COMBINATORIAL ASPECTS OF SYMBOLIC. PROGRAM ANALYSIS

A thesis presented

by
John Henry Reif
to

The Division of Engineering and Applied Physics
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
in the sﬁbject of

Applied Mathematics
Harvard University
Cambridge, Massachusetts

(July, 1977)

Copyright reserved by the author.

ii

'PREFACE

This research was supported by Naval'Electronics Systen
Command Contraé¢t No. N00039-76-C-0168 and Rome Air
Development Center Contract No. F30602-76-C-0032.

Many people: have contributed to the successful

completion of this dissertation,

I am deeply indebted to my advisor Professor Harry
Lewis for inspiration.and guidance in directing the ideas of
this thesis to the printed page. I feel honored to be the
~first doctoral student of this philosoher, mathematician,
and computer scientist; I am sure that many future students

'will benefit also from his wisdom and counsel.

I wish to express my gratitude to my other advisor,
Professor Thomas Cheatham, for teaching me much of what I
know about programming 1anguéges, for vchallengingv me with
probléms in this field (some of which:are solved herein and
some which remain to be solved), and for a reading of this

- thesis,

I wish to thank Professor Christos Papadimitriou for
introducing me to fields unrelated to this thesis but
exciting nevertheless, for advice which was always excellent

(but not always taken), and for a reading of this thesis.

iii

I would like to thank Mark Davis for many spirited
discussions on program optimization, and numerous critical

but always helpful suggestions.

I would like to thank Glenn Bresnahan for serving as a
cheerful office-mate and friend, and for a very thorough

reading of this thesis.

Also, I wish to thank Phil Pura for his meticulous

corrections to the grammar and spelling in preliminary

versions of the manuscript.

I wish to dedicate this thesis to Jane Anderson for her

patience and understanding throughout this work.

PREFACE

FIGURES

SYNOPSIS

Chapter

TABLE OF CONTENTS

1. INTRODUCTION

Overview

Graph Theoretic Notions

The Global Flow Model

Unsolvability of Various Code Improvements
Within the Arithmetic Domain

Adding Procedure calls to the

Global Flow Model

2. SYMBOLIC EVALUATION AND THE GLOBAL VALUE GRAPH

N N NN NN
EWN 2O

O 3o

Summary
Introduction _
Dags and Global Value Graphs
Propagation of Constants
A Partial Characterization of ¥,

the Minimal Element of TGVG
Rank Decomposition of a Reduced GVG
p-graph Completion and Decomposition
The Algorithm for Symbolic Evaluation
Improving the Efficiency of our Algorithm
for Symbolic Evaluation
Further Applications of Global Value Graphs
Live-Dead Analysis

3. SYMBOLIC ANALYSIS OF PROGRAMS WITH STRUCTURED DATA

3~0

3.1
3.2
3.3
3.4
3.5

4. SYMB
4.0
4.1
4,2
4.3
4.y

.
.
.
.

Summary B
Introduction : .

‘Propagation of Selections

Constant Propagation and Covers of Programs
with Structured Data _

Computing ¢*, the Minimal Fixed Point of ¥’
Type Declarations and Type Covers

OLIC PROGRAM ANALYSiS IN ALMOST LINEAR TIME

Summary

Introduction

The Computation of IDEF

The Weak Environment o _
Conclusion Computing Approximate Birthpoints
and the Simple Cover :

rEE &S
!
NNOYN -

R NN
]
N NCON) -

N NN n
]
wun LW
w O &= 00— -~ Q

—t b (A b

]
=W
(O, 3¢ [o - Y

(WS W)

w N L'AJLA)
|

W O

5. CODE MOTION

5.0 Summary
Introduction
Graph Theoretic Notions
Approximate Safe Points of Code Motion
Reduction of Code Motion to Cycle Probiems
The Computation of C1
The Computation of C2
Computing DDP on Reducible Flow Graphs
Niche Flow Graphs

(GAG NG EC RC, G, N

Ut
IV W =

REFERENCES

t ot ot
LW NN = D
WL ON\D) oW

o Tyt ot or i

'
-

1.2

2.5
2.6
3.1
3.2
3.3
3.4
3.5

3.6

3.7
3-8

3.9

FIGURES

A control flow graph.

