CHAPTER 2

SYMBOLIC EVALUATION AND THE GLOBAL VALUE GRAPH

2.0 Summary.

As ip Chapter 1, we assume a global flow model in which
the expressions computed dre specified, but the filow of
control is indicated only by a directed graph whose nodes
are blocks of assignment statements. We develop a direct
(non-iterative) method for finding general symbolic values
for expressions in the text of the program. Our method
gives results similar to an iterative method due to
Kildall[Ki] and a direct method due to Fong, Kam, and
Ullman[FKU]. By means of a structure called a global yvalue
graph which compactly represents both symbolic values and
the flow of these values through the program, we are able to
obtain results that are as strong as either of these
algorithms at a lower time and space cost, while retaining

applicability to all flow graphs.

e e

2-2

2.1 Introduction.

Let us review the basic definitions of the global flow
model defined in Section 1.2. Let P be the program which we
wish to analyze and improve. The flow of control through P
is represented by the control flow graph F = (N, A, s) where
N is a set of blocks of assignment statements, A is a set of
edges specifying possible flow of control immediately
between blocks, and s ¢ N is the+*start plggk from which all
flow of control begins. A control path is a path in F. Let

->

, 3, 3 denote respectively the immediate dominator

relation, proper dominator relation, and the dominator

ordering, which is a partial ordering.

Let {X, Y, Z,...} be the set of pfogram variables, and
let : be the set of program variables occurring within more
than one Block of N. For each n e N-{s} and prégram
variable X ¢ I we introduce the input varjable X’ to denote

the value of X on entry to block n. Also, X'S represents

the value of program variable X € I on entry to the program

P at the start block s; X*S is considered to be a constant

sign rather than an input variable. Let EXP be a set of
expfessions built from input variables and fixed sets of
constant and k-adic function signs. For each program
variable X ¢ : and block n ¢ N such that X is assigned to at
n, let Xn* denote the expression in EXP for the value of X

on exit from n in terms of constants and input variables at

2-3

n. Xd* 1is called the output expression for X at m. The
lext expressions of P are the output expressions plus their
subexpressions. Note that input wvariable X*P is a text
expression only if X occurs in the right hand side of an
assignment statement of block n before X is assigned to. 1In
this section and the next, it will be useful to assume that
the text expressioné include agll input variables; for each X
€ Zvand block n € N-{s} such that X*n is not an input

variable, add at n the dummy assignment X := X.

An jnterpretation was defined in Section 1.2 to contain
a universe U of values and mappings from contant signs to U,
and from k-adic function signs to mappings from UK ¢to U. An
expression in EXP is reduced relative to an interpretation
by repeatedly substituting constant signs for constant

subexpressions.

For each o ¢ EXP, origin(a) is the earliest block n
relative to the domination ordering 3 (with the start block
s first) such that every block referred.to in 4 is contained
on all control paths from s to n. For each control path p
from s and containing origin(a), EXEC(a,p) is intuitively
the expression in EXP for the value of o relative to p. An
expression o« ¢ EXP govers text expression t if

EXEC(t,p) = EXEC(a,p)
for all contfol paths from s to origin(t); A cover v is a

mapping from text expressions to EXP such that y(t) covers t

2-4

for each text expression t. We use origin to induce the

partial ordering > of covers; for each pair of covers y and
* *

v', v > ' iff origin(¢(t)) - origin(y'(t)) for all text

expressions t.

.‘In Chapter 1 we showed that the problem of computing
covers vminimél with respect to 3 over arithmetic domains is
unsolvable; hence we consider a simple class of covers that
might be computed by an algorithm due to Kildall. To
construct this class of covers, Kildall's algorithm would
first take a pass through the program and construct a
mapping yg from text expressions to EXP; vp may not be a
cover bﬁt has the property that for all text expressions t,

EXEC(yg(t),p) = EXEC(t,p)
for some (rather than all) control paths p from s to
origin(t). The algorithm would then jteratively compare
possible covering expressions bf input variables at
particular blocks to the corresponding output expressions of
pfeceding blocks, and'propagate the results to predecessor
blocks. -More precisely, for any mapping ¢ from text
expressions to EXP, let Y(v) be the mapping ¢' from text

expressions to EXP such that for each input variable X*n,

vI(X*h) = o if o = ¥(X"7) for all blocks m immediately

preceding n in the control flow graph F,

_ X+n, otherwise.
and ¢'(t) is the reduced expression derived from text

expression t after substituting ¢'(X*n) for each input

2=5

variable X'0 occurring in t. Kildall's algorithm computes
tk(vg) for k = 1,2,... until a fixed point of ¥ is
obtained. Note that Y maps covers to covers; but ¥ need not
be monotonic, i.e.} for some cover y and text expression t,
it ﬁay happen that y(y)(t) 3 v(t).
Theorem 2.1. Each y which is a fixed point of vy is a covér,
i.e. EXEC(y(t),p) = EXEC(t,p) for all text expressions t
and control paths p from s to the block where t is located.
Proof by construction. Let p be the shortest control path
from s to a block n where there is located a text expression
t such that N
EXEC(v(t),p) # EXEC(t,p).
Thus t must contain an input variable X’D such that
EXEC(¥(X*D),p) # EXEC(X’N,pP).
Clearly, v(x*n) £ x*n. Let m be the next to last block in
p, so p = p'*(m,n). By definition of ¥, (X)) = v(xm?).
Since ¥(X*N) contains no input variables at n,

EXEC(¥(X*M),p) = EXEC(v(X*D),p')

EXEC(%(X®*),p'), since v (X*D) = v (xm+) .
EXEC(Xm+,p') by the induction hypothesis,

EXEC(X*N,p) by definition of EXEC. [

In Section 2.2, we show that ¥ has a wunique minimal
fixed point v*, We then show (Sections 2.3-2.7) that while
the problem of finding minimal covers is hopeless, that of

finding v* is not only solvable but can be done efficiently.

Thus‘we provide an efficient algorithm for finding the

2-6

minimal cover among those of the type computed iteratively

by Kildall's algorithm.

'In fact the rest of this chapter is presented in a more
general setting than is suggested above, so as to lay the
foundation for related algorithms in Chapter 3 which deal
with programs that operate on structured data. The overall
plan is to introduce (in Section 2.2) a special class of
graphs called global value graphs which represent the flow
of values (rather than gcontrol) through the program P; and
we define, for each global value graph GVG, a set rgyg of
approximate covers associated with it. rgyg is in each case
a finite semilattice which thus has a unique minimal element
VGVG, and which is efficiently calculated by the algorithm
presented in Sections 2.3-2.7. As we show in Sections 2.2
and 2.8, for a particular choice of GVG, wgyg is actually
, the minimal fixed poinf of the functional ¥, so our
general algorithm can be used to find v¥ efficiently.
(Indeed, the whole presentation could be made uniform by
replacing the functional ¥ in an apppfopriate way by a
functional Ygyg that depends on the particular global value
graph; then Vgyg, the minimal element of Tgyg, would be in
each case the minimal fixed point of ¥gyg. We have chosen

not to do so, since only Y as defined here has any

historical significance.)

