following H(X*n) to n.
To assure the WS is not modified needlessly, we compute R(n)
= those program variables X such that Xx*@ is an input
variable for some node m properly dominated by n and such
thaf X is definition-free from n to m. Intuitively, R(n) is
a set of program variables whose Value is constant on exit
to n to some node properly dominated by n. We compute R by
a swift postorder walk of the dominator tree DT using the
rule:
Lempa 4,3.1

R(n)

U (IN(m) v R(m))-IDEF(m)).
meIDou-1(n) , '

4-21

The following lemma shows that to correctly maintain
WS, wWe need add node n to the stack WS(X) just in case X ¢
R(n) n IDEF(n). |
Lemma 4.3,2 There exists some m such that W(X*®) = n and X
is input at node m iff X ¢ R(n) n IDEF(n).
Proof By definition of R, if X ¢ R(n) then there exists some
node m . e N properly dominated by n, X is input at node m,

and furthermore, X is definition-free from n to m.

Suppose W(X*M) = n and X is input at node m. Then_
clearly X is definition-free from n to m so X ¢ R(n). But
suppose X ¢ IDEF(n). Then W(X*M®) properly dominates n,
which contradicts our assumption that W(X*M) = n., Hence, x

¢ R(n) € IDEF(n). O

422

Algorithm 4B
INPUT Program flow graph F = (N, A, s), IN, and OUT.
QUTPUT the weak environment W.

begin
Compute IDEF by Algorithm 4A (as a side effect,
the dominator tree DT is constructed);
declare WS := a vector of stacks 1ength 1z];

nggggggg_ WEAKVAL(n):

L1' :g_ all X € IN(n) do W(X*D) := TOP(WS(X)):
M := R(n) n IDEF(n);

L2: for all X ¢ M do PUSH(WS(X) n);

L3: for all m e IDOM-1[nzwg%xWEAKVAL(m)

"o m

L4: for all X ¢ M do POP));
— end WEAKVAL;
L5:for all n in postorder of DT do
begin :
R(n) := {}; '
for all m ¢ IDOM'1En2 gg
R(n) := R(n) v ((R(m) v IN(m))-IDEF(m));

6:for all program variables X do PUSH(WS(X),s);
L7 WEAKVAL(s);
- end;

§-23

Theorem 4.3.1 Algorithm 4B correctly computes the weak
environment.
Proof It is sufficient to show that on each execution of
WEAKVAL(n) at label L1:

(¥) W(X*n) = TOP(WS(X)) for all X e IN(n).
This clearly holds on the execution of WEAKVAL(s) at L7,
since at 1label L6 all program variables X have the top of
WS(X) set to s.
Suppose that (*) holds for a fixed n ¢ N; Observe that all
nodes Apushed in the stacks at L2 are popped out of the
stacks at L4. With this observation, we may easily show by
a seperate induction that the state of WS on exit of any
call to WEAKVAL is just as it was on entrance to the call.
The state of WS on entrance to WEAKVAL(m) is the same for
all m ¢ IDOM-1[n]. Hence, by Lemma 4.3.2, the claim (%)

holds for m, completing our induction proof.]

We shall assume that a single bit vector of length [Z]
may be stored in a constant number of words, and we have the
usual logical and arithmetic operations on bit vectors, as
well as an operation whichvrotates the bit vector to the
left up to the first nonzero element. This operation is
generally used for normalization of floating point numbers;
here it allows us to determineAthe positioﬁ of the first
ﬂgnzero element of the bit vector in a constant number of

such bit vector operations.

Theorem 4.3.2. Algorithm 4B costs O(2+|A|a(|A])) bit vector

424

operations.
Proof Each execution of WEAKVAL(n) requir
0(1IDOM-1[n]|+|R(n)nIDOM(n)|) bit vector operations. But
is easy to show that

IN| < r41";!111>cm-1[n]I‘
and L ¢ n}e:N{R(n)nIDEF(n);_
and so the total cost of all executions of WEAKVAL
O(t+]A]) bit vector operations. By Theorem 4.2.3, t
computation of IDEF by Algorithm 4A costs O(lAla(]A])) -b
vector operations. Hence, the total cost of Algorithm 4B

bit vector operations is O(e+|A|a(|A})). O

4-25

u.umm@:mmmammmmmm'
the Simple Cover

Given the weak environment constructed by Algorithm 4B,
we can now easily compute approximate birthpoints and

cohstruct the simple cover.

Recall from Chapter 2 that a dag is an acyclic, labeled
digraph. Here we assume that the leaves are labeled with
either constant signs or input variables. The interior-
;;des of a dag are labeled with k-adic function signs. For

each n ¢ N, the set of text expressions 1located at n are

represented by the dag D(n).

A dag is minimal if it has no redundant subdag and if

no proper subdag may be replaced with an equivalent constant

sign.

Note that nodes of thé. daé-'D(n) represents text
expressions whereas the nodes of the control flow graph F
represent blocks of assignment statements. Here we wish to
construct the function BIRTHPT, which as defined in Section
4.,a maps from téxt expressions to their approxiamte
birthpoints in N. Again, for each n ¢ N, we process the
nodes of D(n) in topological order, for 1leaves to roots.
Let v be a node in D(n). If v is a leaf labeled with a
constant'then set BIRTHPT(v) to the start node s. If v is a

leaf labeled with: an inpht variable of form X*N then set

4-26

BIRTHPT(v) to n. Recursively, if v is an interior node with
eévery son u previously visited, set BIRTH?T(V) to the latest
BIRTHPT(u) (relative to the dominator ordering, with the

start node s first) for any such son u.

As in Chapter 2, we use 3 large, global dagv'to
represent the simple cover. This dag is constructed as
follows:

(1) First, combine the dags of all the nodes in N.
Associate the singleton set {v} with each node v in the
resulting dag.

(2) Next, éompute by Algorithm 4B the weak environment W.
For each n ¢ N and input variable X*n guch that m = W(x’n)
properly dominates n, collapse the node corresponding to X*n

into the node containing Xm*, 6 tpe output expression for X at

m.

(3) Finally, minimize the resulting:dag.

The above construction takes time O0(t+|a]), except for
the construction of the weak environment whiéh by Theorem
4.3.2 takes O(s+|a|a(|A[)) bit vector operations. Hence our
method for construction of the simple cover requires

O(e+|Aja(|A})) bit vector operations.

4-27

\\
*
PR : ‘\
! \
,]
D(s) ¢ v, .
! ’
N ,
’
5
\\~ "’

1gU

Figure 4.4, Dag representation of the simple cover.

4-28

Chapter 5

CODE MOTION

5.0 Summary

Code motion is the program optimizatioh concerned with
the movement of code as far as possible out of control
cycles into new locations where the code may be executed
less frequently. Methods are discussed for approximating
certain functions used to ensure that the relocated code may
be computed properly and safely, inducing no errors of

computation.

The effectiveness of code motion depends on the
goodness of our approximation to these functions, as well as
~on tradeoffs between (1) the primary goal of moving code out
of control cycles and (2) the secondary goal of providing
that the values resulting from the execution of relocated

code are utilized.

Two versions of code motion are formulated: the first
emphasizes the primary goal, whereas the other insures that
the second goal is not compromised. Almost linear time (in
bit vector operations) algorithms are presented for both
these formulations of code motion; the algorithm for the
first version of code motion is restricted to reducible flow

graphs, but the other runs efficiently on all flow graphs.

5-2

Previous algorithms for similar formulations of code motion
have time cost lower bounded in the worst case by the length

of the program text times the number of nodes of the control

flow graph.

Original Program P Improved Program P

"O A s(zeaxs)

Figure 5,1. A simple example of code motion.

5.1 Introduction

We assume here the global flow model described in
Chapter 1. Let F = (N, A, s) be the control flow graph of
program P to which we wish to applyvcdde motion. Nodes in
the set N correspond to linear blocks of code, edges in A
specify possible control flow immediately between these
blocks, and all flow of control begins at the start nodé S.
A coptrol path (cycle) is a path (cycle) in F. Every
‘execution of the program P corresponds tp a control path, —
‘though some control paths may not cdrrespond to possible
executions of P. The essential parameters of the model are
n = |N|, a = |[A|], and ¢ = the length of the program text
(each block in N .is assumed to contain at least one text
expression, so n 5'1). We assume bit vectors of 1length
may be stored in a constant number of words and we have the
usual logical and arithmetic operations on bit vectors, as
well as an operation which Shifts a bit vector to the left
up to the first nonzero element. (This operation is
geherally used for normalization of floating point numbers;
"here it allows us to determine the position of the first
nonzero element of. the bitAyector in a constant number of
steps.) An algorithh runs in almost ligggn number of steps
relative to this model if it requires O((a+2)a(a+s)) bit
vector and elementary operations, where o is £he extremely
siow-growing function_of_[T3] (a is related to a functional

inverse of Ackermann's function).