(From Kam and Ullman[KU2]) A text expression
that is covered by a constant sign but not
discovered by Kildall's algorithm.

A flow graph and its dominator tree.

The control flow graph Fq.

An eiample of a fixed point of ¥.

A dag representation of an expression.

The global value graph cvG.

A simple example of constant propagation

- through the global value graph.:

Case (b) of Theorem 2.4.

RankAdecomposition of a global value graph.
Reversal of a list in LISP.

An example of selection pairs.

The control flow graph Fpg,

An example of a coveriné expression.

The global value graph GVG* for the
program of Figure 3.4.

The selection t is replaced by the selection
variable SV¢.

A program P in LISP.

The type program P. derived from the
program P of Figure 3.7.

A program containing an input variable which
has no tight type definition.

An example of a simple cover.

Cases (1) and (2) of the definition
of H'(m,w,S).

2-17
2-25

2-28
2-32
3-10
3-12
3-14
3-32
3-43
3-4

3-49
3-50

3-54

412

(O, BN B

The dags of the program in Figure 4.1.
Dag representation of the simple cover.
A simple example of code motion.

Transformation of a flow graph F into
a niche flow graph F'.

The dominator tree of the control
flow graph F'.

The dominator tree of the reverse of the
control flow graph F'. :

427
4-28
5-3

5-46

5-47

5-u48

vii

SYNOPSIS

Much current research in computer science is devoted to

the automatic analysis and improvement of programs. The
central theme explored in this dissertation is gsymbolic

evaluation: the determination - of general, symbolic

representations for values of text within programs, holding
over all executions. These representations are called
covers and are terms (i.e. expressions containing no

predicates) in a first order logical langUage.

We are interested in egffjcient techniques for symbolic
evaluation since applications (such as the optimization of
source code before compilation) require results swiftly and

inexpensively.

Our approach is combinatorial in nature; this reflects

‘our view that the discovery of: the combinatorial structure
of symbolic evaluation is crucial to the development of

efficient methods for carrying it out.

We assume a global flow model of a program P wherein
the flow of control through P is represented by a directed
graph with nodes corresponding the blocks of 1linear blocks
of code and the edges indicate possible flow of control

between the blocks.

In Chapter 1, we define the relevant graph terminology,

review the global flow model, and formally define the notion

viii

of a cover. Further, we give a construction demonstrating
that the problem of computing a minimal (best possible)
cover in the domain of integers is recursively unsolvable.
This implies that various global flow problems are also
unsolvable in the arithmetic domain, including constant
propagation, discovery of redundant computations, and loop
invariants. Previous results by Kam and Ullman[KU2] showed
certain global flow problems in abstract (nonarithmetic)

domains to be unsolvable.

Kildall's iterative method[Ki] for symbolic evaluation
may be used to compute a class of good, approximately
minimal covers. In Chapter 2, we show that the minimal
cover of this class is unique. Also, we present a direct
(noniterative) algorithm for computing this cover with
considerably less time and space complexity than the method
of Kildall. This direct method is based on the use of a
special class of graphs, called global value graphs, similar
to those used by Schwartz[Sc2] to represent the flow Qf
values (rather than control) through the program. Certain
key lemmas and theorems in this chapter characterize the
cover which we wish to construct in'terms of a global value
'graph and reduce the symbolic evaluation to computing
dominator trees (trees used to represent the path structure
of digraphs) for which there is a very efficient algorithm
due to Tarjan[Th].

Chapter 3 extends our techniques for symbolic analysis
to a class of programs (such as those written in LISP 1.0)
which have operations for the construction of structured
objects (such as cons), and seiection of subcomponents (such
as car and c¢cdr), but no "destructive"™ operations (such as
replaca or reglagd in LISP 1.5). A key problem here is the
"propagation of selections" which is the determination . of
all objects which a selection operation may reference. The
propagation of | selections was previously used by
Schwartz[Sc2] for a different purpose, but he gave no
explicit algorithm for carrying it out. We show that this
problem is at least as hard as transitive closure, but give
a relatively efficient bit vector algorithm for its
solution. We define a class of covers similar to those df
Chapter 2, but which take into account reductions due to
selections of subcomponents. The computation of covers of
this sort is reduced to the téchniques of Chapter 2. We
also iniroduce the concept of a type cover: an expressioﬂ
for the type (rather than value) of a text expression and
holding over all executions of the program. We show that.a
type povér of a program P is equivalent to a (value) cover
.of progrém derived from P by substituting types for atoms
and with an appropriate interpretation containing a universe

of types, rather than structured values.