2-1

‘Figure 2.1.. A fixed point of ¥ covers 20* with the

expression X’ n#y*m,

2-8

2-22ax§9_n_¢§lmllalmmm;-

A labeled dag D = (v, E, L) 1is a labeled, acyclic,
oriented digraph with a node set V, an edge list E giving
the qrder of edgés departing from nodes, and a l1abeling L of
the nodes in V. A rooted labeled dag (D,r) represents an
expression a if a is the parenthesized l1isting of the labels
of the subgraph of D rooted at r in topological order from r
to the leaves and from left to right. (Where D is fixed, we

simply say r represents ¢ if (D,r) so represents a).

The dag D is minimal if each node r ¢ V represents a
distinct exﬁression. Any expression or set of éxpressions
‘may be represented, with no redundancy, by a minimal labeled
dag D. In particular, Qe use the minimal dag p(n) to
represent efficiently the set of text expressions located at
block n. We have assumed that'each block is reduced, SO
each néde in D(n) corresponds to a unique text expression.
Aho and Ullman{AU1] describe the use of dags for
‘representing computations within blocks. Kildall[Kil ahd
Fong, Kam, Aand 'Ullman[FKU] have applied dags to various

»global flow problems.

\2-9

Figure 2.2. (D,r) represents (5+(5%#x*n)) (or more properly
in prefix notation (+ 5 (® 5 X*n))) where D is the above

dag.

We now come to the central definition. To model the
flow of values through a program P, we introduce a class of
labeled digraphs called global value graphs derived by
combining the dags of all the blocks in N and adding a set
of edges called value edges which pair nodes 1labeled with
input variébles to other nodes. More precisely, a global
valué graph is a possibly cyclic, labeled, oriented digraph
GVG = (V, E, L) such that:

| (1) the node set V is the union of the node sets of the
dags of N,

(2) E is an edge list containing (a) the edge 1list of
each D(n) and (b) a set of pairs in v2 (the yalue edges of
GVG) such that (i) the first node of each pair is 1labeled
with an input variable and (ii) for each v ¢ V labeled with
an 1nput variable X°n, and éontrol path p from s to n, there
is some value edge departing rfrom v and'entering a node
located at a block in p and distinct from n.

(3) L is a labeling of V compatible with the 1labeling
of each D(n).

Note that for each v ¢ V, if-v represents a constant
sign ¢ then v is labeled with ¢ and has no departing edges;
if v represents a function application (6 tq...tK) then v is
labeled with the k-adie function sign e and uy,...,ug are
the immediate successors of v in GVG representing tq,...,tk
respectively; if v represents an input variable X*N then v

is labeled with X*N and all the edges departing from v are

2-11

value edges. For each node v ¢ V, let loc(v) be the block
in N where the text expression which v represents |is

located.

A iglgg path is a path in GVG traversing only nodes
linked by Qalue edges; a value path is maximal relative to a
fixed beginning node if its last node has no departing value
edges.

Lemma 2.2.1 For any v ¢ V labeled with an input variable and
any control path p from the start block s to loc(v), there
is a maximal value path q from v such that all the nodes in
q have distinct loc values in p.

Proof. We consider (t) to be a trivial value path. Suppose
we have constructed a value path (v=uq,...,uj) such that
loc(uif, loc(uj-1),...,10oc(uq) are distinct blocks occurring
in this order in p. If uj is not labeled with an input
variable (and thus has no departing value edges) then
(t=u1,...,ui) is a maximal value path. Otherwise, let pj be
the subpath of p from s to the first occurrence of block
loc(uj) and 1let (uj,uj,1) be a value edge such that
loc(uj,1) occurs strictly before 1loc(uj) in p. Then
(t=uq,...,ui,ui+1) is a value path and loc(uj4q) is distinct

from blocks loc(uq),...,loc(uj). The result thus follows

from induction on the length of p. O

We assume here, as in Section 2.1, that the set of text

éxpressions of each block n ¢ N inciude all input variables

at n. Let Tgyg be the set of mappings ¢ from V to EXP such
that for all v € V,

(1) if L(v) is a constant sign c then y(v) = ¢, or

(2) if L(v) is a function sign 8 and v has immediate
successors uf,...,uk (in this order) then 4(v) 1is the
reduced expression derived from (e w(u1)...¢(uk)), or

(3) if L(v) is an input variable then either (a) ¢(v) = L(v)

or (b) y(v) = y(u) for all value edges (v,u) departing from

v.

Note that for any node v satisfying (2), ¢(v) is
determined from the input variables occurring in the text
expression which v represents. Hence any Vv ¢ Tgyg is
uniquely specified by the set of input variables satisfying
case (3a), so rgyg has at most 2/NI1Zl elements.

Lempa 2.2.2. For any y ¢ rgyg and v ¢ V, origin(v(v)) 3
loc(v). |

Proof by contradiction. Supﬁosé for some v ¢ V,

origin(y(v)) ! 1oc(v).

Hence, there must be an input variable X*N occurring in v(v)
such that n 2 loc(v), and so there is an n-avoiding path p
from the start block s to loc(v). Also, there must exist
some u ¢ V labeled with an input variable and also located
at block n, such that y(u) = X’n, By Lemma 2.2.1, we can
construct a maximal value path (u=uq,...,ux) such that

loe(uq),...,loc(uy) are distinct blocks in p. Let j be the
maximal integer < k such that ¥(uq) =...= w(uj), if L(Uj)

is an input variable, then ¥(ujy) = L(uj) = X', so loc(uj) =
n is contained in p, contradicting the assumption that p
contains n. Otherwise, if L(uj) is not an input variable

then neither is ¥(v) = #(uj), a contradiction with the

assumption that v(u) = X°%. O

We shall show that Igyg is a finite semilattice with
ordering :, and hence has a minimal element. Then we shall
define a global value graph GVG¥ such that the minimal fixed
point of ¥, the functional defined in the last section, is

the minimal element of rgyg*.

We define a partial mapping min: EXp2 -> EXP such that

for all q,a' ¢ EXP,

e pin o' = o if origin(a) 3 origin(a')
= a' if origin(a') 3 origin(ea)

or if origin(a) = origin(e') and

(i) if o = o' then o min « = a =a', Or

(ii) if « is a constant sign and e' is a function
application, then o min a!'! = o' Rin ¢ = a, OF

‘(iii) if a,a' are function Applications (e u1...uk):
(¢ a}...af) respectively, and T = @oj pin o} is
defined for 1 = 1,...,k then o min o' = (® T1...9K)

and otherwise, o mipn o' is undefined.

We extend min to the partial mapping from pairs of

elements of rgyg to rgyg defined thus: for ¢,¥' e TGVG, if
for all #le V ¢(v) min y'(v) = ¥(v) is defined then ¢ min ¢'

= ¥V and otherwise ¢ min v' is undefined.

Theorem 2.2.1. Tgyc is a semilattice with ordering 3.