5-5

Consider a text expression t located at node loe(t) in
.N. To effect code motion (see also [CA,AUZ,E,G) for
descriptions of code motion optimizations) on the
computation associated with t, we relocate the computation
to a node movept(t) by deleting t from the text of node
loc(t) and installing an appropriate text expression t' (not
necessarily lexically identical to the string t) at
movept(t). On execution of‘ the ‘modified program P' the.
result of the computation at movept(t) might be stored in a
special register or ﬁemory location to be rétrieved when the

execution reaches node loc(t).

~——

To insure that P' is semantically equivalent to the
original program P, we require that if node w is the movept
of t, then: |

R1 All control paths from the start node s to loc(t)
contain node w. ‘ _

B2 The computation is possible at node w; i.e., all
quantities required for the computation must be defined
at node w. _

R3 The computation must be gafe at w; thus if an error
occurs in a particular execution of P', an error must

also have occurred in the corresponding execution of
the original program P.

Observe that the nodes satifying R1 form a chain,
called a ggmigiign chain, from s to loc(t). The birth point

of text expression t is the first node on this chain that
satisfies R2. We show in Chapter 1 that if the program P is

interpreted within the arithmetic domain, the problem of

5-6

computing birth points exactly is'recursively unsolvable, so
we must be content with computable approximations. Chapters
2 and 4 give algorithms for computing such approximations.
The approximation of Chapter 2 is somewhat weaker than that
of Chapter 4, but may be computed very swiftly; in fact the
algorithm of Chapter 4 requires‘an almost linear number of
bit vector operations for all control flow graphs to compute

an approximation BIRTHPT to the true birth point.

The first node on the dominator chain from the birth
point of t to 1loc(t) which satisfies restriction R3 is
_called the safe point of t. Section 5.3 discusses an
approkimation to the safe point, called SAFEPT, which may be
eomputed in an almost 1linear number of bit vector
operations, given an efficient test for safety of code
motion (we rely on a global flow algorithm by Tarjan[T5] for
this). Unfortunately, known algorithms (including Tarjan's)
for testing safety of code motion are efficient only on a
restricted class of flow graphs which are called reducible
(see [HUT]).

Let us continue the formulation of the code motion
problem. We add a further restriction' A _

RY4 the movept of t may not be contained on a control

cycle avoiding loc(t).

Let M1 consist of all nodes occurring on the dominator

chain from SAFEPT(t) to loc(t) that satisfy R4. We choose

5-7

movept(t) from the nodes in M1 based on the following goals:

G1 movept(t) is to be located on as few control cycles
as possible. :

G2 As few control paths as possible may contain
movept(t) and reach the final node f in N without
passing through loc(t) (we assume f is reachable from
all nodes).

The above goals conflict, for to satisfy G1 we would

choose movept(t) earlier in the dominator ordering than we

would if we were to also satisfy goal G2.

We consider two formulations of code motion. In the
first formulation we stress G1 and in the other we stress

G2. Let My be the set of nodes in Mq which also satisfy the

restriction:

RS All control paths from the movept of t to the final
node f must contain loc(t).

For i = 1,2 let

M = those nodes in Mj which satisfy R4 and are
contained in the minimum number of control cycles

and let moveptj(t) be the first node in M{ relative to the

dominator ordering of F.

More general formulations‘ of code motion have been
described by Geschke[G], including the movement of code to
several nodes (rather than to a single node), and also the
movement of code to nodes occurring éfter (rather than
before) loc(t) in the dominator ordering of F, Prev1ous
formulations of code motion [E,G, CA] simllar to ours requlre

2(2) (the "big omega"™ notation denotes a lower bound in the

5-8

worst case; see [Kn2]) operations per node in the flow

graph, or a total worst-case time cost of a(ren).

The next Section defines the relevant digraph
terminology. Section 5.3 presents an algorithm for
- computing SAFEPT, wusing Tarjan's algorithm for testing
safety of code movement. Section 5.4 reduces the first
version of code motion to the computation of SAFEPT and a
pair of functions C1 and C2 related to the cycle structure

of flow graphs. We show that the function C1 suffices to
solve the second type of code motion; in this formulation we
éyoid testing for safety of code motion. Sections 5.5 and
5.6 present algorithms for computing the functions C1 and C2
over certain domains in an almost 1linear number of bit
A vector operations. 'The algorithm for computingACZ requires
'a special hfunétion ‘DDP; in Section 5.7 an algorithm,
restficted to reducible flow 'graphs,- is presented which
computes.DDP in O(JAje(lA})) Dbit Qector steps. We conclude
in Section 5.8 with a graph-transformation (similar to those
described in [E,AU2]) which improves the results obtained
from the two versions of code motion and in certain cases

simplifies our algorithms for computing C1 and C2.

5-9

5.2 Graph Iheoretic Notjons
A digraph G = (v, E) cohsists of a set V of elements
called podes and a set E of ordered pairs of nodes called

edges. The edge (u,v) departs from u and enters v. We say

u 1is an immediate predecessor of v and v is an immpediate
sSuccessor of u. The outdegree of a node v is the number of

immediate successors of v and the indegree is the number of

immediate predecessors of v.

A path fropu to w in G is a sequence of nodes
P = (u=vy,v2,...,vk=w) where (vi,visi) ¢ E for all i,

TN ¢ i < k.

The path p may be built by composing subpaths:

P=(vy,.o,vi) * (vi,...,vk).

The path p is a ¢ycle if u = w. A path is simple if it

contains no cycles.

A node u is reachable from a node v if either u = v or

there is a path from u to v.

A flow graph (V, E, r) is a triple such that (V, E) is
a digraph and r is a distinguished node in V, the root, such
éthat r has no predecessors and every node in V is reachable

from r.

A digraph is acycljc if it contains no cycles. If u_is
reachable from v, u is a descendant of v and v is a angestor

5-10

of u (these relations are proper if u £ v). Immediate
’-successors are called sons. An acyclic flow graph T is a
tree if every node v other than the root has a unique
immediate predecessor, the father of v. T is oriented if
the edges departing from each node are oriented from left to

right.

The preordering of oriented tree T is defined by the
following algorithm (see also Knuth{Kn1]).

Algorithm 5A
INPUT An oriented tree T with root r.

' QUTPUT A numbering of the nodes of T.

begin
brocedure PREORDER(W):
begin
if w is unnumbered then
begin
Let w be numbered k := k+1;
for all sons u of w from left to right do

PREORDER(u) ;
H
- end;
k := 0;
PREORDER(P),
end;

Given a preordering, we can (see [T1]) test in constant
time if any particular pair of nodes is in the ancestor

relation. if a node 1is an ’ancestor of .any other. A

.bostordering is the reverse of a preordering.

Let G = (V, E, r) be an arbitary flow graph., A
Spapping tree of G-is an oriented-trge ST rooted at r with
node set V. and édge'°1ist. contained in E. The edges

5-11

contained in ST are called 4tree edges, edges in E from
descendants to ancestors in ST are called g¢ycle edges,
non-tree edges in E from ancestors to their descendants in
ST are forward edges, and edges in E between nodes unrelated

in ST are ¢cross edges.

A special spanning tree of G, called a -first

Search spannipg tree is constructed by a 1linear time
algorithm by Tarjan[T1] and has the property that if the

nodes are preordered by the algorithm above, then for each_:.

cross edge (u,v), v is preordered before u.

~ A node u dominates a node v if évery path from the root
to v includes u (u properly dominates v if in addition, u #

v). It is ‘easily shown that there is a unique ' tree TG}
called the dominator tree of G, such that u dominates v in G

iff u is an ancestor of v in Tg. The father of a node in

the dominator tree is the immedjate domipator of that node.

The cycle edges are partitioned by their relation 'in
- the dominator tree DT: |

(a) A-cycle edges are cycle edges from a node to a proper.
dominator.

(b) B-cycle edges are cyélé edges between nbdes unrelated oh

the dominator tree.

o

G is reducible if each cycie p of G contains a 'unique

node dominating all other nodes in‘p. Programs writteh in a

5-12

well-structured manner are often reducible. Various
- characterizations of reducibility are given by Hecht and
Ullman{HU1]); in particular they show that

Inggggm 5.2 G is reducible iff G has ngo B-cycle edges.