Chapter U4 presents an algorithm for symbolic evaluation

which is very fast (requiring an almost linear number of bit

vector operations for all flow graphs), but gives in general
less powerful results than the method of Chapter 2. The
results of this chapter may be used to speed up the method

of Chapter 2.

Finally, in Chapter 5 we discuss in detail a particular
cbde 'optimization, called code motion, which requires the
covers we have computed in the preceding chaptébs. Code
motion is the process of moving computations as far as
possible out of cycies, to locations in the program where
they are executed less frequently. Covers help us determine
how far we may move computations before they are no longer
defined. We present two formulations of code motion and
also give algorithms for carrying them out in almost linear
time (our algorithm for the first version is restricted to
reducible flow graphs, but the other runs efficieﬁtly on all

flow graphs).

x1

CHAPTER 1
INTRODUCTION

1.1 Qverview.

We rely on a global flow model of a computer program.

Ther only statements in the programming language retained in
the model are assignment statements whose 1left-hand sides
are variables and whose right-hand sides are expressions
built up from fixed sets of variables, function signs, and
constant signs. All intraprogram control flow is reduced to
a directed graph called a control flow graph indicating
which blocks of assignment statements may be reached from
which others, but giving no information about the conditions
under which such branches might occur. Executions of the
program correspond to paths through the control flow graph
beginning at a distinguished start blog¢k, although not every
such path in this graph need correspond to a possible
execution of the program. Section 1.3 describes this global
flow model in‘detail and in Section 1.5 we extend the model

to allow for subroutining.

Figure 1,1 A control flow graph.

1-2

1-3

The utility of the global flow model is that many
program analysis and improvement problems may be formulated
as combinatorial problems on digraphs. A central program
analysis problem of interest is symbolic evaluation: the
discovery, for each expression t in the text of the progranm,
of a closed form expression ¢« for the value of t which is
valid over all executions of the program. Such an
expression o will be said to cover t. We assume that 4
holds over all paths from the start block to the block where
t 1is located and furthermore, o is a term in a first order
language; that is an expression containing no predicates and
built from function signs, constant signs, and variables on

input to particular blocks of assignment statements.

We now consider Kildall's[Ki) "expression
optimizations™ for improving the efficiency of object code
derived from ieXt expressions, and relate these
optimizations to covers.

1) constant propagatiop (or folding) is the
substitution of constant sigﬁs_for text expressions covered
by constants. |

2) More generally, a text expression t located at block
n 1is redundant if on all paths from the start block to n
another text expression t' yields a computation equivalent
to that of t. Thus t may be replaced by a load operation
from a temporary address containing the result of some such

equivalent previous computation. In a somewhat restricted

1-4

version of this optimization, each such t' has the same
cover as t.

3) Code motion is the process of moving code as far as
possible out of cycles in the control flow graph (i.e. out
of program loops). The birth point of text expression t is
the eafliest block n in the control flow graph (relative to
the partial ordering of blocks by domination with the start
block first) where the computation of t is defined. Any
block n occurring between (relative to this domination
ordering) n and the original location of t has a cover for t
in terms of covers for the variables at n. The earliest
such block m, with the further property that the computation
of t can induce no new errors at block m, is called the gsafe
'gging of t; the computation of t may safely be moved to m.
(The text expression appropriate at node n may not be
lexically identical to t, but is given by the covér of t in
terms of the variables on input to m.) The safety of code
movement is also discussed in [CA,G,E,Ke1] and in Chapter 5
we discuss other restrictions to code motion in detail.

| 4) A covef for a variable on exit from a block in a
program loop is a iggn ipvariapnt. This problem is dicussed
in détail in Fong and Ullman[FU] and Wegbreit[Ww].

