CHAPTER 3

SYMBOLIC ANALYSIS OF PROGRAMS WITH STRUCTURED DATA
3.0 SQummary

We discuss the symbolic analysis of a class of programs
such as those of LISP 1.0, which have a fixed interpretation
for various operations on structured data including:
operations for construction of structured objects (such as
cons in LISP) and the selection of subcomponents (such as
car and c¢dr in LISP), but no ndestructive" operations (such
as replaca or replacd in LISP 1.5). We continue to use the
global flow model of Chapter 1, 1in which assignment
statements are the only variety of statements and the

program floﬁ graph represents the flow of control.

A central problem here is the propagation of
selectjons: the determination of the set SP of ordered pairs‘
of selection operations and the objects which they may
reference. The elements of SP are called selection pairs.
We show that this propagation problem is at least as hard as
transitive closure of a binary relation and we give an
efficient algorithm, using bit vector operations, for
computing SP. Schwartz[Sc2] requires the set SP for his
method for the automatic cohstruction of recursive type
declarations, though he gave no explicit algorithm for

propagating selections.



3-2

We consider further applications of propagation of
selections including: the determination of selection
operations that, when executed, always result in an error
(i.e;, they attempt to access non-existant subcomponents),
the propagation of constanté, and more generally the
determination of covers (symbolic representations of values
of text holding for all executions of the program). The
methods of Chaptef 2 for the determination of covers are
improved so as to take into account reductions due to the

selection of subcomponents of structured objects.

We apply these improved methods also to the
ponstruction of type covers which are representations of
types (rather than values) of text expressions and hold for
all executions of the program. Type covers are useful for
the discovery of construction obehations which are redundant
in the sense that they have -values of the same type as
values previously computed but are now dead (no longer

referenced) .

Finally, we discuss Schwartz's method of recursive type

determination.



3-3

3.1 Introduction

This Chapter is concerned with the analysis of programs
which manipulate structured data; for example:
the 1lists of LISP
the strings of SNOWBALL

and the arrays in FORTRAN, ALGOL, and PL/1.

Though -we allow general operations for construction of
structured objects and selection of subcomponents, our

analysis is restricted to programs with no destructive

operations: they must not modify subcomponents (i.e.,
install new sublists, insert or delete new characters of
strings, or modify elements of arrays). Hence our methods
are only applicable to a restricted subclass of the above
programming languages with 1list, string, and array data
sfructures. We believe our methods can be extended (with a
certain increase 1in time and épace cost) to programs which
allow modification of subcomponents. (At any rate, there
exist certain simple programing languages, such as LISP 1.0,

which do not allow modification of subcomponents.)

As in the preceding Chapter, we discuss the analysis of

a program P relative to a global flow model in which the

flow of control is represented by the control flow graph F =

(N, A, s) where the nodes of N correspond to contiguous
sequences of assignment statements called blocks, the edges

in A specify possible flow of control between blocks in N,



3-4

and all control flow begins at the start block s ¢ N.

Lei r = {X,Y,Z2,...} be the non-local program variables
of P. For each X ¢ I and block n ¢ N-{s}, we introduce the
input variable X*N denoting the value of X on input to block
n. Also, for each X e £, X*S is a distinct constant sign
denoting the value of X on input to the program P at the
start block s. As in Chapter 1, we require a first order
1énguage without predicates to represent computations of P
and their covers. Let EXP be the set of expressions built
from input variables, and fixed sets of constant signs C and
k-adic function signs e; here @ is partitioned into the
sets: | |
(1) op, a set of operator signs used for | elementary
operations on atomic values,

(2) CONS, a set of constructor signs wused to build wup
structured values,
(3) SEL, a set of 1-adic selector signs wused to select

subcomponents of structured values.

A function application is an expression of the form
@ = (8 af,...,0k)y
whefe o is a k-adic function sign in © and aq,..,ak ¢ EXP.
o is an elementary operation if e is an operator sign op ¢
OP, o« is a gonstruction operation if ¢ is a constructor sign
cons ¢ CONS, and o is a selection operation if k = 1 and ¢

is a selector sign sel ¢ SEL. For each k-adic constructor



3-5

sign cons ¢ CONS and i, 1 < i £ k, there exists an unique

selector sign sel ¢ SEL called the jth selector of cons.