* Tarjan gives in [T2] a test for reducibility requiring an

almost linear number of elementary steps.

5.3 Approximate Safe Points of Code Motion

Text expression t is safe at node w if no new errors of
computation are induced when t is relocated to node w. To
approximate the safe point of t we require a good method for

determining if t is safe at particular nodes.

| A text expression t is dependent on a program variable
if that variable occurs within the text of t (this need not

imply functional dependence). The text expression t is
dangerous if there exists some assignment of values to the
variables dependent on t which induce an error in the
eomputation of ¢t. For example, an expression with a
,division operation is dangerous, since an error occurs if
the operand evaluates to zero. Following Kennedy[Kel], we
say there is an gxposed instance of text expression t on a
simpie (acyelie) control path p if there is some text
expression t' located in p, with the same text string as t,
“and such that no variable on which t is dependent is defined
at any node in p occurring after the first node of p and
before loc(t'). Let SAFE(w) consist of all text expressions
which are not dangerous plus all dangerous text expressions
which have an exposed instance on every simple control path
'frbm w to the final node f. | o |
Thegorem 5‘3;1 (due to Kennedy[Ke1]) If w occurs on the

dominator chain from BIRTHPT(t)'td loc(t) andrtA; SAFE(w)V

then t is safe at node w.

5-14

Proof Let P' be the program dérived from P by relocating the
computation of t to node w. If there is an error resulting
from the computation of t on control path p in the modified
‘prégram, then since t ¢ SAFE(w) the error would also have
occurred (although somewhat later) in the execution of the

original program on control path p. [

Recall the parameters n = |N|, a = |A|], 'and ¢ = the
number of text expressions. Tarjan[T5] presents an
algorithm for solvihg éertain general path problems, and
which may be used to computé SAFE in a number of bit vector
Z?perations almost linear in a+t if the program flow graph is
feducible. Also, '-Graham_and Wegman [GW] and Hecht and
'UIIman[HUél~give algoriihms for. computing SAFE ﬁith time

cost often linear in 2+a, but with worst case time cost

gp(g+a-log(a)) and a(g+n2), respectively.

Leﬁ loc(t) be the node where text expression t is
located. To approximate the safe point of t, we take
SAFEPT(t) to be the first node w of the dominator chain from
BIRTHPT(t) to loc(t) such that t e SAFE(w).

Let IDOM map_from nodes in. N-{s} to their immediate
dominators in F. For each w ¢ N; let EARLY(w) consist of
‘those text expressions ﬁ with BIRTHPT(t) = w plus, if w £ s,
all t ¢ EARLY(IDOM(w))-SAFE(IDOM(w)). Let LATE(w) be the
set of all text expressions t e‘ SAFE(w) such that w

dominates loc(t).

5-15

Lemma 5.3.1 SAFEPT(t) = w iff t ¢ EARLY(w) n LATE(w).
E;ggﬁ. Clearly, for each node.w on the dominator chain from
BIRTHPOINT(t) to loc(t), t ¢ LATE(w) iff SAFEPT(t) dominates
w. Hence, for each node w on the dominator chain following
BIRTHPT(t) to SAFEPT(t), if t e EARLY(IDOM(w)) then since t
SAFE(IDOM(wW)), t ¢ EARLY(w). Also for any w on the
“dominator c¢hain following SAFEPT(t) to 1loe(t), t
SAFE(IDOM(w)), so t ¢ EARLY(w). Thus w = SAFEPT(t)'
iff w dominates SAFEPT(t) and SAFEPT(t) dominates w
iff t ¢ EARLY(W) n LATE(W).]

Lemma 5.3.1 leads to a simple algorithm for comphting
SKFEPT. EARLY is computed by a preorder pass through the
dominator tree DT and LATE is computed by a postorder (i.e.

reverse of the preorder of Section 5.2) pass through DT.

5-16

Algorithm 5B
INPUT Control flow graph F = (N,V » 8), the set of text
expre331ons TEXT, BIRTHPT, and SAFE.

QUTPUT SAFEPT.

begin S
declare LATE, EARLY := arrays length n = IN|;
declare SAFEPT := array length g
Compute the dominator tree DT of F;
Number nodes in N by a preordering of DT
for w := 1 to n do
L1: EARLY(w) := LATE(wW) := the empty set {};
for all text expressions t ¢ TEXT do
L2: add t to EARLY(BIRTHPT(t)) and LATE(loc(t)),
for w := 1 ton do
L3: EARLY(w) := EARLY(w)
v (EARLY(IDOM(w))- SAFE(IDOM(w)))
for w :=n by -1 to 1 do
begin
for all sons u of w in DT do
L4: LATE(w) = LATE(w) v LATE(u);
comment Apply Lemma 5.3.1;
for all t ¢ EARLY(w) n LATE(w) do
L5: SAFEPT(t) I

end;

5-17

We assume that a bit vector of length g may be stdred
in a constant number of words and that in a constant number
of bit-vector operations we may determine the first nonzero
element of a bit vector (this is not an unreasonable
assumption since most machines have an instruction for
left-justifying a word to the first nonzero bit).

Theorem 5.3.1 Algorithm 5B is correct and requires
O((a+t)a(a+s)) elementary and bit vector operations.

Proof. The correctness of Algorithm 5B follows immediately
from Lemma 5.3.1. The dominator tree DT may be constructed
by an algorithm by Tarjan[T4)] in time almost linear in a =
|A}l, (if G is vreducible, an algorithm due to Hecht and
Ulkman[HUZ] computes DT in a linear number of bit vector
operatioﬁs). Steps L1, L2, L3, L4, LS5 each require a
constant number of elementary and bit vector operations and
‘are executed 0(n), 0(z), 0(n), 0(n), O0(y) times,
respectively. Since F is a flow graph, a > n-1. Hence, the
tofal timé cost of Algorithm 5B is 0((a+%)a(a+t)) bit vector

operations. [J

' 5-18

5.4 Reduction of Code Motion to Cycle Problems

For an arbitrary flow graph G = (V, E, r) and w,x ¢ V
such that w doninates x in G, let Cig(w,x) be the latest
node, on the dominator chain in G from w to x, wWhich is
contained on no w-avoiding cycles. Similarly, let Ceg(w,x)
be the first node, on this 'dominator chain, which is
contained on no x-avoiding cycles.

Lemma 5.4,1. For nodes x,y ¢ V such that y dominates x, let
M be the 1ist of nodes on the dominator.chain from y to x
and contained on no x-avoiding cycles, let w ‘be the first
element of M, and let M' = those nodes in M contained in a
midimal number of cycles. Then Cig(w,x) is the first node
in M' relative to the doﬁinator)ordering éf G.

Proof Observe that C1g(w,x) e;M; for otherwise Cig(w,x) is
contained on a x-avoiding ecycle which also contains w, a
cbntradiction_with the asSumptioﬁ that Q e Mis cdntained on

no x-avoiding cycles.

Suppose p is a cycle containing C1g(w,x) and avoiding
some y € M-{C1g(w,x)}. If y properlyrdOminates C1G(va)
then since w dominates y, p is w-avoiding, a contradiction
with the assumption that 'C1G(w,x) is contained on no
w-avoiding cycles. Otherwise, if y is properly dominated by
Cig(w,x), then since vy dominates' W, p is xgavoiding,

contradicting the assumption that C1¢(w;x) e M.

5-19

Suppose some z ¢ M' properly dominates Cig(w,x). If z
is contained on no w-avoiding ecycles, then c1g(w,x)
dominates 2z, contradiction. If z 1is contained on a

w-avoiding cycle, then so is Cig(w,x), a contradiction. [

Let F = (N, A, s) be the control fléw graph. Our first
variation of code movement, moveptq, may be described in
terms of Clp, C2p, and SAFEPT. |
Iheorem 5.4.1 For each text expression t,

movept (t) = CIF(C2F(SAFEPT(t),loc(t)),loc(t)).
Proof. Clearly, any node on the dominator chain from
SAFEPT(t) to loc(t) satisfies R1-R3. Recall that M,
consists of those nodes on the dominator chain from
SAFEPT(t) to loc(t) which satisfy RY4; i.e., they are
contained on no control cycles avoiding loe(t). By
definition of C2F, w = C2p(SAFEPT(t),loc(t)) is the first
node in Mq relative to the domination ordering in F. - Hence
by Lemma 5.4.1, movept(t) = C1G(w,loc(t)) is the first node

of M} relative to the domination ordering. U

From the control flow graph F = (N, A, s) we derive the

- reverse control flow graph R = (N, AR, f) which is a digraph
rooted at the final node f ¢ N and with edge set AR derived

from A by reversing all edges. R is assumed to be a flow
graph; so every node is reachable in R from f.
Lemma 5.,4.2 If x dominates y in F, y dominates z in F, and z

dominates x in R, then y dominates x in R and z dominates y

5-20

in R.