Proof It is sufficient to show mjin is well defined over
TGvG. We proceed by induction. Suppose for ¥,v' ¢ rgyg and
some o« in the domain of v, y(u) min ¢'(u) is defined for all
u ¢ V such that ¢(u) is a proper subexpression of 4.
Consider some text expression v such that y(v) = 4. By
Lemma 2.2.2, both origin(y(v)) and origin(y*(v)) are
contained on all control paths from the start block s to
loc(v), so we may assume without loss of generality that
origin(y(v)) ¥ origin(¥'(v)). Observe that w(v) min v'(v) =
v(v) if origin(v(v)) 3 origin(¥'(v)) so we further assume
that origin(v(v)) = origin(v'(v)).

‘Case 1. If L(v) is a constant sign ¢ then ¢(v) = v'(v) = ¢
so v(v) min ¢'(v) = c.

Case 2. Suppose L(v) is a function sign ¢ and v has
immediate successors u1,...,uk~: By the induction hypothesis
e = ¥(ui) min v'(qi) is defined for 1 = 1,...,k. Hence
v(v) nmin w'(v) is the reduced expression derived from (e
al...al)-

Case 3. Otherwise, suppose L(v) is an input variable. . Let
p be a control path from the start block s to loc(v). By
Lemma 2.2.1, we can construct a maximal a value path
(v=u1,...,ux) such that for i = 1,...,k each loc(uj) 1is
contained in p. Let j be the maximal integer such that

w(u1)=.;.=W(UJ)-

Case 3a. If v'(v) = v(uq) =...= v(ui) # ¥'(uis+1) for some
i, 1< 1i < j, then by the definition of rgyg, ¥(v) = ¥'(ui)

= L(ui). Hence origin(¥'(v)) = nji # nj = origin(v(v)),
contradicting our assumption that origin(y*(v)) =
origin(y(v)).

Case 3b. Otherwise, Suppose vi(v) = ¥'(uq) =...= w'(uj) so
we have ¥(v) = ¥(uj) and ¥'(v) = t'(uj). Applying Cases 1
and 2, ¥(v) pin v'(v) = ¥(uj) min v'(uJ) is defined if L(uj)
is either a constant sign or function application, so we
assume L(uj) is an input variable. Since j is maximal, viv)
= ¥(uj) = L(uj). If ¥'(v) = ¥'(uj) = L(uj) then y(v) min
v'(v) = L(uj). Otherwise, suppose %'(uj) # L(uj). For each
value edge (uj,v'), by the definition of rgyg, v'(uj) =
v'(v') and by Lemma 2.2.2, origin(y*'(v')) 3 loe(v'). Hence
origin(w'(v)) = origin(v'(uj)) is distinet from
oriéin(v(v)), contradicting our assumption that

origin(v¥'(v)) = origin(y(v)). O

Theorem 2.2.1 immediately implies that:

Corollary 2.2. Tgyg has an unique minimal element pin TgygG.

Now we shall define a specjal global value graph such
‘that v%, the minimal fixed point of vy, the functional
defined in Section 2.1, is the minimal element of r applied
tq this graph. ' Again we assume that the text expressions
include all the input variables, and add dummy assignments

to satisfy this 'assumbtion} Let GVG" be the global value

graph containing the value edges {(v,u) | v represents input

variable X’D and u represents the output expression X®* for

each program variable X ¢ ¢ and edge (m,n) ¢ A of the

control flow graph F}.

Control Flow Graph Global .Value Graph

Figure 2.3. The global value graph cvc®.

We have shown that Tgyg* is a finite semilattice and
hence has a minimal element; we now show that this minimal
element is the unique minimal fixed point of v.

Theorem 2.2.2 V¥, the minimal fixed point of v, is identical
to ¥, the unique minimal element of rgvg* -

Proof. Observe that any fixed point of ¥ is an element of
Igyg®. By Corollary 2.2, Tgyg* has a unique minimal element
¥ = min Tgyg*. Suppose ¢ is not a fixed point of .
Observe that since ¥ ¢ TIgyg*, for each input variable X+,
if v(X*D) £ X*D then ¥($)(X*N) = ¢(X*N). Hence there is an
input variable X*P such that $(X*0) = X»0 but ¥(¥)(X*N) = a
where o = 3(X®*) for all blocks m immediately preceding

block n in the control flow graph F.

We are going to construct a mapping v € rgyg* distinct
from § such that ¥ : ¥, which will contradict our assumption
that § is the minimal element of TIgyg*. For each text
~expression t, let v(t) be derived from %(t) by substituting
a for »each occurrence of an, and then reducing the
Eesulting expression. We now show v ¢ rgyg*. Consider any
input variable Y*n',

Case a. Suppose (Y*n') = y*n', If y*0' 4 X*0 then v(Y'N')
= Y*n'_ Otherwise, if Y*D' = XP* then for each block m
immediaﬁely preceding block n' = n, y(Y*n') = H(YM™*) = «a,
and since X*D is not contained in a, ¥(Y*P') = ¢(Y®*) = «a,

Case b. 1If $(Y*n'} £ YD then for each block m immediately

preceding n' in F, $(Y*n') =z $(Y®*) so v(Y*n") :Vt(Ym’).

2-19

Thus ¥ € Tgyg®. For each block m immediately preceding n in

F, a = $(X*0) = ¢(XB*) so

origin(v(X*1)) = origin(y(X®*))

+ %

loc(Xm*), by Lemma 2.2.2

and hence origin(v(X*n)) n= origin(v(x*n)).

This implies

that ¥ is not the minimal element of rgyg*, a contradiction.

¥

2-20

2.3 Propagation of Constants

Let v be a minimal element of Tgyg where GVG 1is an
arbitrary global value graph (V, E, L). We wish to compute
a new labeling L' of V such that forreach velV, if ¥(v) 1is
a constant sign then L'(v) = c and otherwise L*(v) = L(v).
Nodes thus relabeled with constant signs may be discovered
by phopagating possible constants through GVG, starting from
nodes originally 1labeled with constant signs, and then
testing for conflicts. This leads to an algorithm for
constant propagation with time cost linear in the size of

the GVG.

Recall that a spanning tree of the control flow graph F
= (N, A, 8) is a tree rooted at s, with node set N, and edge
set contained in A. A preordering of a tree orders fathers
.before sons. Let < be a preordering of some spanning tree
of F. We construct an acyclic subgraph of GVG Dby deleting
value edges which are oriented between nodes in V whose loc
values are compatable with <. More formally, let E¢ be the
set of all value edges (v,u) such that loc(v) < loe(v).
Observe that (V,E-E<) is acyclic. We shall propagate
constants in a topological order of (V, E-E¢), from leaves

to roots.

OQur algorithm for computing the new labeling L' 1is

given below.