As described in the examples below, in LISP there is a
simple constructor (gons), two selectors (car and c¢cdr), and
elementary operations depending on the particular version of
the 1language (none in _LISP 1.0, arithmetic and logical

operations in LISP 1.5).

SELECT(sel,a) gives the result of selection by 2
selector sign sel ¢ SEL on expression g4 ¢ EXP:
(1) if o is a construction operation

(cons @1 ... ak)

whebé sel is the ith selector of constructor sign cons, then
SELECT(sel,c) = aj.
(2) If o is a construction 6peration for which sel is pot a
selector, 6r e 1is a constant:sign, or ¢ is an elementary
operation then SELECT(sel,a) = error, where error is a
distinguished constant sign in C denoting an error
condition.
(3) In all other cases (e.g., where a is itseif a selection

or an input variable) SELECT(sel,q) is left undefined.

For example, in LISP,

SELECT(cdr, (cons aq a2)) = ap.

We assume an ipterpretation (U, I) such that
(1) U is an upjverse of values consisting of



3-6

(a) ATOM, a set of atomic values (atoms), and

(b) structured values constructed by prefixing k-adiec
constructor signs in CONS to k-tuples in the
universe U.

(2) I is a homomorphic mapping from EXP to U such that
(a) For each constant sign ¢ ¢ C, I(c) ¢ ATOM.  We

.assume the constant signs in C are in one-to-one

correspondence to atoms in ATOM. The distinguished

constant sign error is also an atom and is freely
interpreted: I(errqor) = error.
(b) For each k-adic function sign e ¢ e, I(e) is a

partial mapping from UK to U.

(i) Each k-adic operator sign op ¢ OP is interpreted
as a mapping I(op) from k-tuples of atoms into
individual atoms (note that such mappings may
not take structured objects as arguments). |

(ii) k-adic constructor signs cons ¢ CONS are freely
interpreted:

I(cons)(z4,...,2x) = (cons z9,...,2zk)
for all z1y...,2x € U.

(iii) Each selector sign sel ¢ SEL is interpreted to
map from éxpressions in the universe U to their
corresponding subexpressions, or where this is
not possible, to error. More formally, for each
¢ ¢ EXP such that SELECT(sel,a) is defined:

I(sel)(I(a)) = I(SELECT(sel,a)).



Example 3A (LISP 1.0)
ATOM = {the empty list nil}l
OP = the empty set {}
CONS = {the list constructor g¢ons}
SEL = {car, the first selector of cons}

u {cdr, the second selector of cons}
Example 3B
(similar to LISP 1.5 but without replaca and replacd)
ATOM = {the empty list nil}

v {the integers}

v {the boolean truth values gruth and falsel
OP = {and, or, plus, minus, mult, and div}
and apd or are interpreted as 1logical conjuncton and
disjunction; the other operator signs in OP are interpreted
as the usual arithmetic operations. CONS, SEL are as in
Example 3A. |
Example 3C (Vectors of fixed length)
ATOM = {a1,a2s---}
SEL = {the positive integers}
CONS = {vector?,vector2,...}
where vectorK is a k-adic constructor sign and the.integer i
is the ith selector of yectork for each 1 < 1 < k. Note
that the number of function places of each yectork is fixed;
" so it is not possible to construct variable 1ength
sequences; However we can easily extend the model to allow

function signs with a variable number of arguments.



3-8

In Chapter 1 we defined a gconstant reductjon on an

expression in EXP to be the repeated substitution of
constant signs for constant subexpressions (relative to a
fixed interpretation); that is if o« ¢ EXP contains a
elementary operation

a' = (op ¢1 ... ck)
~ where op € OP and c1t,...,ck ¢ C and there exists a constant
sign ¢ ¢ C such that

I(e) = I(op)(I(e1),...,I(ck))>

then we substitute ¢ in the place of a'.