Various algorithms[A,C,GW,HUZ,KU1,KeZ,Ke3,S, TM,U] have
been developed for solving "easy" versions of global flow
problems where the transformations. through blocks can be

computed by bit vector operations. Kildall{Ki] formulates

—

1-5

the above expression optimizations in a more general manner
so that transformations through blocks are computed by
operations on expressions, rather than on bit vectors.
Kildall's expression optimizations may give considerably
mdre'powerful results than the easier code improvements;
however, we shall demonstrate in Section 1.4 that it is not
possible in general to compute exaét solutions of Kildall's
expression optimization problems in the arithmetic domain.
(Kam and Ullman[KU2] have recently demonstrated that there
exist global flow problems posed in certain non-arithmetic
global flow analysis frameworks which are unsolvable.) It
follows that we must look for heuristic methods for good,

but not optimal, solutions to these problems.

In ordér to'compare our methods with others we must fix
the relevant parameters of the progranm and control flow
graph. Let n and a be the cardinality of the node and edge
sets, respectively, of the control flow graph; and let o be
the number of variables occurring within more than one block
of the program (if we built into the programming language a
construct for the declaration of variables local to a block,
then the parameter ¢ is the number of global variables); and
let 1 be the 1length of the program ‘text. Qur careful
consideration of the parameter ¢t - avoiding, for example,
redundant represehtations of the same expression - is one of
the novelties of our approach; previous authors have

analyzed their algorithms primarily from the point of view

1-6

of the control flow graph parameters n and a.

Kildall[Ki] presents an algorithm, based on an
iterative method, for computing approximate solutions to
vérious expression optimization problems. & vérsion of the
Kildall algorithm used for the discovery of constant text
expressions may require 2(o(t+a)) elementary steps and 2(ca)
operations on bit vectors of length O(e2). (a(f(x)) is a
function bounded from below by k<f(x) for some k. See
Knuth(Kn2].) Kam and Ullman [KU2] show that the Kildall
algorithm discovers only a restricted class of text

expressions covered by constant signs.

Eigure 1.2. (From [KU2]) Zn* = X*nsy*n is a text expression

which is covered by a constant sign but is not discovered by

Kildall's algorithm.

1-7

Kildall's algorithm may also be wused to compute a
certain class of covers, which we characterize as fixed
points of a functional vy mapping approximate covers to
improved covers. Fong, Kam, and Ullman[FKU] give another
algorithm, based on a direct (noniterative) method which
gives weaker results than Kildall's algorithm and is
restricted to reducible flow graphs. Kildall's algorithm
may require 2(tn2) elementary steps and Fong, Kanm, and
Ullman's algorithm may require a(ta log(a)) elementary
~steps. A main inefficiency of both of these algorithms is
in the representation of the covers. Directed acyclic
graphs' (dags) are used to represent expressions, but
separate dags are.needed at each node of the flow graph.
Since a dag representing a cover may be of size a(1) the
total space cost may bé a(gn). Various operations on these
dags, which are considered to be "extended" steps by Fong,
Kam, and Ullman[FKU], cost g(1) elementary steps and cannot
be implemented by any fixed number of bit vector operations.
In general, any global flow algorithm for symbolic
evaluation which attempts to pool information separately at
each node of the flow graph will have time cost of n(za),=
since the pools on every pair of adjacent nodes must be
compared. Since ¢t 2 D, such a time cost may be unacceptable

for practical applications.

The global value graphs used in Chapter 2 are related

to a structure used by Schwartz[Sec2] to represent the flow

1-9

of values through the program. The use of a special global
value graph GVG*® leads to a relatively efficient direct
method for symbolic evaluation which works for all flow
graphs. The method derives its efficiency by representing
the covers with a single dag, rather than a separate dag at
each node. GVG* is of size O(ca+t), although the results of
Chaptér 4 may be used to build a global value graph GVG*
which in hany cases is of size O(a+i) but may grow to the
same size as GVG*. In elementary operations, the timé cost
of our algorithm for the discovery of constants (the
constants found by Kildall's algorithm) is 1linear in the
size of GVG*+, and our algorithm for finding the cover which
is the minimal fixed point of ¥ requires time almost 1linear
in the size of the GVG*. (Our algorithms work for all
flowgraphs.) Ihus our algorithm for symbolie evaluation

takes time almost 1linear in ‘ca+t (a+t in many cases), as

compared to Kildall's which may require 8(tn2) steps.