Algorithm 2A.
INPUT GVG = (v, E, L), F.
OUTPUT L'.

declare L' := array of length |V|;
Let < be a preordering of a spanning tree of F;
Q := E¢ := the empty set {};
all value edges (v,u) ¢ E such that loc(v) < loc(u)
do add (v,u) to Eg;
- comment propagate constants;
LO:for each v ¢ V in topological order of (V, E-E¢)
from leaves to roots do ‘
if L(v) is a constant sign c then L1i: L'(v) := c;
else if L(v) is a k-adic function sign o,
' u1,...,uk are the immediate successors of v in
GVG, and (® L'(uq)...L"(uk)) reduces o a
constant sign c then L2: L'(v) := ¢;
else if L(v) is an input variable and there
is a constant sign c such that L'(u) = ¢
for all value edges (v,u) departing from Vv
thep L3: L'(v) := ¢;

else begin add v to Q;L'(v):=L(v) end;

end; .
comment test for conflicts; |
L4:for each v ¢ V labeled with an input variable do
v has a departing value edge (v,u) such that
L' (v)#L'(u) thep add v to Q;
£ill Q = the empty set {} do
begin
delete some node v from Q;
if L'(v) is a constant sign then

L5:
t(v) := L(v);
add all immediate predecessors of Vv in GVG to Q;
end;
end;

end.

Lemma 2.3.1. If y(v) is a constant sign then L'(v) 1is set
to v(v) at L1, L2, or L3.

Proof, by induction on the topological order of (V,E-E¢)-
Basis step. Suppose v is a leaf of (V, E-E¢). Then L(v) is
a constant sign and so L'(v) is set to L(v) = v(v) at L1.
Inductiopn step. Suppose v is in the interior of (V, E-E<¢)
and L'(u) has been set to v(u) for all u occurring before v
in‘the topological order where v(u) is a constant sign.
Then v represents either a function application or an input
variable.

Case 1. Suppose L(v) is a k-adic function sign ¢ and
u1,...,ux are the immediate successors of v in (v, E-E<)-
If ¢(v) is a constant sign ¢ then by definition of r,
v(u1),..,v(ug) are constant signs cq,...,ck respectively and
(8 ¢q...ck) reduces to c. By the induction hypothesis
L'(uy),...,L'(ug) have been previously set to ¢1,...,Ck and
so L'(v) is set to v(v) = ¢ at L2.‘

Case 2. Otherwise, L(v) is an input variable x*n. If w(v)
is a constant sign c then ¥(v) £ X*D so by definition of
rgyGg: © = ¥(u) for all value edges (v,u) departing from V.
By the induction hypothesis, L'(u) has been set to c = v(u)
for eacﬁ value edge (v,u) ¢ E-E¢. Now we must show V has
some departing ‘value -edge (v,u) ¢ E-E<- Let T be the
spanning tree of F with preorder <. Consider the path p in
T from the start block s to n. By definition of GVG, there

is a value edge (v,u) such that loc(u) is distinct from n

2-23

and 1is contained in p. Hence (v,u) ¢ E-E¢ and L(v) is set

to ¢ at L3. 0O

Let Q@ be the value of Q Just after LY. Then v e V is
eventually added to Q and L'(v) reset to L(v) iff some
element of Q is reachable in GVG from v. If v ¢ V is
lébeled by L' with a constant sign at L4, then we show
Lemma 2.3.2. y(v) is not a constant sign iff some element
of Q is reachable in GVG from v.

Bzggﬁ. IF. Suppose ¥(v) is not a constant, but no element
of ‘U is reachable from v. Then let ¥ be the mapping from V
to EXP such that for each u V, V(u) is the reduced
expression derived from ¢(u) after substituting y(w) for
each input variable represented by a node w (i.e. w is the
unique node labeled with that input variable) from which an
element of U is reachable. Then V e TGvG but origin(¥(v)) =
s + origin(v(v)), .contradicting the assumption that ¥ is the
minimal element of rgyg.

ONLY IF. Suppose some element of Q is reachable from v in
GVG. Clearly if v ¢ U, then ¢(v) is not a constant sign.
Assuﬁe for some k > 0, if there is a path of 1length 1less

than k in GVG from some u ¢ V to an element of Q, then v(u)

is not a constant sign. Suppose there is a path

(v=wg,wq,...,wk) of length k from v to wy ¢ Q. If k = 1,
then wy ¢ T, and otherwise if k > 1, then (wq,...,wk) is a
path of 1length k-1. By the induction hypothesis, ¥(wq) is

not a constant sign. But (v,w1) € E and by the definition

2-24

of rgyg, v(v) is not a constant sign. [
Theorem 2.3. Algorithm 2A is correct and has time cost
linear in the size of the GVG.

Proof. The correctness of Algorithm 2A foliows directly

from Lemmas 2.3.1 and 2.3.2.

In addition we must show Algorithm 2A has time cost
linear in |V|+|E}l. The initialization costs time linear in
{Vl. The preordering < may be computedsin time 1linear in
IN|+|A] by the depth first search algorithm of [T1]. The
time to process each Vv ¢ V at steps LO and L4 1is
0(1+outdegree(v)). Step L5 can be reached at most |V| times
and the time cost to process each node v at step L5 i§>
0(1+indegree(v)). Thus, the total time cost is linear in

|VI+|E}. O

Figure 2.14. A simple example of constant propagatiocn

through the global value graph. 2-25

2-26

In some cases, we may improve the power of Algorithm 24
for particular interpretations by applying algebraic
identities to reduce expressions in EXP more often to
constant symbols. For example, in the arithmetic domain we
can use the fact that .0 is the identity element under
integer multiplication to mbdify Algorithm 2A so that if
node v is labeled by L with the multiplication sign and a
successor of .v in GVG is covered by 0, then at step L3 we

may set L'(v) to the constant sign corresponding to 0.

_ From the new labeling L' and GVG = (V, E L), we
construct a reduced global value graph GVG' = (V, E', L")
with labeling L' and with edge set E' derived from E by
deleting all edges departing from nodes labeled by L' with
constant signs. This corresponds to substituting constant
signs for constant text expressions in the program P. ﬁe
assdme throughout the neit three sections that GVG is so

reduced.

2.4 A Partial Characterization of &,
the Minimal Element of IGVG

Let GVG = (V, E, L) be a reduced global value graph as
constructed by Algorithm 2A of the last section and let v be
the minimal element of Tgyg. Let V be the set of nodes in V
representing constant signs and function applications (i.e.
nodes labeled with constadt and function signs). Observe
that rgyg characterizes exactly the values of any such v
over nodes in ¥ in terms of the values of ¢ over the nodes
in V-¥, i.e. in terms of the nodes labeled with input
variables. The following Theorem characterizes ¢ over v-V

in terms of y over V.

We require first a few additional definitions. Recall

that a value path is a path p in GVG traversing only nodes

linked by value edges and is maximal relative to a fixed
beginning ﬁode if the last node of p has no departing value
edges. For any node V ¢ V labeled with an input variable,
let H(v) be the set of nodes in V lying at the end of
maximal value paths from v. Note that H(v) is a subset of
9. Call two paths almost disjoipt if they have exactly one

node in common.

2-28

2.4: all maximal value

Case (b) of Theorem

paths from

v contain u and p1,p2 are almost disjoint maximal

value paths from u to uq,u2 € H(v).