In additioh, we define selection reductions to be the
result of substituting SELECT(sel,a'), where it is defined,

for each selection operation (sel a').

An expression is reduced by repeated constant and

selection reductions.

For each program variable X ¢ r defined (i.e., assigned
to) at block n ¢ N, the output variable Xn* is a reduced
expression in EXP for the value of X on exit from block n in
terms of the constants and input variables at n. For
example, YB* =z (cons (car X*M) Y*N) in the program of Figure

3.1.

The text expressions of P are the output variables and
their subexpressions. We assume the text expressions are

reduced expressions. For each reduced expression‘ a ¢ EXP



3-9

and control path p, EXEC(e,p) is intuitively a reduced
expression in EXP for the value of a relative to p. For a

more precise definition, see Section 1.3.



X:=(cons ZX)
Z:=(plus Z21)

~ Y:=(cons (car X) Y)
~X:=(cdr X)

Figure 3.1.

Reversal of a list in LISP.



3.2 Propagation of Selections

Our immediate goal 1is to determine all "sgelection
pairs® Loosely speaking, these are péirs (w,u)} where w is a
selection operation (sel t) and u is a text expression whose
value, relative to some execution of the program, may be
obtained from the value of t by the use of the selector sign
sel. More precisely, for text expressions t and t', let t'
be accessible from t if EXEC(t,p) = t' for some control path
p from loc(t') to loe(t). Note that selection sequences are
generalizatlons of the value paths of Chapter 2. A
selection pair is an ordered pair of text expressions (w,u)
consisting of a selection w = (sel t) and u =
SELECT(sel,t'), where SELECT(sel,t') is defined for some
teit expression t' accessible from t. We assume that the
constant sign error is a text expreSsion‘located.at the
start block, so t has a departing selection pair (t,error)
if EXEC(t,p) = error for some control path p from s to
loe(t). we also assume there are no selections at the start
" block s, so each selection in the text has at least one

debarting selection pair.



Figure 3.2-

(yn*,1) and (yn*

,2) are selection pairs.



3-13

Selection propagation is the task of discovering all
selection pairs.
Inggggm 3,2.1 Selection propagation in the interpretation of
Example 3A (LISP 1.0) is at least as hard as computing the
transitive closure of a binary relation.
Proof Let R be a binary relation on {n1,...,nr} and let R* =
{(niq,niy) l(ni1,n12),...,(nik_1,n1k) ¢ R, k 2 1} be the
reflexive transitive closure of R. Consider the control
'flow'graph FR = (N, A, 8) of Figuré 3.2 where
N = {s=ng,nt,...,n3r!}
ahd the edge set A consists of
(1) R and
(2) for i=1,...,r edges (ng,nps+i), (npsi,nils
and (ni,n2r+i)-
Let the text of ng be empty.
For i = 1,...,r
(1) the text of ni is-empty
(2) the text of nr+i is X := (cons nil X).

(3) the text of n2psi is the selection
X := (edr X). '

It follows that (nj,nj) ¢ R*
iff there is a value path from X’N2rs+j to XPr+i”

iff (Xn2r+j*,X*Nr+i) is a selection pair. O

Y



3-14

X:=(cons nil X)
r+l

WO w0 O

X:= e

Figure 3.3. The control flow graph FR-




As in Chapter 2, we use a ggg D(n) (an acyelic,
oriented digraph) to represent computations local to a
linear block of code n ¢ N. Each node of D(n) represents an
unique text expression located at block n. A global value
graph GVG = (V, E, L) is a possibly cyclic, oriented.digraph
consisting of |
(1) the dags of all the blocks in N, and
(2) a set of edges, called value edges of GVG, departing
from nodes labeled with input variables. For each node v ¢
'V labeled with an input variable and control path p from the
start block s to loc(v), there is a value edge (v,u) such
that loc(u) is distinct from loc(v) and is contained in p.
(the labeling L is consistent with that of the dags.)

A yalue pg&h of GVG is a path transversing only nodés linked

by value edges.