1.2 Graph Theoretic Notions.

A digraph G = (V, E) consists of a set V of elements
calied nodes and a set E of ordered pairs of nodes called
ggggg. The edge (u,v) departs from u and enters v. We say
u is an jimmediate predecessor of v and v is an jipmediate
§ggg§§§g; of ﬁ. The outdegree of a node v is the number of

immediate successors of v and the jpdegree is the number of

immediate predecessors of v.

A path fromu to W in G 1is a sequence of nodes
p = (u=vq,v2,...,vk=w) where (vi,vi+1) ¢ E for all i,
1 ¢ 1 < k. The length of the path p is k-1.

The path p may be built by composing subpaths:

P = (Vi,...,vi) * (Vi,...,VK).

The path p is a cycle if u = w. A strongly connected
component of G is a maximal set of nodes contained in a

cycle.

A node u is reachable from a node v if either u = v or

there is a path from u to v.

We shall require various sorts of special digraphs. A
LQQ&QQ digraph (V, E, r) is a triple such that (V, E) is a
digraph and r is a distinguished node in V, the root. A
flow graph is a rooted digraph such that the root r has no

predecessors and every node is reachable from r. A digraph

o Al i b S N R

1-11

is labeled if it is augmented with a mapping whose domain is
the vertex set. A orjented digraph is a digraph augmented
with an ordering of the edges departing from each node. We

shall allow any given edge of an oriented graph to appear

more than once in the edge 1list.

A digbaph G is acyclic if G contains no cycles, c¢yeclic

otherwise. Let G be acyclic. If u is reachable from v, u

is a descendant of v and v is a ancestor of u (these
relations are proper if u # v). Nodes with no proper

ancestors are called roots and nodes with no proper
descendants are Jleaves. Immediate successors are called

SQng. . Any total ordering consistent . with either the

descendant or the ancestor relation is a ‘Lgpglggiggl
ordering of G.

A flow graph T is a tree if every node v other than the

root has a unique immediate predecessor, the father of v. A
topological ordering of a tree is a preordering if it

proceeds from the root to the leaves and is a postordering

if it begins at the leaves and ends at the root. A spanning

tree of a rooted digraph G = (V, E, r) is a tree with node

set V, an edge set contained in E, and a root r.

. na n3 (5

Figure 1.3. A flow graph and its dominator tree.

Let G = (V, E, r) be a flow graph. A node u domjinates

a node v if every path from the root to v includes u (u

properly domjinates v if in addition, u £ v). It is easily

shown that there is a unique tree Tg, called the domjpator

nggvdf G, such that u dominates v in G iff u is an ancestor
of v in Tg. The father of a node in the dominator tree is
the immediate dominator of that node. The symbols %, 3, -
denote the dominator, proper dominator, and immediate

dominator relations, respectively.

All of the above properties of digraphs may be computed
very efficiently. An algorithm has lipear time cost if the
algorithm runs in time O(n) on input of 1length n and has
almpost 1linear time cost if the algorithm runs in time
O(na(n)) where o is the extremely slow growing function of
[T3] (a is related to a functional inverse of Ackermann's
function). Using adjacency lists, a digraph G = (V, E) may
be represented in space O(|V|+|E}). Knuth[Kn1] gives a
1ihear time algorithm for computing a tépological ordering
of an acyclic digraph. Tarjan [T1] presents linear time
algorithms for computing the strongly connectedA components
of a digraph and a spanning tree and in [T4] gives an almost
linear time algorithm for computing the dominator tree of a

flow graph.

1-14

1.3 The Global Flow Model.

Let P be a program to which we wish to apply various
global code improvements. In this section we formulate a
global flow model for P, similar to a model described by Aho
and Ullman[AU1] and others.

The control flow graph F = (N, A, s) is a flow graph
rooted at the start node s ¢ N. A control path is a path in
F. -Hereafter':, :, + will denote the dominator, proper
dominator, and the immediate dominator relations with

respect to the fixed rooted digraph F.

As described in Section 1.1, each node n ¢ N is a blogk
of assignment statements. These blocks do not contain
conditional or branch statements; control information is

specified by the control flow graph.