Proof by contradiction. Suppose there is a y-avoiding path
py in R from f to x. Since z dominates x in R, pq MUSt
contain z. The reverse of piq, p§v is a path in F. Since x
dominates y in F, there must be a y-avoiding path pp2 in F

from s to x. Composing p» and pq' we have a path in F from

s to f which contains z but avoids y. But this contradicts
our assumption that y dominates z in F. Hence, y dominates
x in R. Similarly, we may easily show that z dominates y in
R. O

Theorem 5.4,2 If w dominates x in F and x dominates w in R,
then C2p(w,x) = C1gr{x,w).

Proof. Ii is sufficient to observe by Lemma 5.4.2 that the
dominator chain from w to x in F.is the reverse qf the

dominator chain from x to w in R. The symmetries in the

definition of C2p and C1F then give the result. O

Let HPT(t) be the flrst node on the domlnator chain of
F from BIRTHPT(t) to loc(t) which is dominated by loc(t) in
the reverse flow graph R. Also, for each W e Nlet H(w) be
the first node, on ﬁhe dominator chain in F from the start
node s to w, which is "~dominated in R by w. H may be
computed by a swift scan 6f the nodes in N, in preorder of
the dominator tree of F by the following rule:
H(w) = H(x) if w dominates x in R, where x is the immediate

dominator of w in F, and otherwise H(w) = W,

5-21

HPT is given from H by the following 1lemma, which is
trivial to prove.
Lemma 5.4.3 HPT(t) = H(loe(t)) if BIRTHPT(t) dominates
H(loc(t)) in F and otherwise HPT(t) = BIRTHPT(t).

The following Theorem expresses moveptos in terms of C1
and HPT.
Ihggggm 5.4,3 For all text expressions t,
movepto(t) = CIp(C1R(loe(t),HPT(t)),loc(t)).
Proof. Recall that My is the set of nodes v € Mq which
satisfy restriction RS: that all control paths from v to f

contain loc(t).

We claim that w = C2p(HPT(t),loc(t)) is the first node
in M1 relative to the dominator ordering of F. Since
'SAFEPT(t) ddminates HPT(t) in F, w is cléarly an element of
Ms. If there exists some w' ¢ M2 which properly dominates
~ W, then since w' satisfies restriction RS, 1loc(t) is
'.containéd on all paths from Q"to f, which implies that

HPT(t) dominates w', a contradiction.

By Theorem 5.4.2, w = C2p(HPT(t),loc(t)) z
C1ﬁ(loc(t),HPT(t)). Hence, moveptp(t) = Cip(w,loc(t)) is

the first node in M) relative to the domination ordering. U

The next two sections describe how to compute C1 and C2

efficiently.

5-22

5.5 The Computation of C1

Let G = (V, E, r) be an arbitary flow graph with the
nodes of V numbered from 1 to n = |V] by a preordering of
some depth-first search Spanning tree ST of G (see Section
5.2 for definitions of depth-first spanning trees and
preorderings). For certain W,X € V Sudh that w dominates x

in G, we wish to compute C1G(w,x); recall from Section 5.4

that this is the last node on the dominator chain from w to

X which is contained on no w-avoiding cycles.

For w = n,n-1,...,2 let I(w) be the set of all x e V
contained on a cycle of G consisting only of descendants of
W in ST, and such that x is not contained in any I(u)-{u}
for u > w. The sets I(n), I(n-1),...,I(2) are related to
the jintervals of G (see Allen[A]) and may be computed in

almost linear time by an algorithm of Tarjan[T2].

Let IDOM(x) give the immediate dominator of node x ?
V-{r}.
Lemmpa 5.5.1 (due to Tarjan[T2]) For each w ¢ V-{r} and x ¢
I(w), IDOM(w) properly dominates x. |
Proof by contradiction. Suppose the lemma does not hold; so
there exists a IDOM(w)-avoiding path p from the root r to x.
But by definition of I(w), there exists a cycle qQ, avoiding
all proper ancestors of w in ST and containlng both w and x.
Slnce IDOM(w) is a proper ancestor of w in ST, q avo;ds

IDOM(w). Hence, we can construct from P and q a

5-23

IDOM(w)-avoiding path from r to w, which is impossible. [

| Our algorithm for computing C1 will construct, for each
W ¢ V, a partition PV(w) of the node set V. 1Initially, for
W = n, PV(w) consists of all singleton sets named for the
nodes -which they contain. For w =z n,n-1,...,2 let J(w)
consist of 1I(w) plus all nodes ih V contained on a
w-avoiding' cycle and immediately dominated by some element
of I(w). Then PV(w-1) is derived from PV(w) by collapsing
into w all sets with at least one element contained in

J(w)-{w}.

For w,x ¢ V such that w dominates x, let g(w,x) be the
name of the set of PV(w) in which x is contained.
Lemma 5.5.2 g(w,x) is an ancestor of x in ST and if w > 1,
IDOM(g(w,x)) properly dominates x. '
Proof by induction on w. v
Basis step. For w = n, g(w,i) = X andv so IDOM(g(w,x)) =
IDOM(x) properly dominates x. h |
vlgggg&ixg step. SuppoSe, for_some w>'1, the Lemma holds
for all w' > w. Consider some x ¢ V such that w dominates
X. |
Case 1.l=Ing(w-1,x)
induction hypothesis.
Case 2. If g(w-1,x)

y ¢ J(w)-{w}. First we show that w is an ancestor of y in

g(w,x) then the Lemma holds by the

w then in PV(w), g(w,x) contains some

ST and IDOM(w) properly dominates y. If y ¢ I(w)-{w}, then

5-24

w is an ancestor of y in ST by definition of I(w), and
IDOM(w) dominates y by Lemma 5.5.1. Otherwise, suppose y ¢
(J(w)-I(w))-{w} so y is immediately dominated by some y' e
I(w). Hence y' is a proper ancestor of y in ST and by
definition of I(w), w is an ancestor of y', so w is an
ancestor of y' in ST. By Lemma 5.5.1, 1IDOM(w) properly

dominates y', and hence IDOM(w) also properly dominates y.

Since the set g(w,x) of PV(w) contains y, g(w,x) =
glw,y). By the inductién hypothesis, g(w,x) = g(w,y) is an
ancestor of both x and y in ST. We have shown that w is an
ancestor of y in ST. Since w < g(w,x), w is a proper
ancestor of g(w,x) in ST, so w is also an ancestdr of x 1in

ST.

We claim that IDOM(w) properly dominates g(w,x). If
not, there ﬁ;ould exist an IDOM(w)-avoiding path p from the
root r = 1 to g(w,x). IDOM(w) is an ancestor of w in ST and
g(w,x) is not an ancestor of w, so g(w,x) is not an . ancestor
of IDOM(w) in ST. Also, since g(w,x) is an ancestor of y in
ST, there is a IDOM(w)-avoiding path p' of tree edges fﬁom
g(w,x) to y. Composing p and p', we have a IDOM(w)-avoiding
path from r to g(w,x), which is impossible since we have
previously shown that IDOM(w) properly dominates y. Hence,
IDOM(w) properly dominates g(w,x). By the induction:
hypothesis, IDOM(g(w,x)) properly dominates x, and so

IDOM(w) properly dominates x. [J

5-25

Iheorem 5.5,1. Consider any x,w ¢ V such thaf w dominates
X. If x is contained in no w-avoiding cycles then g(w,x) =
x and otherwise g(w,x) is the highest ancestor of x in ST
such that IDOM(g(w,x)) properly dominates x and all nodes,
on the dominator chain following IDOM(g(w,x)) to x, are
~contained in w-avoiding cycles.

Proof (sketéh). If x ié contained in no w-avoiding cycles
in G then x can not be contained in I(w') for w < w' < x and

so in this case g(w,x) = x.

Otherwise, consider the case where x is contained 1in
some w-avoiding cycle. Suppose some node w' on the
~dominator chain following IDOM(g(w,x)) to 1IDOM(x) is not

contained in a w-avoiding cycle. Then the set g(w',x) of

PV(w') is not merged into w' in PV (w'-1), so g(w',x)

g(w'=1,x) £ w', Fu}thermore we can show that for y
w',w'-1,.}.,g(w;x)+1; glw',x) ¢ J(y) so g(w',x) = g(y,x) #
y. Hence g(w',x) = g(g(w,x),x) # g(ﬁ,x). Since g(w,x) is
the name of a set 6f PV(w), g(w,x) is not merged into any
other - set of PV(g(w,x)),PV(g(w,x)-1),...,PV(Q), so

g(g(w,x),x) = g(w,x), and we have a contradiction.