2-29

Theorem 2.4. If v is labeled with an input variable, then

either
(a) ¥(v) = v(u) for all u ¢ H(v), or
(b) ¥(v) = L(u), where u is the unique node such that

(i) u lies on all maximal value paths from v but
(ii) there are almést disjoint maximal value paths from u

to nodes ui,u2 € H(v) such that ¥(u1)£¢(u2)-
Proof. Suppose y(v) is not an input variable, so there
exists a maximal value path p from v to some ui ¢ H(v) such
that v(v) = v(u1)- Assume there exists another maximal
value path p' from v to some u2 ¢ H(v) such that y(v) #
v(u2). Let z be the first element of p' such that y(z) #
v(u) and let z' be the immediate predecessor of z in p', so
¢(z') = v(v). Then by definition of rgyg, ¢(v) = y(2') =

L(z') is an input variable, contradiction.

Suppose ¢(v) is an»input variable, so ¢(v) = L(u) for
some u ¢ V. For any maximal value path p from v, let z be
the first element of p such that v(z) £ L(u) and let z' be
the immediéte predecessor of z in p. Then by definition of
rgvGg, v(z') = L(z') = L(u) so z' = u is contained on p. Now
suppose that there is a node w ¢ V distinct from u and
contained on all maximal value paths fﬁom u. Let 1loec map
from nodes in V to the respective blocks 1n.the control from

graph where they are located.

_Consider any control path q from the start block s to

2-30

block loc(u). By Lemma 2.2.1, we can construct a maximal

" value path (u=wt,...,wk) such that loc(wi),...;loc(wk) are

distinct blocks in q. Hence, loc(w) 3 10c(u).

Let ' be the mapping from V to EXP such that for all
vl ¢ V, y'(v') is derived from v(v') By substituting L(w)
for each input variable 1labeling a node from which all
maximal value paths contain w. Then ' ¢ TrGVG. But
origin(v‘(v)) = loc(w) 3 loc(u) = origin(y(v)),

contradicting our assumption that ¢ is minimal over TIgyg. o

Theorem 2.4 suggests a procedure for calculating ¢, but
there is an impliecit circularity since the calculation
(using Theorem 2.4) of ¥(v) for v ¢ v-¥ requires the
determination (using the definition of rgyg) of v(u) for u e
H(v); but since u ¢ ¥, the calculation of ¥(u) may require
the determination of ¥(w) for some other w ¢ V-U. The way
out is by the rank decompositioh discussed in the next
section. | There will remain the problem of finding almost
disjoint paths, which we consider in Section 2.5. This

'allows us to apply Theorem 2.4 withoht circularity.

2-31

2.5 Rank Decomposition of a Reduced GVG

This section describes a decomposition of the nodes of
a reduced GVG = (V, E, L) into sets for which we may
completely characterize the minimal ¥ ¢ Tgyg. This leads to

an algorithm for the construction of v.

Fong, Kam, and Ullman[FKU] describe the rank
decomposition of a dag; this provides a topological ordering
of a dag from leaves to roots over which the dag may be
efficiently reduced. Here we generalize the rank
decomposition to a possibly cyclic GVG; this provides wus a
method of partitioning V into sets of text expressions over
which y may have the same value; it also allows us to apply
Theorem 2.4 without circularity, characterizing completely
the minimal v ¢ rgyg. In Section 2.7 we apply the rank
decomposition to implement our direct method for symbolic

evaluation.

The rapk of a node v ¢ V is defined:

rank(v)

0 if v is labeled with a constant sign

1 + MAX{rank(u) | (v,u) ¢ E} for v labeled

:with a function sign

MIN{rank(u) | u ¢ H(v)} for v labeled with an

input variable.

X:=4+(2%X

Figure 2.6.
(The integer

its rank.)

)

Rank

on

2-32

decomposition of a global value graph.

the upper right hand side of each node is

2-33

Observe that in the very simple case where P containé
only a single block of code, (i.e. the start block s) then
GVG consists of the dag D(s). Hence the rank of a node v ¢
V is the 1length of a maximal path from v to a leaf of the
dag D(s); inducing a topological ordering of the dag D(s)
from leaves to roots.

‘Lemma 2.5. v(v) = v(v') implies rank(v) = rank(v').

Proof. We proceed by induction on rank of v.

Bg;i;'gign. Suppose v is of rank 0, so ¥(v) = ¥(v') is a
constant sign c¢. But since GVG is reduced, L(v') = ¢ and v!'
is also of rank O.

Inductive step. Suppose for some r > 0, rank(w) = rank(w')
for all w,w' ¢ V such that rank(w) < r and y(w) = (w').
Consider some v,v' ¢ V such that rank(v) = r.

Case a. Suppose y(v) = y(v') is the functibn application (g
a1...0k)- Then by Theorem 2.4, y(v) = y(u) for all u ¢
H(v), and similarily, y(v') = y(u') for all u' ¢ H(v'). Fix

some u ¢ H(v) and u' ¢ H(u'). By definition of TIgvG, L(u)

L(u') = ¢ and if w1,...,wk are the immediate successors of u

and wi,...,wﬁ are the immediate successors of u', then aj
V(wi) = #(wi) for i = 1,...,k. By the induction hypothesis,

rank(wy) = rank(wl) for i = 1,...,k.

Hence, rank(v) = rank(u)

1 + MAx{rank(w1),...,rank(wk)}

1 + MAx{rank(wi,...,rank(wk)}

rank(u')

2-34

= rank (v').
Case b. Suppose ¥(v) = v(v') is an input variable. By
Theorem 2.4, v(v) = w(v') = L(u) for some u ¢ V contained on
all value paths from v and v'. Hence, rank(v) = rank(v') =

- rank(u). DO

To compute the rank of all nodes in GVG we use a
modified version of the depth first search developed by
Tarjan[T1]. Because the search proceeds backwards, we
require reverse adjacency lists to store edges in E. Note.
that the RANK(V) is used in two different ways; first to
store the number of successors of node v which have not been
visited, and later RANK(v) is set to rank(v). Let V., ¥, be
the nodes in V, ¥ of rank r. We initially compute %0 and on

the r'th execution -of the main loop we compute V.-V, and

vr‘+1-

Algorithm 2B.
- INPUT GVG = (v, E, L)
QUTPUT RANK

declare RANK:= an array of integers of length |V]|;
for all v ¢ V do

RANK(v) := - outdegree(v);
r := 0;
Q' := {v | L(v) is a constant sign };
untill Q' = the empty set {} do
begin
Q := Q'; Q' the empty set {};

compent Q = Vp;

¥

L: untill Q = the empty set {} do
: begin

delete v from Q;
for each immediate predecessor u of v do
if L(v) is a function sign theg
if RANK(u) = -1 then
begin
gomment u e Vp,q;
RANK(u) := r+1;
add u to Q' ‘

end
else RANK(u) := RANK(u) + 1;
else if RANK(u) < 0 then
begin

ggmm%n% u e Vp-Vr;
RANK(u) := r;

add u to Q

2-35

2-36

Iheorem 2,5. Algorithm 2B is correct and has time cost
linear in |V|+|E}].

Proof by induction on r.

Basjis step. Initially, RANK(v) is set to - (outdegree of v)
for each v ¢ V. So if L(v) is labeled with a constant sign

then RANK(v) is set to 0. Also, Q is initially set to Vg
just before label L.