Program variables are taken from the set {X, Y, Z,...}.

An assignment statement of P is of the form
X = a

where X is a program variable and o is an expression built
from program variables and fixed sets C of gonstant signs
and»e of function signs. A program variable occurring
within only a single block n ¢ N is local to n. Let ; be
the set of program variables occurring within P and not
local to any block. For each program variable X ¢ g and

block n ¢ N-{s} we introduce the jpput variable X' to

denote the value of X on entry to block n. We use the
symbol X*S, considered to be a constant sign, to denote the

value of X on input to the program P at the start block s.

Let EXP be the set - of expressions built from input
variables, C, o. Thus, a« ¢ EXP is a finite expression
consisting of either a constant sign ¢ e C, an 1input
variable X’n representing the value of program variable x’n
on input to block n, or a k-adic function sign 6 ¢ 6
prefixed to a k-tuple of expressions in EXP. The text
expressions as well as the covering expressions sought are
expressions in EXP. For each X ¢ £ and block n ¢ N such
that X is assigned to at n, let the output expression Xn+* pe
an expression in EXP for the value of X on exit from block n
in terms of constants and input variables at block n. A
text expression t is an output expression or a subexpression
of an output expression. Note that each text expression t

 06rresponds to a string'of text on the right hand side of an

assignment statement of P.

For example, let n be the block of code:

X := X - 1
Y := Y + U4
Z := X %Y,

Then ZD* = (X*n-1)#(y*n+l4) (or in the more proper prefix
notation, (# (- XN 1) (+ YN U4))) is the text expression

"associated with the string of text "X * YY" at the last

assignment statement of n.

An jnterpretation for the program P is an ordered pair
(u, 1). The universe U contains a distinct value I(e) for
each constant sign ¢ ¢ C. For each k-adic function sign e ¢
6, there is a unique k-adic operator I(e) which is a partial
mapping from k-tuples in UK into U. We assume I(cq) # I(c2)
for each distinct €1, c2 ¢ C (every value has at most one
name). A program is in the arithmetic domajp if it has the
interpretation (Z, Iz) where Z is the set of integers and Ig
maps signs +, -, *, / to the arithmetic operations addition,

subtraction, multiplication, and integer division.

An expression in EXP is put in reduced form by
répeatedly substituting for each subexpression of the form
(® eq...cx),» that constant sign ¢ such that I(ec) =
1()(I(c1),...,I(ck)), until no further substitutions of
this kind can be made. We assume the blocks are reduced in
the sense of Aho and Ullman[AU1], so each text expression is
a reduced expression. We also assume that the output

expressions Xn* are reduced (and thus uniquely determined).

A global flow svystem n is a quadruple (F, g, U, TI)
where F is the control flow graph of P, ¢ is the set of
progfam'variables and (U, I) is an interpretation. The next
définitibns deal with a fixed global flow system g = (F, g,

u, 1).

We now define origin(a«), where o ¢ EXP, which
intuitively is the earliest point at which all the
quantities referred to in o are defined. Let N(a) = {n
the input variable XN occurs in «}. If N(o«) is empty then
origin(a) is the start block s and otherwise origin(e) 1is
the earliest (i.e. closest to s) block in N(«) relative to
the domiﬁator ordering 3. The origin need not exist for
arbitrary expressions in EXP, but will be well—défined in
all the relevant cases (i.e. origin exists for all text
expressions and their co#ers). Note that if a text
expression t contains no input variables the origin(t) = s,
and otherwise origin(t) is the block in N where that

assignment statement is located.

Let 4 be an expression in EXP and let p be a control
path beginning at the start block s and containing
origin(a). Then note that each node in N(a«) is contained in
P- We give a recursive definition for EXEC(a,p), the
expression for the value of o« in the context of this control
path p; EXEC(a,p) is defined formally as follows:

i) ifp ; (s) then EXEC(a,p) is the reduced expression
dérived fﬁom a. |

i1) otherwise, if p = p'c(m,n) then EXEC(a,p) =
EXEC(a;,p') where a' 1is the expression obtained from a by
substituting the oUtputb expression Xm* for each input

variable_x*n, and putting the result in reduced form.