In Section 2.1 we defined a special global value graph
GVG* = (v, E, L) with value edges defined so as to properly
represent the flow of values of program variables between
blocks of code; that is (1) the nodes in GVG* are identified
Qith the text expressions which they represent and (2)
(t,t') is a value edge of GVG* iff t is an input variable
X*D and t' is the output variable Xm+ for some (m,n) ¢ A.
This definition ‘requires that the text expressions include
all the input variables; forleach input variable X?n ot
originally a iext expression at block n ¢ N-{s}, add a

"dummy" assignment of the form



X := X.
Let V be the set of the resulting new text expressions

corresponding to these dummy assignments.

An access sequence is a sequence of text expressions
(t1,...,tk) such that for 1 < i < k, each (ti,ti+1) is
either a value edge of GVG* or a selection pair.

Theorem 3,2.2 For all t,t' ¢ V, there is an access seqﬁence
from t to t' iff t' is accessible from t.
Proof Suppose there exists an access sequence
(t=tq,...,tk=t'). Then for i = 1,...,k-1 whether (ti,tis+1)
is a value edge or a selection pair, there is always a
control path pj from loc(tijs1) to loc(ty) such that

ti+1 = EXEC(ti,pi).
Hence t' = EXEC(t,px_1°pk.2°...°p1) so t' is accessible from
t.

On the other hand, suppose there is a control path p of
minimal 1length such that there exists text expressions t,t’
such thatlp begins at ioc(t') and ends at loc(t) and

t' = EXEC(t,p) |
but there is no access sequence from t to t'. If t is an
input variable, t has a departing value edge (t,T) such that
loc(T) is distinct from loc(t) and loc(T) is contained in p.
If t 1is a sélectioﬁ, then there is a departing selection
pair (t,T) where loc(Tt) is contained in p. In either case

if p = py°po where po is a subsequence of p from loc(T) to



loc(t), then by the induction hypothesis

t' = EXEC(T,p1)
so t' is accessible from T and by the induction hypothesis
there is an access sequence q from T to t'. Hence, (t,t)eq

is an access sequence from t to t', a contradiction. [



3-18

We now present an efficient algorithm for the discovery
of all selection pairs.
‘ —_—

INPUT GvG* = (V, E, L) and 7V, the set of added text
expressions corresponding to dummy assignments.

QHIEQI SP, the set of selection pairs of P.

begin
declare for each t ¢ V

VPt ,ASt,KSt := sets of maximum size |V]| each
represented as bit vectors of length | V|
(3]V| sets, initially all empty);

brocedure PROPAGATE(t,t'):
begin

add t' to ASt;
add t to 'K'Stv;
add (t,t') to Q;
~ end;
Q := the empty set {};
Let VE be the edges in E departing from nodes labeled
with input variables;
Compute the transitive closure VE* of VE;
vE* is represented by a family of sets {VPt|t ¢ V}
where for t,t' ¢ V, t' ¢ VPt iff there exists
a value path in GVG* from t to t';
for all t ¢ V do
for all t' e yP¢ do
if t,t' ¢ V-V thep LO: PROPAGATE(t,t');
untill Q = the empty set {} do

begin
L1: Choose some (t,t') ¢ Q and delete it from Q;

for every selection w ¢ V where w = (sel t) do
if u = SELECT(sel,t') is defined do

add (w,u) to SP;
L2: PROPAGATE(t,u);

for §§%’u ¢ ASt1-ASt do L3: PROPAGATE(t,u):
for all w ¢ KSy-ESg¢+ do LA: PROPAGATE(w.t'};
end;
returnp SP;
end;



3-19

We require two Lemmas to demonstrate the correctness of
Algorithm 3A. |
Lgmma 3.2.1 On every execution of Algorithm 3A we have for
all t,t' ¢ v-¥ at label LO: v

(i) t € AStr iff t' e ESt
(ii) if (t,t') ¢ Q then t ¢ ASt!

(iii) if t ¢ ASt' then there exists an access
sequence from £t to t'.

Egggi by induction on the number of executions of the main
loop of Algorithm 3A.

Basis step Initially, Q = the set of all pairs (t,t') such
thét t,t' ¢ V-V and there exists a value path from t to t',
(i),(ii) hold by the calls to PROPAGATE(t,t') at LO, and
since any valueApath is also an access sequence, (iii) also
initially holds.