Inductive step. Suppose for some r > 0, Qe have on entering

the inner loop at label L on the r'th time:

(1) Q = ¥p,

(2) For each v ¢ V, RANK(v) = rank(v) if rank(v) < r or v
Vp, and RANK(v) = - (number of successors of v with
rank > r) if rank(v) > r or v ¢ Vp-Vp.

In the inner loop we add to Q exactly the nodes fovp = {v e

V-V | some element of ¥, is reachable by a value path from

v}. For each such v c Vpe-Tp added to Q, RANK(v) is set to

r. Also, for each v ¢ §, if rank(v) > r+1 then RANK(v) is

incremented by 1 for each immediate successor of v of rank

r; if rank(v) = r+1 then all immediate successors of v are

of rank < r so RANK(v) is set to r+1 and v is added to Q.

Thus, (1) and (2) are satisfied entering the loop on the r+1

time.

Now we show that Algorithm 2B may be implemented in
linear time. For each node v e V we keep a list (the
reverse adjacency list), giving all predecessors of v. To

process any v ¢ Q' requires time 0(1 + indegree(v)). Since

2-37

each node is added to Q' exactly once, the total time cost

is linear in |V|+|E|. O

This suffices for the construction of y¢; y{(v) for vV ¢

v0, Vo;ﬁo, V1, V1-§1,... may be determined by alternately
applying the definition of rgyg and Theorem 2.4.

Using this method could be inefficient, since Theorem
'é.u could be expensive to apply and the representations of
the values could grow rapidly in size. The first problem is
solved by reducing it to the problems of»P-graph cqmpletion
and decomposition as described in the next section. The
second problem is solved by constructing a specialblabeled
dag; the construction of this dag and the final algorithm

are given in Section 2.7.

2-38

2.6 P-graph Completion and Decomposjtion.

Let GVG = (V, E, L) be a reduced global value graph as
above. This section presents an efficient method for
applying Theorem 2.4 to nodes in Vp_Vp (i.e. nodes of rank
r labeled with input variables). Now to compute ¥, the
minimal element of Tgyg, it suffices to find the
- partitioning of V such that v(v) = w(u) iff v, u are in
the same block of +the partition. To represent such a
partitioning, we distinguish one node of each block of the
partitioning to be the value source of all other nodes of
that block. We require that if v ¢ V- (i.e. v is labeled
with an input variable) then y(v) = L(v) iff v is a value
source. Let V* be the set of valué sources and let VS be a
mapping from nodes in V to their value sources. Hence the
fixed points of VS are the value sources and VS-1[{v*] is a
partitioning of V. Note that, in general, the definition of
"value source" is not uniquely determined, so the definition
of V* and vs depends on our particular choice of value

sources.

We shall find value sources by reducing this problem to
the problems of P-graph completion and decomposition stated

below.

Let G = (Vg, Eg) be any directed graph and let S £ Vg

be a set of vertices of G such that for each vertex v ¢ Vg

there is some vertex u ¢ S from which v is reachable.

2-39

P-Graph Completion Problem. Find
S* =swu {v € vg| there are almost disjoint paths from

distinct elements of S to v not containing any

other element of S}.

This form of the problem is due to Karr[K], who shows
that it is equivalent to the original formulation due to
Shapiro and Saint[SS]. (Actually, this form is slightly
more_ general than Karr's; Karr satisfies our restriction on
S by stipulating that there is a singler ¢ S from which
every v ¢ Vg is reachable.) Karr proves that for each v ¢ Vg
there is one and only one element of S* from which v is
reachable (and his proof extends directly to our slightly
more general problem).

P-Graph Decomposition Problem. Given G and S*, find, for

each v ¢ Vg, the unique u ¢ S* from which v is reachable.

We first show these problems can be solved efficiently.

Shapiro and Saint give an 0(|vg|2) algorithm, while Karr
gives a more complex O(|Vgllog|Vg|+|Eg|) algorithm. Here we
reduce these problems to the computation of a certain
dominator tree, for which there is an almost 1linear time
algorithm as noted in Section 1.2. (This construction was

discovered independently by Tarjan([T6].)

Let h be a new node not in Vg, and let G' be the rooted

directed graph

(Vg v {n}, Eg Y {(h,v)IveS}-{(u,v)luevg, veS}, h).

2-40

Thus G' is derived from G by adding a new root h, linking h
to every node in S, and removing the edges of G which lead
to nodes in S. Let T be the dominator tree of G'.

. Lemma 2.6.1. The members of S* are the sons of h in T.
Proof. IF. Let v e S*. If v e S then h is a predecessdr
of v in G' so h is the father of v in T. If v ¢ S*-S then
by definition of S* there are almost disjoint paths p1, P2
in G from distinct elements of S to v not containing any
other element of.S. Clearly pi and p2 are also paths in G
since they contain no edge entering a member of S. Then
(h,p1) and (h,p2) are paths from h to v in G' which have

only their endpoints in common, so V is a son of h in T.

-QNLI IF. Suppose v is a son of h in T. ‘If h is a
predecessor of v in G' then v ¢ S ¢ S*. Otherwise there are
in G' paths (h,pq) and (h,p2) from h to v which have only
their endpoints in common. - Moreover these paths contain no
element of S except for the first nodes of p4¢, p2, since no
edge of G' enters an element of S except from h. Hence pj,
P2 are almost disjoint paths in G' from distinct members of
S tov hot containing any other element of S, and hence v ¢
st. O
Theorem 2.6.1. For each v ¢ Vg, the unique node in S* from
which v is reachable in.G is-the unique node which is a son
of h and an ancestor of v in T.

Proof. Let w be that ancestor of v which is a son of h in

T. - By Lemma 2.6.1, w ¢ S*, and clearly v is reachable from

2-U41

W in G since it is reachable from w in T. Conversely, if w
¢ S*Y is reachable from v in G then w is a son of h in T by
Lemma 2.6.1, and w must be an ancestor of v since otherwise

v would be reachable from some other member of S*. O

Now we establish the relation of these problems to the
problém of finding V* and VS as stated above. Fix some V*
" and VS by choosing one node of GVG for each value of y on V
consistent ﬁith our definition of value sources. For each
rank r, let Gp = (Vp, Ep), where Vp is the set of all nodes
of a reduced GVG of rank r as defined in Section 2.5 and Ep
is the edge set derived from E by

(1) deleting allledges except value edges between nodes
of rank r,
(2) for those remaining value edges (v,u)'entering u e

V., substituting instead the edge (v,VS(u)),

(3) finally reversing all edges.

Note that any edge of GVG departing from a member of Vr
enters a node of rank r-1. Let Sp be the set of all value
sources of ¥p plus all nodes of rank r labeled with input
variables which have a departing value edge entering a node
of rank greater than r. Note that for each node v of Gn»
there is a node in Sp from which v is reachable in Gr-
Finaliy, let S; be defined from Sy as in the statement of
the P-graph completion problem.

Lemma 2.6.2. The members of S;'are the value sources of

2-42

rank r.