Finally, suppose _IDOM(g(w,x)) is' contained - in some
w-avoiding cycle p. Each such path p must contain a unique
node wp which dominates 'iDOM(g(Q,x)) and no node in p
properly dominates -wb. Choose some such p with wp as late

as possible in the dominator ordering; i.e., as close as

5-26

possible to IDOM(g(w,x)). Then we can show that g(w,x) ¢
J(wp)-{wp} and so g(w,x) is merged into wp in PV(Wp-1)-
which 1is impossible (since g(w,x) is the name of a set in
PV(w)). O

Corollary 5.5.1 Let w,x € V such that w dominates x in G.
If x is contained in no w-avoiding cycles then C1g(w,x) = x.
Otherwise, Cig(w,x) = IDOM(g(w,x)).

Eggg;. If x is contained in no w-avoiding cycles then, by
definition, Ci1g(w,x) = x. Otherwise, suppose x is contained
in some w-avoiding cycle. By Theorem 5.5.1, all nodes id
the dominator chain following IDOM(g(w,x)) to x are
contained in w-avoiding cyecles, so Cig(w,x) properly
dominates g(w,x). Hence, IDOM(g(w,x)) is the last node in
the dominator chain from w to x which is contained in a
w-avoiding cycle and we conclude that Cig(w,x) =

IDOM(g(w,x)). (i

We require the disjoint set operations:
(1) FIND(x) gives the name of the set currently containing
node x.

(2) UNION(x,y): merge the set named x into the set named y.

5-217

The algorithm for computing Cig is given below.
Algorithm 5C

INPUT Flow graph G = (v, E, r) and ordered pairs
(W1,x1),...,(Wg,X;) such that each wj dominates xj.

QQIEHI'C1G(W1,x1))...,Cic(w;,x;).

begin _
declare SET, BUCKET, FLAG := arrays length n = lV|;
Compute the depth-first spanning tree ST of G;
Number the nodes in V by preorder in ST;
Computer the dominator tree DT;
for x := 1 to n do
begi
SET(x) := {x};
BUCKET(x) := the empty set {};
FLAG(x) := FALSE; =

end;
for i := 1 to * do add xj to BUCKET(wi);
for w := n by -1 %o 1 do
: n
for all x ¢ BUCKET(w) do

n
if FLAG(x) then
cig(w,x) := the father of FIND(x) in DT;
else Cig(w,x) := x;
if w > 1 then ,
begi ' :
Compute I(w) by the Algorithm of [T2];
if I(w) is not empty then
begin o
for all y ¢ I(w) do
e .
z := FIND(y); v
if NOT FLAG(z) then
begin
D: for all x ¢ IDoM-1(z) do
: if FLAG(x) then
UNION(FIND(x),w);
FLAG(z) := TRUE;
end;
if z # w do UNION(z,w);
end;
end;
end;

5-28

Theorem 5:5.2 Algorithm 5C correctly computes
Cig(w1,x1),...,C1g{(wg ,X,) in time almost linear in a+.

Proof (Sketch). We may show by an inductive argument that

on enterihg the main loop on the (n+1-w)'th iteration:

(1) FIND(x) gives g(w,x),

(2) FLAG(x) iff x is contained in a w-avoiding cycle,

and then apply Corollary 5.5.1 to show the correctness of

Algorithm 5C.

ST, DT, and I(n), I(n-1),...,I(2) may be computed by
the algorithms of [T1,T4,T2] in time almost linear in a =
[A}. The other steps of Algorithm 5C clearly require a
linear number of elementary and disjoint set operations.
These set operations may be implemented in almost 1linear

time by an algorithm analyzed by Tarjan[T3]. O

5=-29

5.6 The Computation of C2

The first f;rmulation ~of code motion was shown to
reduce to a number of subproblems including the calculation
of the function C2; recall that for flow graph G = (V, E, r)
and each w,x ¢ VAsuch that w dominates x, C2Gg(w,x) is the
first node on the dominatdr chain from'ﬁlid x which is not
contained on any x-avoiding cycles. For such w,x let a path
from x to w, which avoids all proper dominators of x other

than w, and which 1is either a simple (acyclic) path or a

as proper

subsequences), be called a dominator disjoint (DD) path.

Let DT be the dominator tree of G and for each x ¢ V-{r},

simple cycle (a cycle containing no other cycles

let IDOM(x) be the father of node x.

Our algorithm for computing C2g Will require a function
DDP such that for each x ¢ V, DDP(x) = x if x = r or there
is no DD path from IDOM(x), and! otherwise DDP(x) is the
‘first node y dn\ the dominator chain from the root r to x
such that there ef&sts an x-avoiding DD path from IDOM(x)-td
y- | 7
Lemma 5.6.1. If DDP(x) properly dominates x then all nodes
on the dominator ordering from DDP(x) to IDOM(x) are
contained on an x-avoiding cycle. Otherwise, DDP(x) = x and
IDOM(x) is contained on no x;avoiding éycles. \
Proof. If DDP(x) properly dominates X, then iet_p be 'a DD

path ~ from IDOM(x) to DDP(x). Since DDP(x) dominates

5-30

IDOM(x), there is an x-avoiding path p' from DDP(x) to

IDOM(x). Hence pep' is the required x-avoiding cycle.

On the other hand, suppose DDP(x) = x #£ r and IDOM(x)
is contained on an x-avoiding cycle gq. | Let q' be the
subsequence of q from IDOM(x) to some node z immediately
dominating x, and containing no other broper dominators on
X. Then q' is a DD path, so DDP(x) properly dominates =z,
implying that DDP(x) # x, contradiction. U
Lemma 5.6.2 Let z € V have at least two sons and be
contained on a cycle avoiding some son of z in DT. Let X1
(X2) be a son of z with DDP value earliest (latest) in the

dominator ordering. Then for each y which is properly

dominated by =z, DDP(xq) is a dominator of DDP(y);

furthermore, if y # x5 and y is a son of z then DDP(y)
DDP(xq). |

Proof Suppose z is a proper dominator of y, but DDP(y) is a
proper dominator of DDP(xq). Then DDP(y) #£ y so there is a
DD path p from IDOM(y) to DDP(y). Let x' be a son of =z
which is not a dominator of y. Let p' be a simple
x'-avoiding path from z to y. Composing p' and p, we have
an x'-avoiding DD path from z to DDP(y). But this implies
that DDP(x') is a proper dominator of DDP(x1), contradicting .
the assumption that x; has DDP value earliest in the

dominator ordering. Hence, DDP(y) is dominated by DDP(x1).

Suppose y # xp and y is a son of z. Since 2z 1is

5-31

contained on a cycle avoiding some son of z, there must be a
DD path ¥ from z to DDP(x¢). If P avoids all sons Qf z in
DT, then we have our result; DDP(y) = DDP(x1)- Otherwise,
let X be the last node in P which is a son of z. Let P71 be
the subsequence of P from X to z. For any x' ¢ vV-{x}, let
p2 be a x;-avoiding simple path_from z to X. Composing D1
and pp, we have a x'-avoiding bD path from z to DDP(x1y-
Hence, DDP(x') = DDP(x1). If X =z xp then y # X so we have
DDP(y) = DDP(xq). On the other hand, if X # x> then DDP(x2)
= DDP(x1). Since DDP(y) dominates DDP(xz)._ we again have
DDP(y) = DDP(x1). O

Let DT be the dominator tree of G with the edges
6riented so that for each node z ¢ V contained on a cycle
avoiding some node immediately dominated by z, the lefﬁ-most
son of 2z in DT has DDP value at 1eas£ as late in the
dominator ordering as the other sons of z (by Lemma 5.6.2,
ihe remaining sons have the same DDP), and number V by a

preordering of DT.

For each x e V-{r}, let K(x) consist of (1) the set of
nodes contained on the dominator chain from DDP(x) to
IDOM(x) blus (2) the immediate dominator of DDP(x) if it is

contained on a DDP(x)-avoiding cycle.

Let. PV'(1),PV'(2),...,PV'(n) be a sequence of
partitions of v‘such that:

(a) PV'(1) partitions V into unit sets, each set named for

5-32

the node which it contains.

(b) For x = 2,...,n let PV'(x) = PV'(x-1) if DDP(x) = x.
Otherwise, let PV'(x) be derived from PV'(x-1) by collapsing
each set containing an element of K(x)-{IDOM(x)} into the
set containing IDOM(x) in PV'(x-1)‘andrthen renaming this
set to IDOM(x).