Inductive step Suppose (i),(ii), and (iii) have held over
previous executions of the main loop of Algorithm 3A, and
consider some (t,t') deleted from Q at L1. By (ii) and
(iii), there is an access sequence from t to t'. Observe
that if there is an access sequence from text expression y
to some text expression z, then after any call to
PROPAGATE(y,z), (i),(ii), and (iii) still hold, and for our
purposes that call is considered gorrect.

Case 1 If w is the selection (sel t) and u = SELECT(sel,t')
is defined, then (w,u) is a selection pair, which is also an
access‘sequence. Thﬁs, the call to PROPAGATE(w,u) at L2 is

correct.



3-20

Case 2 If u € ASt'-ASt, then (ii) implies that there 1is an
access sequence from t' to u, and hence there is an access
sequence from t towu. Thus, the call to PROPAGATE(t,u) at
"L3 is correct.

Case 3 If w € ASt-ASyr+ then (iii) implies that t ¢ ASy 2and
(iii) implies that there is an access sequence from t to w.
Hence, there is an access sequence from w to t' and the call
to PROPAGATE(w,t') at LY is correct. [

Lenma 3;2¢2 For all t,t' ¢ V, if there is an access sequence
p from t to t' then (t,t') is eventually added to Q.

Proof by contradiction. Suppose (t,t') is not eventually
added to Q, and let p be of minimal length. Note that if we
have.a éall to PROPAGATE(t,t') theh (t,t') is added to Q.
Qggg 1 If p'is a value path from t to t' then there must be
a call to PROPAGATE(t,t') at LO.

Case 2 If p is a selection pair then there exist text
expressions“ ysz such that t is 6f the form t (sel y), t' =
SELECT(sel,z), and furthermore there is an access sequence
p' from y to z. Since p' is of 1¢ngth less than p, p' does -
not violate Lemma 3.2.2, so (y,z) is eventually added to Q,
~ and hence there is a call to PROPAGATE(t,t') at L2.

Case 3 Otherwise p = p1°p2 where pq is an access sequence
from t to y and p2 is an access sequence from y to £,

Since p{ and pzlabe of length less than p, Lemma 3.2.2 holds
overr p71 and p2, so both (t,y) and (y,t') are eventually

added to (and later deleted from) Q.



3-21

Case 3a If (t,y) is deleted from Q after (y,t') then

t' © ASy-ASt .
and so there is a call to PROPAGATE(t,t') at L3.
Case 3b If (y,t') is deleted from Q after (t,y) then

t e FSy—KSt' A
and thus there is a call to PROPAGATE(t,t') at L4. [
Theorem 3,2.3 Algorithm 3A correctly computes SP in
0(22+|z||A}) bit vector operations, where 1 = |V-V| 18 the‘
the number of original text expressions before the Y"dummy"
asSignmentéiare added.
Etggf Suppose (t,t') is a selection pair. By Lemma 3.2.2,
(t,t')» is added to Q at the call to PROPAGATE(t,t') at L2,
and hence (t,t') is also bdded to SP at L2.

- Now suppose that (t,t') is added to SP at L2. Then
(t,t') is added to Q in the call to PROPAGATE(t,t') at L2,

and by the proof of Lemma 3.2.1, (t,t') is a selection pair.

New we consider the lower time bounds of Algorithm 3A.
The computation of VP by -[T1] costs O(|V|+]E]) = 0(s+|z]]|A])
bit vector steps. Also, the processing associated with each
(t,t') added and then deleted from Q is a constant numbef of
bit vector operations. There may be 0(:2) such pairs and no
‘such pair vis added to Q more than once. Hence, the total

cost of Algorithm 3A is 0(22+|z||A]) bit vector operations.
g



3-22

3.3 Constant Propagation and Covers of Programs
with Structured Data.

Let P be a program with a fixed.interpretation for the
éonstructor and selector signs as in the Introduction of
this Chapter. Here we wish to determine text expressions
which are constant over all executions of P, and more
genérally we wish to determine covers: symbolic expressions
in EXP for the value of text expressions which hold over all
‘executions of the program. The main difference between the
covers of this section and those of Chapter 2 is that here
we define a reduced expression to be derived from repeated
‘selection reductions of the sort described in Section 3.1,
as well as the usual conéghnt reductions. A reduced
expression o ¢ EXP gcovers text expression t if