1-18

An expression o ¢ EXP covers a text expression t if
EXEC(t,p) = EXEC(a,p)
for every control path p from s to origin(t). Hence, if a
covers t then a correctly represents the value of t on every
execution of program P. For example in Figure 1.1, Zzn#> is
covered by Z'ni#y’s. Note that the origin of any cover a of
a text expression t is always well defined since the

elements of N(a) will form a chain relative to i.

A cover is a mapping y from the text expressions of P
to. expressions in EXP in reduced form such that for each
text expression t, y(t) covers t.

Lemma 1.3 If o« ¢ EXP covers text expression t then origiﬁ(u)
> origin(t).

Proof by contradiction. Suppose origin(a) does not dominate
origin(t). Then o must contain an input variable x*N such
that n is not a dominator of origin(t). Hence, there is an
n-avoiding control path p from the start block s to
origin(t) such that EXEC(e,p) contains X*n put EXEC(t,p)
does not, so EXEC(u,p) # EXEC(t,p), contradicting ‘the

assumption that o« covers t. O

We extend 3 to a partial ordering of covers. For each

* .. *
pair of covers ¥q1 and ¥2, %1 + v iff origin(y1(t)) >
origin(yo(t)) for all text expressions t.

We wish to compute covers minimal with respect to this

partial ordering.

1-20

1.4 Unsolvability of Various Code Jmprovemenis
Within the Arithmetic Domain

The introduction listed a number of code improvements
which are related to the problem of determining minimal
covers of text expressions. Here we show that éven constant
propagation, the simplest of these improvements, is
recursively unsolvable in the arithmetic domain.
Previously, Kam and Ullman {KU2] have shown related global
flow problems to be insolvable in an abstract, nonarithmetic
ddmain.

Theorem 145. In the arithmetic domain, the problem of
discovering all text expressions covered by constant signs
'is undecidable. ,

Proof. The method of proof will be to reduce this problem
to that of the discovery of text expressions covered by

constant signs within the arithmetic domain (2, Igz).

Let {xo,x1,x2,,.,,xk} be a set of variables, where k >

5. Matijasevic[M] has shown that the problem of determining

if a polynomial Q(X{,Xz,...,xk) has a root in the natural

| " numbers (Hilbert's 10th problem) is recursively unsolvable.

Consider the flow graph Fq of Figure 1.4. Let t be the
text expression X3f/(1+Q(X¥f,...,X%f)2) located at block f.
We show t is covered by a constant sign iff Q has po root in

the natural numbers.

2
f (< ’=X0/(I+Q(X],X2,"',Xk))

Figure 1.4. The control flow graph FqQ-

1-21

1-22

For any control path p from the start block s to the
final block f and for i = 0,1,...,k let Xxi(p) =
I(EXEC(XZf,p)) = the value of Xi just on entry to [relative
to p. Also, let X(p) = (X1(p),...,Xk(p)). Observe that for
any k-tuple of natural numbers z, there is a contrdél path p
from s to f such that z = X(p).

IF. Suppose Q has no root in the natural numbers. Then for
each control path p from s to f, Q(X1(p),...,xk(p)) # 0, so
EXEC(t,p) = 0. Thus, t is covered by the constant sign 0.
ONLY IF. Suppose Q has a root z in the natural nﬁmbers.
‘Then it 1is possible to find execution paths p and q from s
to f such that z = X(p) = X(q) and such that X(p) = 0, X(q)
= 1. Hence EXEC(t,p) = 0 and EXEC(t,q) = 1, so t is not
covered by a constant sign. [
Corollary 1.4. In the arithmetic domain, the following
global flow problems are unsolvable: discovery of minimal
covers, bibth and safe points of code motion, redundant text
expressions, and loop invariants.
Proof. It is easy to show that the problem of discovery of
constant text expressions reduces to each of these problems.
"Add the édge (f,n1) to the control flow graph F of Figure
1.4, so t is contained is a cycle of F. Then by Theorem
1.&, Q has po root in the natural numbers iff t 1is covered
by 0| -
iff s is the birth point of t

iff s is the safe point of t

iff t is redundant on entry to f

iff t is a constant loop invariant.
Thus, the problem of discovery of whether text expression ¢t
is covered by a constant reduces to each of the above global

flow problems. (Note that the problem of safety -of code

motion is also hard for other reasons; if we add the text

expression t' = 1/Q(x?f,...,x§f)vto block £ then Q has no
root in the natural numbers iff t' is safe at f.) O