For w,x ¢ V such that w dominates X, let h(w,x) be the name
of the set containing w in PV'(x).

Theorem 5.6.1 If w is contained in no x-avoiding cycles, _
then h(w,x) = w and otherwise h(w,x) is the last node on the
dominatorvchain from w to x such that all nodes occurring up
to and including h(w,x) on this chain are contained on
x—avoiding cycles.

Proof Let (w=yt,...,yk=X) be the dominator.chain from w to

X.

Suppose w is not contained on an x-avolding cycle.
Consider some node yivon-this dominator chain following w.
If DDP(y;j) dominates w then by Lemma 5.6.1, w is contained
in an x-avoiding cycle, a contradiction. Thus w ¢
 K(¥i)-{yi-1} and w is not collapsed into yj_1, so W=
h(w,¥1) = ... = h(w,yk) = h(w,x). |

Otherwise, suppose w is contained on some x-avoiding
cycle. Assume there is a node yj, on the dominator chain
following w to h(w,x), which is net contained on an

x-avoiding cycle. By Lemma 5.6.1, DDP(yj) = yi. Then

5-33

hiw,yji) properly dominates yj, sSo there is some yj-1 =
h(w,yj) on the dominator chain from yi to w such that

DDP(yj) dominates h(w,yi). By Lemma 5.6.1, yi is contained

on an x-avoiding cycle, a contradietion.

- Finally, assume h(w,x) # w and let Yi be the first node

following h(w,x) on the dominator cﬁain from w to x.
Suppose y; is contained on an x-avoiding cycle. Then by
Lemma 5.6.1, DDP(y;) properly dominates yj. Since h(w,x) #
w, h(w,x) is contained on an x-avoiding cycle, sd h(w,x) ¢
K(Yi+1)-{yi} and hence h(ﬁ,x) is merged 1into Yi,
contradicting our assumption that h(w,x) is the name of a
set in PV'(x). (
Corollary 5.6.,1 For w,x ¢ V such that W dominates x, if w is
contained on no x-avoiding cycles then C2g(w,x) = w and
otherwise, C2g(w,x) is the unique node dominating x and
immediately dominated by h(w,x).

Proof follows directly from Theorem 5.6.1.

Our algorithm for computing Cg will require the' usual
disjoint set operations UNION and FIND plus the operation

RENAME(x,y) which renames the set x to y.

5-34

Algorithm 5D

INPUT Flow graph G = (V, E, r), DDP, and ordered
(W1,x1),...,(wg,xg) such that each wi dominates xji.
QUTPUT C26(w1,x1),...,C2¢(ws,x1).
begin
declare SET, FLAG, BUCKET := arrays length n = (Vs
Compute the dominator tree DT of G;
for all z ¢ V such that z has a son x in DT with
DDP(x) dominating z do
begin
let x' be the son of z which has DDP(x')
latest in the dominator ordering;
install x' as the left-most son of Z;
end;
Number the nodes of Vv by the preordering of the
resulting oriented tree;
for x := 1 to n do
begin
SET(x) := {x};
FLAG(x). := FALSE;
BUCKET(x) := the empty set {};
_end; ‘
for i 1 to ¢ do add wi to BUCKET(xi);
for x := 1 to n do
begin
if x > 1 and DDP(x) # x then
‘ begin
z := the father of x in DT;
FLAG(z) := TRUE;
NEXT(z) := x;
RENAME(FIND(z),z);
y := the father of DDP(x) in DT:
D: if FLAG(y) and y # z do .
. UNION(y,z);
u := FIND(DDP(x));

till u = z do
begin
FLAG(u) := TRUE;
UNION(u,z);
u := FIND(NEXT(u));
end;
end;

comment Apply Corollary 5.6.1;

for all w ¢ BUCKET(x) do

if FLAG(w) then C2G(w,x) := NEXT(FIND(w))
else C2g(w,x) := w; .

end;

pairs

5-35

Theorem 5.6.2 Algorithm 5D correctly computes
c2g(wi,x1),...,C2g(wg,xy) in time almost linear in a+y. |
Proof (Sketch). It is possible to éstablish that for all w
clV after the x'th iteration of the main loop:

(1) NEXT(IDOM(W)) = w for w # r and w properly dominates x.
(2) The sets are just as in PV'(x), with h(w,x) the name of
the set containing W. |

(3) FLAG(w) = TRUE iff w is not contained in a x-avoiding
cycle.

Then the correctness follows from Corollary 5.6.1.

We compute DT by the algorithm of [T4] in time almost
linear in a+y. The other steps of Algonithm 5D may easily
be shown to require a 1linear number of elementary and
disjoint set operations. Hence, by the results of [T3], the
total cost in elementary operations is almost linear in a+s.

0

5-36

5.7 Computing DDP on Reducjble Flow Graphs

This - section is concerned with the function DDP
required by Algorithm 5D to compute C2. Unfortunately, we
know of no algorithm which computes DDP efficiently fdr G
nonreducible. We assume henceforth that G is reducible, so
by the results of Hecht and Ullman [HU1], all cycle edges of
G are A-cycle edges (they lead from nodes to their proper
dominators). Let ST' be the spanning tree derived from} the
depth first search spanning tree ST of G by reversing thev
edge list. The nodes of G are numbered by a preordering of
ST'.

Lemma 5.7.1 If x > y and both x and y are unrelated in DT,
then any path p from x to y contains a dominator of x.

Proof It is sufficient to assume that p is simple (acyelic).
Let (u,v) be;the first edge through which p passes such that
v <y < u. Observe that the only edges of G in decreasing
preorder are A;cycle edges, so (u,v) is an A-cycle edge ahd
v dominates u. We claim also that v dominates x. Suppose

not, so there is a v-avoiding path p' from the root r to x.

- "Composing p' with the subsequence of p from x to u, we have

a v-avoiding path from r to u, which contradicts the fact

that v dominates u. Hence, v dominates x. [

We now show that in the reducible flow graph G, DD
paths have a 'very special structure. Let p =

(X=yQy.+-syk=%) be a DD path from x to w passing through

5-37

edges e1,...,ek, where ej = (yi-1,yi)-

Theorem 5.7.1 ek is an A-cycle edge and e1,...,ek-1 are not.
Proof. Since p can not contain any dominators of x other
than w, yk-1 and x are unrelated in DT. Assume ek =
(Yk-1,%w) is not an A-cycle. Hence, x > w > yk-1 and
applying Lemma 5.7.1, (X=yQ,...,yk-1) Bust contain a node z
which is a proper dominator of x, contradicting our

assumption that p is DD.

Consider any ej = (yj_.1,yi) for 1 <-i < k. Since p is
DD, yj does not dominate x. Thus, there is a yi-avoiding
path py from the root r to x. Also, let p» be the
subsequence of p from x to yj_q. Composing p1 and pp, we
have a yj-avoiding path from the root r to yj_1, which
implies that yj_q is not dominated by yj. Hence, none of
~ ©€1,...,ek-1 are A-cycles. 0
Theorem 5.7.2 Let p be a DD path from x to ﬁ, where w
properly dominates x and let z be a immediate-predecessor of
x in G Such that z,x are unrelated in DT. Then p' = (z,x)°p
is a DD path avoiding all sons of z in DT.
Proof To show that p' is DD we need only demonstrate that w

properiy dominates z = and p avoids z, Let p

(X=yo,...,yk:w). Since Z,X are unrelated in DT and w

properly dominates x, w is distinct from z.

We claim that w phoperly dominates z in G. Suppose

not, then there must be a w-avoiding path p¢ from the root r

5-38

to z. But py*(z,x) is a w-avoiding path from the root r to
x, contradicting our assumption that w properly dominates x.

Hence, w properly dominates z.

Suppose p contains z, sO Z = yi for some 1. < i < k.

Then (z,x=zyq,...,yi=zz) is a cycle in G and must contain an

A-cycle edge. Since z,x are unrelated in DT, this implies

that for some j, 1< j <1, (yj-1,yj) is an A-cycle edge,

contradicting Theorem 5.7.1. We conclude that p avoids z.
Hence, p' = (z,x)ep is DD. -

Now suppose p contains a node y domin;ted_py z. Since
X,z are unrelated in DT, there must be a z gyﬁi&ing path po
from the root r to x. Composing po and the pbrtion of p
from x to y, we have a z-avoiding path from r to y; wﬂiéh is
impossible. Hence, p' = (z,x)*p avoids all sons of z in DT.

o

Let p be a DD path from x to w. Let the first'Aedge
(u,v) through which p passes, such that u is dominated by x
but v is not properly dominated by x, be called the first
Jump edge of p. _ |
Theorem 5.,7.3 Let x' be a proper dominator of x. If either
(1) v = w dominates x' or (2) v # w and IDOM(v) properly
dominates x', then there exists -a DD path from x' to w with
first jump edge e = (u,v).