EXEC(a,p) = EXEC(t,p)
for all control paths p from the Etart block s to 1loc(t),
the block in N where t |{is llocated. A cover of P is a
mapping v from the text expressions to EXP such that for

each text expression t, v(t) covers t.



3-23

X:=(cons 2X)

Figure 3.4. ¥n* = (cdr X°N) is covered by X*D.



3-21

Recall that the origin of an expression o ¢ EXP 1is
intuitively the earliest point at which o is defined;
formally origin(e) = s if o contains no input variables and
otherwise origin(a) is the earliest block n ¢ N (relative to
the dominator ordering of the control flow graph F with the
start block s first) such that an input variable XD appears
in a (provided that this block is wuniquely determihed).
Also, recall that 3 is the partial ordering of nodes in N by
dominator relative of the control flow graph F = (N, A, 3).
We extend 3 to a partial ordering of covers. For covers v,
V', v 3 ' iff origin(y(t)) 3 origin(v'(t)) for each text
expression ¢t. It follows from the results of SecEion 1.3
that if the program P is interpreted in the integerL/domain
(i,e., ATOM is the set of natural-numberé and the elementary
"operator signs in OP are interpreted as the usual arithmetic
operations: addition, subtrgction, multiplication, and
division) then constant propagation is recursively
unsolvable, and hence the determination of the covers
minimal with respect to 3 is also impossible within the

arithmetic domain.

Good, but not minimal, covers may be computed by an
algorithm due to Kildall[Ki] (his algorithm is actually much
more general; here we consider a specific application).
After computing an approximate cover yg, Kildall's algorithm
iteratively compares the approximate covers of input

variables to the - approximate covers of the output



3-25

expressions'of the corresponding variables at preceding
blocks, and propagates the changes to succeeding blocks. 1In
Chapter 2, we define the covers computed by his algorithm as
fixed points of a functional Y. Here we define a similar
functional ¥'. For any mapping ¢ from text expression to
EXP, let ¥'(y) be the mapping from text expressions to EXP
such that for each text expression t, ¢'(y) is derived from
t by repeatedly |

(1) substituting expression o for every input variable x»n
such that o = (X®*) for all (m,n) ¢ A.

(2) substituting the expreséion o« for any selection u in t
such that o = v(u') for all selection pairs (u,u').

(3) reducing (by both selection and constant reductions) the

resulting expression.

We shall show, as we did for a similar functional ¥ in
Chapter 2, that the fixed points of ¥' are covers and that
there exists a unique, minimal fixed point of ¥'.

Theorem 3,3.1 Each fixed point of ¥' is a cover.
Proof by contradiction. Suppose y is a fixed point of ¥!'
and ¢ 1is not a cover. Let‘p be the shortest control path
from the start block s to a block n ¢ N containing a text
expression t such that
EXEC(y(t),p) # EXEC(t,p).
Furthermore assume for each proper subexpression t' of t,
EXEC(y(t'),p) = EXEC(tf,p).

The case where t is an input variable was shown (in the



3-26

proof of Theorem 2.1) to be an impossible case. Otherwise,
v(t) = y(t') for all selection pairs (t,t'). But there is a
selection pair (t,t') such that

EXEC(t,p2) = V'
for p = pi°p2 where p1 ends and p2 begins at loc(t').

Hence, EXEC(t,p) = EXEC(t',p1)

EXEC(¥(t'),p1) by the induction hypothesis

EXEC(¥(t),p1) since v(t) = v(t!)