The above reéults indicate that we must 1look for

methods for computing approximations to minimal covers. The

method of Kildall[Ki] may be applied to compute such a class

of covers. In Chapter 2 we define a functional Y mapping

(as each iteration of Kildall's algorithm might) covers to

covers by comparing covers of input variables at given

blocks in N to dovers of corresponding output expressions of

variables at immediately preceding blocks. We show that the

minimal fixed point of v exists, is wunique, and give an

efficient algbrithm for computing this cover.

In Chapter 3 we extend our results to programs ‘which

manipulate lists and expressions, such as LISP 1.0.

An extremely efficient algorithm is presented in

Chapter 4; this almost linear time algorithm yields a cover

which is weaker than the minimal fixed point of ¥ computed

in Chapter 2, but 1is probably good enough for most
applicatiohs.

1-24

Finally, in Chapter 5 we investigate in some depth a

program improvement called code motion which is the process

of moving computations as far as possible out of control
cycles into new locations whieh the computations are

executéd less frequently. Covers computed by methods of

previous chapters are useful here since we must discover the

earliest block (relative to the domination ordering) in the

control flow graph where the computations are defined.

1.5 Adding Procedure Calls to the Global Flow Model

This section describes how the global flow model of
Chapter 1.3 may be extended to take into account
non-recursive procedure declarations and calls. That is, we
now extend thé programming language so as to incluée in
addition to assignment statements, procedure declarations
and procedufe call statements, and then show how to
construct appropriate control flow graphs for programs in
tﬁe extended language. We assume dynamic binding of
prdcedure variables and call-by-value, though this scheme
could be modified to allow static binding or

call-by-reference.

We assume a majin body M of program text with associated

control flow graph (Nm,AM,SM)-

A procedure declaration is of the form
procedure R(X4,...,Xy) <procedure body>

where the procedure body contains an arbitrary string in the
programming language, followed by a statement of the form:
result tg; |

where tp is a text expression. The associated control flow
graph Fp = (Ng, AR, SR) and node fR ¢ NR specify the flow of
control within the procedure body of R; all invocations of R
start at sp and finish at fg. We assume the result
statement is the only statement located at f and f has no

departing edges in AR. Each call to R (which may be located

1-26

within the main program or in the body of any procedure
including that of R itself) is an assignment of the form:
X iz R(t1,...,tk)

where t1,.;.,tk are text expressions, and the execution of
this call ¢to R invokes an execution of the body of R, with
Xj set to the current value of tj Just before entering R,
for j = 1,...,k.> (Hence, we assume call-by-value rather
than call—by-réference.) Let r be the value of the result
expression +tgR- | On exit from the body of R, the values of
the variables X1,...,Xx are reset to their original values
just before entering R on this invocation. (Hence, we
assume dynamic binding rather than static binding.) Finally,

the program variable X assigned to R(t1,...,tk) is set to

value r.

The control flow graph Fp for program P is constructed

by
(1) first merging the control flow graph of the main body
and the control flow graphs of all procedure bodies,
(2) setting syM to be the étart block,
(3) for each result statement

result tp
substitute the assignment

Xgp := tR
where Xg is a new program. variable not assigned anywhere
else in the program, and

(4) for each block‘n of the form:

stmq;...;8tmj_q;stmj;...stmk
where stmj is a procedure call X := R(t1,-..,tk)

(a) delete block n and substitute in its place the blocks

n1 "Stm{;...stmi-1;X1:=t13%X:=X15 - X=Xk Xk:i=tk"

n2 = "X1:=%¥1;...:Xk:=Xk; X:=XR;stmis+1;...;stmk"

where X{,...,Xx are new program variables.

(b) Add edges (n1,sR) and (fR,n2) to the edge set and- for
each edge (m,n) entering n substitute an edge (m,n1t)

entering n1, and for each edge (n,m) departing from n

substitute the edge (np,m) departing from n2-.