Proof Let pq be a simple path from x' to x. Suppose p1

5-39

contains some node 2z not dominated by x'. Then the
subsequence of pi from z to x must contain x'. But this
impliés that x' occurs twice in p1, which is impossibie.
Hence, all nodes in p1 are dominated by x' énd p2 = p1°P is
a DD path. Since x' properly dominates x which dominates u,
x' also dominates ﬁ. If either (1) or (2) héld, then v does

not properly dominate x'. Thus, the first jump edge of p2

is e = (u,v). O

5-40

Algorithm S5E

INPUT A reducible flow graph G = (V, E, r).
QUTPUT DDP.

begin
declare SET,FLAG,DDP,SONS :z arrays length n = 1V}
procedure EXPLORE(x,w,e):
begin
comment there is a DD path from x to w
and e is the first jump edge of pP;
Let e = (u,v);
for each y ¢ SONS(x) such that y,u are
unrelated in DT do

begin
delete y from SONS(x);
DDP(y) := w;
end;
if x # r and not FLAG(x) then B
begin
FLAG(x) := TRUE;
x' := IDOM(x);

if FLAG(x') then
UNION(x,FIND(x'));
if NOT x = w then
begin
comment Apply Theorem 5.7.3;
if (v=w dominates x') OR (v£w and
IDOM(v) properly dominates x') then
L1: EXPLORE(x',w,e);
comment Apply Theorem 5.7.2;
for all immediate predecessors z
of x in G such that x,z are unrelated
in DT do
L2: EXPLORE(z,w,(z,x));
end;
end;
Compute DT, the dominator tree of G;
Compute ST, the depth-first spanning tree of G;
Let ST' be derived from ST by reversing the edge list;
Number the nodes of V by preorder of ST';

for all x := 1 to n do
begin

n

SET(x) := {x};

FLAG(x) := FALSE;

DDP(x) := x;

SONS(x) := the sons of x in DT;
d; T

for w := 1 to n do
for all A-cycle edges (x, w) enterlng w do
L3: EXPLORE(x,w,(x,w));
end; ~

541

Lgmmg 2.7.2 On each execution of EXPLORE(x,w,e), w dominates
x and there is a DD path from x to w with first Jump edge e.
Proof by structural induction. On each initial ecall to
EXPLORE(x,w,e) at label L3, e is a A-cycle edge (x,w) which
is clearly a DD path. Suppose on any other call to
EXPLORE(x,w,e) there is a DD path from x to w with first
'jump edge e. By Theorems 5.7.3 and 5.7.2, the recursive
calls to EXPLORE at L1 and L2, respectively, also satisfy

this lemma. [

It is also easy to prove by structural inductidn that:
Lemma 5.7.3 On each execution of EXPLORE(x,w,e), let y be a
dominator of x contained in the set named FIﬁD(yj. if y has
not previously been visited then FLAG(y) = FALSE and FIND(y)
= y; otherwise, FLAG(y) = TRUE and FIND(y) is the earliest
" node y' on the domination chain from the root r to y such
that. all nodes from y' to y on this chain have been

previously visited.

Let p be a DD path from x to w with first jump edge e =
(u,v). For k > 1, the kth jump edge of p is recursively
defined to be the (k-1)th jump edge (if this is defined and
is not the last edge through which p ‘pasées) ‘of the
subsequence of p from v to w. _ |
Lepma 5,7.4 For each W,y € V such that w properly 'dominafés
Yy, if there exists a y-avoiding DD path p from IDOM(y) to w,

then EXPLORE(IDOM(y),w,e) is eventually called, where e =

5-42

(u,v) is the first jump edge of some such p.

Proof by induction on w. Suppose the lemma holds for all w'
< w. Since e = (u,v) is the first jump edge of p, IDOM(y)
dominates u. If v = w, then (u,v) is an A-cycle edge so
EXPLORE(u,w,(u,w)) 1is executed at 1label L3, and by a |
sequence of recursive calls to EXPLORE at 1label L1, we

finélly have a call to EXPLORE(IDOM(y),w,(u,v)). Otherwise,

suppose the lemma.holds for all p lgading to w such that p

has 1less than k jump edges. 1If p has k jump edges, then by

the second induction hypothesis, EXPLORE(u,w,(u,v)) is
called at label L2. Again, by a sequence of recursive calls
to EXPLORE at 1label L1, we eventually have a call to
~ EXPLORE(IDOM(y),w,(u,v)). @

Theorem 5.7.4 Algorithm S5E correctly computes DDP for Gv
reducible, in time almost linear in a = |A].

Proof The correctness of Algorithm SE follows from Lemmas

5.7.2, 5.7.3, and 5.7.4. ST and DT may be computed (if they

have not been computed previously) by the metods of [T1,Tﬂj'
in almost .linear time. For each x ¢ V, the total cost of
all visits to x by EXPLORE is iIDOM-1[x]I + |indegree(x)| in

elementary and disjbint set operations. Hence, if we use a
good implementation of disjointvset operations (analyzed by
Tarjan[T3]), the total cost of Algorithm SE is almost linear

ina. [

5-143

5.8 Niche Flow Graphs

Here we introduce a special class of flow graphs called
niche flow graphs which in certain cases simplify the
algorithms gi?en in Sections 5.5 and 5.6 for computing Cc1
and C2, As we shall demonstraté, the transformation of an
arbitrary flow graph to a niche flow graph can be done in
almost 1linear time; furthermore, béth versions of code
motion are improved by this transformation. [E,A02]
describe a similar process, where special nodes are added to¢

the flow graph just above intervals.

Let G = (V, E, r) be an arbitrary flow graph. For any
w ¢ V-{r} with immediate dominator IDOM(w) in G, if IDOM(w)
is contained on no w-avoiding cycles then IDOM(w) is called

the niche node of w. Intuitively, the niche nodes lie just

above cycles (relative to the dominator ordering of G) and

hence are good nodes to move code into. G is é niche flow
graph if each node w ¢ V-{r}, with an entering A-cycle edge

but no entering B-cycle edge, has a niche node.

If G is not a niche flow graph, then a niche flow'graph
G' may be derived from G by testing for each W e V-{r}
- whether w has an entering A-cycle edge and no entering
B—éycle edges. If so, then add a distinct, new node W whicb
is to be the niche of w in G', an edge from @ to w, and
replace each non-cycle edge (x,w) entering w with a new edge

(x,W). The resulting flow graph G' has no more than n = |vi

5-44

additional nodes and edges. Since no B-cycle edges are
added to G', by Theorem 5.2, G' is reducible if G was. |
Lemma 5.8.1 If G is reducible and y ¢ V-{r} is contained of
an - IDOM(y)-avoiding cycle q, then y has an entering A-cycle
edge. | |

Proof Let x be the immediate predecessor of y in q. Since G
is reducible, q contains a unique node z dominating all

other nodes in q. But no proper dominator of y is contained

in q, so z y. Hence, y dominates x and (x,y) is an

A-cycle edge. U -

Let the nodes of G be numbered as in Section 5.5 by a
preordering of a depth first search spanning tree of G.
Theorem 5.8,1 If G is.a reducible niche flow graph, then for
W = n,n-1,...,2 the partition PV(w-1) is derived fﬁom PV(w)
by collapsing sets I(w)-{w} into w. |
Proof Recall that PV(w-1) is defined to be derived from
PV(w) by collapsing into w each éet z containing at least
one element y ¢ J(w)-{w}. Supposé there is a set z ¢ I(w)
in PV(w) containing some y € (J(w)-I(w))-{w}. Then, by
definition of J(w), y is contained on a w-avoiding cycle g
and IDOM(y) € 1I(w). But since z ¢ I(w), g avoids TDOM(y)
and IDOM(y) is contained in a y-avoiding cycie q'. By Lemma
5.8.1, y has an entering A-cycle edge. ASince C is a niche
flow graph,‘ IDOM(y) is the niche of y- But this is
impossible since IDOM(y) is contained on a y-avoiding cygle

q'. 0

5-45

The above theorem allows us to simplify Algorithm 5D,
which was used to compute C1g, in the case G is a reducible
niche flow graph. ‘In particular, the statement 1labeled D
may be deleted from Algorithm 5D. Similarly, in this case
the statement labeled D may be deleﬁed}from Algorithm SE.
Ihggrem 5.8.2 If G is a reducible niche node and DDP(x) # x,
then K(x) = those nodes of the dominator chain from DDP(x)
to IDOM(x).