EXEC(%(t),p). O

Let GVG = (V,E,L) be an arbitrary global value graph as
defined in Section_3.2. In Section 2.2 we also defined the
set rgyc of mappings from the nodes of GVG to EXP such that

for each y ¢ rgyg and node v ¢.V in GVG,

(1) If v is labeled with a constant sign c then w(v) =

(2) If L(v) is a k-adic function sign ¢ and wuq,...,ugx are
the immediate successors of v in GVG then ¢(v) is the
expression derived by constapt reductions from (e
v(uq)...v(ug)).

(3) If v is labeled with an input variable, then either w(#)
= X0 or ¥(v) = ¢ where o« = ¥(u) for all value edges (v,u) €

E departing from v.

Let r'GVG be a set of mappings v from V to EXP such
that for all v ¢ V, v(v) satisfies cases (1), (2), (3), or
the additional case

(3') L(v) is a selector sign and v(v) = o where a = v(u) for



3-27

all selection pairs (v,u) departing from v.

Note that the set of nodes satisfying cases (3) and

(3') are sufficient to characterize an element of r'cvg; and

hence r'gyg is finite.

Let cvg® = (V, E, L) be the special global value graph
defined in Section 2.2 where each node v ¢ V is identified
with the text expression which it represents (hence, the
node set V is considered to be the set of text expressions)
and the value edges of GVG® represent the flow of values
through the program. Recall that (t,t') is a value edge of
GvG* iff t is an input variable X*M and t' is the output
expression XM for some (m,n) ¢ A. For any text expression t
€ V that is a selection, and ¥ ¢ r'gyg*, if (3') holds for t
then t is simplifed by ¥%. If in addition, ¥(t) # error,
then t is properly simpljfied by v. Selection t is
(properly) simplifiable if t is (properly) simplified by

some element of T'gyg®.

Our proof that selection simplifications actually
improve elements of I'gyg* (Theorem 3.3.2) will allow us to
show that r'gyg* is a semilattice with respect to the.
~partial ordering 3 (Theorem 3.3.3). The unique minimal
element of r'gyg* will then be shown in Theorem 3.3.4 to be
the minimal fixed point of vy'. We require first some

technical Lemmas.

Lemma 3,3.]1 For each t ¢ V which is 'a selection or input



3-28

variable, and every control path from the start block s to

loc(t), there is a maximal access sequence (t=u1,...,uk)
such that loc(ut),...,loc(uk) are distinct blocks in p.

Progof by induction. We consider (t) to be a trivial access
sequence. Suppose we have an access sequénce (t=u1,...,ui)
such that loc(ui),...,loc(ui) are distinct blocks in p.  We
further assume that loc(ui) ocecurs in p ~ before
loc(ui),...,loc(uj-1). If ui is neither a selection or
input variable then (t=ui,...,ui) is a maximal access
sequence. Otherwise, let pi be the subsequence of p from s
to the first occurrence of block loc(uj). Then there is a
textvexpreSSion ui+1 such that (1) loc(uj4+t) 1s contained in
pi and distinct from loc(uj) and (2) (ui,uisq) is either a
value edge (in the case uj 1is an input variable) or a
;election pair (if ui 1s a selector sign). Hence
(t=uq,:..,ui,ujis+1) 1is an access sequence and loc(ui+q) 1s
- distinet from 1loc(ui),...,loc(uj). Since p is finite, we

have our result. O

Lemma 3.3.1 will be used to construct maximal access
sequences relative to fixed control paths. The next Lemma
is analogous to Lemma 2.2.2 of Chapter 2.

Lemma 3.3.2 For each ¢ ¢ I'gyg* and t ¢ V, origin(¥(t)) >

loc(t).

Proof by cbntradiction. Suppose for some t ¢ V,
origin(w(t)) ; loc(t).