Proof. JIF. Suppose v ¢ St.

Case 1. By definition, all elements of {VS(v) | v ¢ Vp} are
value sources. Hence we need only consider the case where Vv
is a node of rank r labeled with an input variable which has
a depariing value edge (v,z)' entering a node z of rank
greater than r. Since v is of rank r, v must also have a
départing value edge (v,u) leading to a node of rank r. By
Lemma 2.5, ¥(z) # ¥(u), so by the definition of TGvG, ¥(V) =
L(v) and v is a value source.

Case 2. Suppose there are in Gp almost disjoint paths
(x1;x2,.§.,Xj) and (y1,y2,.--,¥k) in Gr from distinct x1, y1
e Sp to v. By construction of Gp, there exist distinct
¥1,¥1 ¢ H(v) such that VS(¥q1) = x1, VS(¥1) = y1, and (x2,%1)
and (y2,71) are value edges, and so P1 =
(V=X§,Xj-1s..-,%X2,X1) and p2 = (V=YK Yke1s+---,¥2,¥1) are
almost disjoint value paths. Now suppose v is not a value
source, Applying The&rem 2.4, there is a value source u
(distinct from v) such that ¥(v) = ¥(u) = L(u). Since pj
and pp are almost disjoint they can not both contain u.
Suppose; without loss of generality, that p1 avoids u. Then.
all maximal value paths from Xy contain wu. Also, by
definition of Sp, X1 = x1 and there is a value edge (v,z)
such that z is not of rank r. Since any maximal value path
from z must contain u, rank(z) = rank(u) implying that u is

not of rank r. But; by hybothesis, all maximal value paths

2-43

from v contain u, so rank(v) = rank(u). This implies that v

is not of rank r, contradicting our assumptions. 0.

By Karr's proof [K] of the uniqueness of the P-graph
decomposition of Gp on Sr, we have
Iheorem 2,6.,2. For all nodes v ¢ V of rank r and labeled

with an input variable, VS(v) is the unique value source

contained on all paths in Gp from elements of Sp to v.

Thus the problem of computing VS reduces to the problem
of decomposing the reduced global value graph by rank and
then constructing domihator trees. The former can be done
in linear time by Algorithm 2B of Section 2.5, the latter in

almost linear time by Tarjan's Algorithm([T4].

2-4y

2.7 Ihe Alegorithm for Symbolic Evaluation.

In this section we pull together the various pieces
developed in Sections 2.3-2.6 to give a unified presentation
of our algorithm for symbolic evaluation. Instead of using
the GVG directly to represent v, as suggested in the
beginning of Section 2.6, we more economically represent
by a dag D* derived from GVG by collapsing nodes into their
value sources; more precisely D* - (y*, E* L*) where

VE - {(VS(v)Iv € V} = the set of value sources,

E* {(VS(V),VS(u))l(v,u)eE and L(v) is a function sign},

L* is the restriction of L to V¥,
Recall from Section 2.2 that rooted dags may be wused to
represent expressions in EXP. |
Lemma 2.7. for each node v e V,
(D*, vS(v)) represents ¢(v).
Egggﬁ; Note that by definition of VS, for each v ¢ V
v(VS(v)) = ¢(v)
for each v ¢ V, so we need only show for v ¢ V¥
(D*, v) represents ¥(v).
We proceed by induction on a topological ordering of D',
from leaves to roots. | _
Basis step. If v is aAleaf of D', then (D%, v) represents
the contant sign L(v)'=_¢(V)¢'vvv
Induction step. Suppose v is in the interior of D* 3and
(D*,u) represents ¥(u) for all Son$ u of v.. Thus v must be

labeled in L with a function sign 6 and have immediate

2-45

successors uq,...,uz in GVG. Then VS(u1),...,VS(uk) are the

sons of v in D¥ and for i = 1,...,k by the induction
nypothesis (D*,VS(ui)) represents ¥(VS(ui))

= ¥(uil-
Thus (D*,v) represents (® ¥(ut)...¥(uk))

= v(v) by definition of TIGVG-

Our algorithm for symbolic evaluation is given below.
As in‘ Section 2.6, we compute y and VS in the order of thg
rank of nodes in V. The array COLOR is wused to discover
nodes with the same y.
Algorithm 2C.
INBQI GVG = (v, E, L)
QUTPUT VS and D* = (v*,g¥*,L%).
begin
initialize:
declare VS,COLOR := arrays of length |VI];

procedure COLLAPSE(S,u):
for all v ¢ S do

VS(v) := u;
if uf v then
begin
for each edge (w,v) entering v do
substitute (w,u);
for each edge (v,w) departing from v do
substitute (u,w);
delete v from the edge set;
end;
end;

2-46

Compute new labeling L' of V by Algorithm 2A
and reduce GVG as described in Section 2.3;

Compute rank of nodes in V by Algorithm 2B
of Section 2.4;

for r := 0 to MAX{rank(v) | v ¢ V} do

begin
Let Vp, Vp be the nodes in Vv, V¥ of rank r;
for all v ¢
r =0 Lngg OLOR(v) := L'(v)

if
eglse COLOR(v) := <L(v),uq,...,ux> where
ui,...,uk are the current immediate
successors of v; _
radix sort nodes in ¥p by their COLOR;
for each maximal set S ¢ Vp containing nodes
with the same COLOR do
begin
choose some u ¢ S;
~comment u is made a value source;
COLLAPSE(S,u);
end; -
Let h be some node not in Vp:;
Er := Sp := the empty set {};
for all v ¢ ¥ do add Vs(v) to Spi

for all v e Vr-Vr do
for each node u which is currently an

immediate successor of v do
if u is of rank r then
add (u,v) to Ep;
else add u to Sp;
Let Tr be the dominator tree of Gp =
(Vp v {h}, Ep v {(h,V)lV € Sr'}y h ’
for all sons u of h in Tp-do
begin
comment By Theorem 2.6.1 and Lemma 2.6.2,
u is a value source;
COLLAPSE({the descendants of u in Tp},u);
delete all edges departing from u;

_:_rLQ;

end
Let V‘, E* be the node set and edge list derived from V, E
by the above collapses,
for all v e V* go L¥(v) := L'(v);
end.

LAL_.

2-u7

Iheorem 2.7. Algorithm 2C is correct and can be implemented
in almost linear time.

Proof. The correctness of Algorithm 2C follows directly
from Theorems 2.6.1, 2.6.2 and Lemmas 2.6.2, 2.7.