Proof Suppose there exists some x e V such that DDP(X{‘
properly dominates x and IDOM(DDP(x)) is contained on a
DDP(x)-avoiding cycle. Let p be the DDP path from x to
DDP(x) and let p' be a simple path from DDP(x) to x.
Composing p and p', we have a IDOM(DDP(x))-avoiding cycle"
containing DDP(x). Hence by Lemma 5.8.1, DDP(x) has an
entering A-cycle edge. Since’ C .is a niche flow graph,
IDOM(DDP(x)) 1is the niche node of x. But by hypothesis,
this niche node of DDP(x) is contained on a DDP(x)-avoiding

cycle, which is impossible. O

Original Control Flow Graph

t is the text expression /Y located at ng

Figure 5.2. Transformation of a flow graph F into a

flow graph F'.

niche

5-47

O

n,@ BIRTHPT ()

SAFEPT(t) ng (f

’,}46 movept, (1)

n3

A Y
n5Q movept, (1)

"50 -I‘-oc(t) .

Figure 5.3. The dominator tree of the control flow grapl

F' *

*+d ydead Mmo1y ToujuUO0D

"§TG sandTg

9SJddAdd By} JOo 8843 JOjBUTWOD aylr

Jo

2y3

(YHLdHLYIB
lu

(4)Ld34vVS
cu

)

t

j{denows
by
v

(1) ¢1danow
Sy
v

REFERENCES

[(A] Allen, F.E., "Control flow analysis," SIGPLAN Notices,
Vol. 5, Num. 7, (July 1970), pp. 1-19.

[AU1] Aho, A.V. and Ullman, J.D., The §h§dr1 of parsing,

translation and compiling, Vol. 1II, Prentice-Hall,
Englewood Cliffs, N.J., (1973).

(AU2] Aho, A.V. and Ullman, J.D., Introduction to Compiler
Design, to appear. '

[C] Cocke, J., "Global common subexpression elimination,"
SIGPLAN Notices, Vol. 5, No. 7, (July 1970), pp.

20-24,

[CA] Cocke, J. and Allen, F. E., "A catalogue of ™
optimization transformations,"” - Design and
Optimization of Computers, <(R. Rustin, ed.),

Printice-Hall, (1971), pp 1-30.

[(E] Earnest, C., "Some topics in code ,optimization," JACM,
Vol. 21, Num. 1, (Jan. 1974), pp. 76-102.

(FKU] Fong, E.A., Kam, J.B., and Ullman, J.D., "Application
of lattice algebra to 1loop optimization," Conf,
Record of the Second ACM Symp. on Principles of
Programming Languages, (Jan. 1975), pp. 1-9.. .

[(FU) Fong, E.A. and Ullman, J.D., "Induction variables in
very high 1level languages," Conf, Record of the
Second ACM Symp, on Principles of Programming
Languages, (Jan. 1976), pp. 1-9. L

[C] Geschke, C.M., "Global program optimizations,”
Carnegie-Mellon University, Ph.d. Thesis, Dept of
Computer Science, (Oct. 1972). I

(GW] Graham, S., and Wegman, M. "A fast and usually 1linear
algorithm for global flow analysis."™ J, ACM, Vol.
23, No. 1, (Jan. 1976), pp. 172-202. ,

[HU1] Hecht, M.S. and Ullman, J.D., »:"Flow graph
reducibility,"” SIAM J, Computing, Vol. 1, No 2,
(June 1972), pp 188-202. o ,

[HU2] Hecht, M.S. and Ullman, J.D., "Analysis of a simple
algorithm for global flow .problems,"™ SIAM J. of

Computing, Vol. §, Num. 4, (Dec. 1975%), pp.
519-532. .

{(KU1] Kam, J.B. and Ullman, J.D., "Global data flow
problems and iterative algorithms," J, ACM, Vol.
23, No. 1, (Jan. 1976), pp. 158-171.

[KU2] Kam, J.B. and Ullman, J.D. "Monotone data flow
analysis frameworks," Technlcal Report 167, Computer
Science Department, Princeton Unlver31ty, (Jan.

1976) .

[K] Karr, M, "p- -graphs," Massachusetts Computer Associates,
CAID-7501-1511, (Jan. 1975).

[Ke{i Kennedy, K., "Safety of code motion," International J.
Computer Math., Vol. 3, (Dec. 1971), pp. 5-15.

[Ke2] Kennedy, K., "A comparison of algorithms for global
glow analysis," TR 476-093-1, Dept of Mathematical
Sciences, Rice Univ., Houston, Texas, (Feb. 1974).

[Ke3] Kennedy, K., "Node 1listings applied to data flow

analysis," Proceedings of the Second ACM Symposium

on Principles of Programming Languages, (Jan.
1975), pp. 10-21.

-[Ki) Kildall, G.A., "A unified approach to global program

optimization," Proc. ACM Symposium on Principles of

Programming Languages, Boston, Mass., (Oct. 1973),
pp 194- 206

[(Kn1] Knuth, D. » The art of .g_ngign programming, Yol 1:

andamentgl Algorithms, Addison-Wesley, Reading,
Mass., (1968). _

(Kn2] Knuth, D. E., "Big omicron and big omega and big
theta " SIGACT News, (Apr.-June 1976), pp. 18-24,

[LF] Loveman, D. and Faneuf, R. y "Program optlmlzatlon -

theory and practice, Z B.gggggiug§ of a Conference on
Programming LQ_EH.E§§ and Compilers for Ea_éllgl and
Vector Machines, (March 1975).

[M] Matijasevie, Y., "Enumerable sets are 'diophantine,"

(Russian), Dodl, Akad, Nauk SSSR 191 (1970), pp.
279-282.

[S] Schaefer, M., A mathematical theory of global flow
analysis, Prentice-Hall, Englewood Cliffs, N.J.,

(1973).

[Se1] Schwartz, J.T., "Automatic data structure choice in a
language of very high level," CACM, Vol. 18, Num.
12, (Dec. 1975), pp. T22-728.

[Sc2] Schwartz, J.T., "Optimization of very high level
languages - value transmission and its

corollaries," QQ puter Languages, V. 1, Num 2,
(1975), pp. 161-194,

[Sc3] Schwartz, J.T., "Optimization of very high 1level
languages -1I. Deducing relationships of inclustion

and membership," Computer Languages, V. 1, Num 3,
(Sept. 1975), pp. 161-194,

[SS] Shapiro, R. and Saint, H., "The representation of
T algorithms," RADC, Technical Report 313, Vol., June
(1972).

[T1] Tarjan, R.E., "Depth-first search and 1linear graph
algorithms," SIAM J., Computing, Vol. 1, No. 2,
(June 1972), pp. 1U46-160.

(T2] Tarjan, R., "Testing flow graph —reducibility," J;T
Comp.6 and Sys. Scienges, Vol. 9, (1974), pp
355-365.

[{T3] Tarjan, R., "Efficiency of a good but not linear set
union algorithm," J, ACM, Vol. 22, (April 1975),

pp 215-225.
[T4] Tarjan, R., "Applications of path compression on
balanced trees," Stanford Computer Science Dept.,

Technical report 512, (Aug 1975).

[{T5] Tarjan, R., "Solving path problems on directed graphs,"
Stanford Computer Science Dept., Technical report
528, (Oct 1975). A

fT6] Tarjan, R., Personal communication to M. Karr, (1976).

[Te] Tennenbaum, A., "Compile time determination for very
high level languages," Ph.d. Thesis, Courant
Computer Science Report No. 3, Courant Institute of
Mathematical Sciences, New York University, New
York, N.Y., 1974,

(U] Ullman, J.D., "Fast algorithms for elimination of common

subexpressions," Acta Informatjca, Vol. 2, N. 3,
(Jan. 1974), pp 191-213. ‘

[W] Wegbreit, B., "The synthesis of loop predicates,“, Comm,
ACM, Vol. 17, No. 2, (Feb. 1974), pp 102-112.

[R] Reif, J.H., "Combinatorial aspects of symbolic program
analysis," Harvard University, Ph.d. Thesis, Dept
of Engineering and Appied Physiecs, (1977).

[RL] Reif, J. H. and Lewis, H. R., "Symbolic evaluation

and the global value graph," Proceedings of the
Fourth ACM Symposium on Principles of Programmipng
Languages, Los Angeles, California, (January 1977).