In addition, we must show that Algorithm 2C can be
implemented in almost linear time. The storage cost of GVG
is linear in |V|+|E[. The initialization of Algoritﬁm 2C

‘costs time 1linear in [N| + |A]. Algorithms 2A and 2B cost
linear time by Theorems 2.3 and 2.5, respectively. The time
cost of the r'th execution of the main loop, exclusive of
the computation of Tp, is linear in Vel + |Ep|l, plus the
sum of the outdegree of all v ¢ Vp-Vp. (Here we assume that
elements in the range of L' are representable in a fixed
number of “ machine words and that the number of
argument-places of function signs is bounded by a fixed
constant, so a radix sort can be used to partition Y+ by
COLOR.) The computation of the dominator tree Tr requires by
(T4] time cost almost 1linear in |Vpl + |Epl. Thus, the

total time cost is almost linear in |V| + |E|]. O

This completes the presentation of our algorithm. The
next . section explains how with the aid of the preprocessing
stage of Chapter 4 costing '0((|A|+g)a(|A|+;)) bit vector
operations, we may construct a global value graph GVG+ of
size O(d|A|{+2) where d 1is often of worder 1 for

block-strucfured programs but may grow to |rj. (Thus this

2-u8

preprocessing stage offers no theoretical advantage but in
practice often leads to a glbal value graph of size linear
in the program and flow graph.) GVG*+ has the property that
the minimal element of TGVG* is the minimal fixed point of
the functional y defined in Section 2.1. In contrast to
Kildall's iterative ﬁethod, which for a large class of
programs has storage cost 8(t|N|) and time cost a(e|N|2),
our direct method has storage cosi linear in the size of
GVG+ and time cost almost linear in the size of GVG*.
Although either method may be improved somewhat through thé
use of domain-specific identities, as shown in Section 1.4,

there is in general no algorithm for computing an_Optimal

symbolic evaluation.

In Chapter 3 these methods are extended to programs
which operate on structured data in a language such as

PASCAL or LISP 1.0.

2-49

2.8mmm$mamwﬁmum
for Symbolic Evaluation

The primary goal of this Chapter was to construct the
minimal fixed point ¥* of the functional Y. Actually, Y was
defined relative to a program P' derived from the original
program P by adding dummy assignments of the form X := X at
every block where some program variable X ¢ 1 is not
assigned (recall that is the set of global program
variables occurring in P). This does not change the
semantics of the program but requires the addition of
o(|z||N|) text expressions whose covers we are not actually
concerned with; in practice we need the covers given by ¥

only over the domain of the original text expressions of P.

The methods of Sections 2.3-2.7 allow us to construct,
for any global value graph GVG, the unique minimal element
of TI'gyg in space linear in the size of GVG and time almost
linear -in the size of GVG. Section 2.2 defines a global
value graph GVG* of size o(lz|]Al+2%) and with the property
that v* is the minimal element of Tgyg®. Now we shall
define a global value graph GVG* of size often considerably
less but with the property that a restriction of v* is the

minimal element of TGVG*-

A path is m_gxgiglng if the path does not contain node

m. Consider blocks m, n in the control flow graph such that

m dominates n. A program variable X e £ is definition-free

2-50

betyeen m and @, if (1) m=nor (2) m* nand X is not
assigned to on any m-avoiding control path from an immediate
successor of m to an immediate predecessor of n {otherwise X
is defined between m and n). Let W be a function from text
expressions which are input variables to blocks of the
control flow graph; for each input variable X*n which is an
text expression, W(X*D) = m, where m is the first block on
the dominator chain of the control flow graph from the start
block s to n such that X is definition-free between m and n.
An algorithm in Chapter 4 computes W in a number of bit

vector steps almost linear in INj+2.

It will be convenient to assume that for each text
expression which is an input variable X*n such that w(x*n)
n, X is assigned to at each block m immediately preceding n.
We must add O(d|{N|) dummy assignments to accomplish this; d
is often constant for block structured programs but may grow
to |zi. Let VE be the set of pairs of text expressions
(t,t') such that
(1) t is an input variable X*D
(2) t' is an output expression Xm-+
(3) either (a) W(X*?) = n and m is an jmmediate predecessor

of n in F, or (b) W(X*0) =m M n.

Note that VE contains O(dlAl+t) edges. Let GVG+ be the
global 'value graph with value edges VE. The nodes in GVG*

will be identified with the text expression which they

2-51

represent. Let d = |VE|/|A] and observe that d ¢ j£| . Then
GVG+ is of size O(|VE[+1) = O(d|A|+2).

Let ¢+ be the minimal element of rgyg+ and let ¥ be
the minimal fixed point of v.
Ibeorem 2.8. v+ = ¥*, where ¥* is the restriction of ¥* to
the domain of ¢+,
Proof Suppose ¥* ¢ rgyg+, so there must be an input variable
X*0 such that ¥*(X*P) £ X*D and v*(X*N)£¢(t) for some value
edge (X*N t) ¢ VE. Then n' = W(X*N) M n and furthermore, n'
H birthpoint(y(X*n)), Let ¥ be the mapping from text
expressions to EXP such that for each text expression ¢t,
v(t) 1is derived from (t) by substituting XB'* for each
input variable X*® guych that W(X*™) = n°'. Thus ¥ is an
element of I'GVG+, a contradiction with the assumption that

v* 1s the minimal element of TGVG+.

Let ¥+ be the eXtension.of v+ to the domain of ¢
defined thus: for each input variable X*D not in the domain
of ¥+, let ¥+(X’N) = ¥+(XU?) where m = W(X’N). We claim ¥+
€ Tgyg+. Suppoée ¥+ ¢ Igyg+, SO0 there is an input variable
X’ such that ¥+(X*D) # X*D and ¥+(X*N) # ¥+(x0*) for some m
immediately preceeding n. in the control flow graph F.
Henée, V+(X*n) = v+(x'*) where n' = W(X*n) 1 n. But X is
definition-free between n' and n, hence (x*m x*n') is the
unique value edge in VE departing from X*m. Let ¢ be the

mapping from text expressions to EXP such that for each text

2-52

xpression t, ¥(t) is the reduced expression derived from
+(t) 'by substituting X0'® for each input variable X*D such
hat W(X*®) = n'. Then ¢ € Tgyg+, implying that ¥+ is not

he minimal element of TIgyg+, a contradiction. [

2-53

2.9 Further Applications of Global Value Graphs:
Live-Dead Apalvsis

A concept related to the value edges of VE defined in
Section 2.8 1is due to Schwartz{Sw2]: a pair of text
expressions (t,t") is a use-definition link if t is an input
variable X*n, t* is an output variable X®*, and X is not
defined on some (rather than all) m-avoiding control path
from an immediate successor of m to an immediate predecessor
of n. Unfortunately there may be 2(t2) uyse-definition pairé

whereas there are at most 0(|z||A]+%) value edges in VE.

A method for live-dead analysis has been described by
Schwartz[ScZ]; his method uses use-definition 1links and
would requibe a(12) operations even if implemented wusing
efficient depth first search techniques. The global value
graph GVG* with value edges VE may be also applied to
live-dead analysis thus: We distinguish a set V ¢ V which
are text expressions corresponding to yital computations
(for example all text expressions appearing in print
statements). Then text expression t is live if t is
involved in the computation of EXEC(t',p) for some vital
text expression t' ¢ V and control path p from s to the
block where t is located (otherwise t is dead). Deleting
all dead text expressions would thus not interfebe with the
vital computations of the program. It follows that text

expression t is live iff some element of V is reachable from

2-54

L. Live text expressions may thus be discovered in time
linear in the size of GVG+ by a reverse depth first search
backwards from elements of V. All text expressions not

reached are dead, and may be deleted.