‘Then there must exist an input variable X*0 in ¥(t) such



3-29

that n ; loe(v), and hence there is an n-avoiding control
path p from the start block s to loc(t). Also, there must
exist an u € V also located at n such that ¥(u) =z X*R. By
Lemma 3.3.1, there is a maximal access sequence
(t=u1,...,uk) such that 1loec(ut),...,loc(uk) are distinect
blocks in p. Let j be the maximal integer £ k such that
¥(u1) = ... = ¥(uj). If L(uj) is an input variable the
¥(uq) = ¥(uj) = X’0, so loc(uk) = n 1is contained on p,
contradicting the assumption that p avoids n. Otherwise, if
L(uj) is a function sign or constant sign, then y(u) = v (uk)

3 X*D, a contradiction with y(u) = x*R. g

The following Lemma shows that certain covers of
simplifiable selection operations have a very special form.
Lepma 3.3.3 For each properly simplifiable selection t ¢ V,
and v € r'gycg*, if t is not simplified by ¥, then ¥(t) is of
the form (selq ... selky " X’D) where sely,...,selx are
éelector signs and XN is an input variable.

Prgof by inductipn on subexpreséions of v(t).

 Basis Step. By assumption t = (sel u) is not simplified by
v, 80 y(t) is of the form (sel ¢(u)). Also, note that since
t is simplified by some element of TI'gyg%, t has no
departing selection pairs entering error.

Induction step. Suppose for some i, 1 < i < k, v(t) is of
the form (selj .o selk «a). Consider any selector
operation t' =z (selj u') such that w(u') = «a. We also

assume in our induction hypothesis that t' has no departing



3-30

selection pairs entering error.

Suppose y(u') = o is not a selection operation or input
variable. |
Case 1. Suppose u' %s an input variable. Let p be a
control path from the start block s to loc(u'). By Lemma
3.3.1 we can construct a maximal access sequence from u' to
some U ¢ V. From this we can show that t!' has‘a departing
selection pair entering error, a contradiction with the
induction hypothesis.
Case 2. Suppose u' is not an input variable. If u' is a
construction operation for which selj is a selection, then
t' is not a reduced expression, which is impossible.
Otherwise, if u' is a constant sign or some other sort of
- function application other than a selection, then t' has a
departing selection pair entering error, a contradiction

Wwith the induction hypothesis.

Hence y(u') is either a selection or input variable.
To complete our induction proof, for any selection T such
that ¥(T) = a, if T has a departing selection pair entering

error, then so does t', a contradiction. [

Now we show that simplification of selection operations
always improves an element of r'gvc*.
‘Theorem 3.3.2 For v, v' e T'gvg* and selection operation t €
V, if t is pot simplified by ¥ and t is properly simplified
by %' then origin(%'(t)) 3 origin(w(t)).



3-31

Proof. For any N' < N, let LCA(N') be the latest
(furtherest from the start block s) common ancestor of the

nodes in N' relative to the dominator tree of the control

flow graph F. By Lemma 3.3.2, ¥(t) is of the form (selil

selk x*n). We proceed by induction on subexpressions of

v(t).

Suppose for some i, 1 < i £ k, if i < k, for every

selection T ¢ V such that w(E) = (seljsq...selgx X°1) then

. +
LCA{W | (T,W) is a selection pair departing from T} * n.

Consider any selection t' ¢ V such that y(t') = (selj...selk

X+*N). Let u' be the immediate subexpression of t', so
origin(y(t')) = origin(y(u")). Then there exists a
(possibly trivial) maxiﬁal access sequence from u' to some T
such that y(u') = (). By the induction hypothesis, LCA{W
| (t,%) is a selection pair departing from T} 3 hn. We can
then show that origin(v'(t)) 3 LCA{w'](t',w') is a selection

+
pair departing from t'} =+ n.

Since t is simplified by ¥', ¢'(t) = o where v'(t') = a
for all selector pairs (t,t'). Hence,

origin(v'(t)) = origin(a)

+ %

: +
LCcA{w | (t,w) is a selection pair} -+ n.

3 n = origin(y(t)). O

In,Seétion 2.2 we defined a partial function min from
EXP2 to EXP; we extend min to a partial mapping from

(r'gyg*)2 to r'gyg* so that for each v,¢' ¢ TI'gvG*, if w(t)



3-32

= ¥(t) min v'(t) is defined for each text expression t, then
v min v' = ¥, and otherwise v min ' is undefined.

Iheorem 3,3.3 r'gyg* forms a finite semilattice with respect
to :.

Proof. 1t is sufficient to show that mjin is well defined
over TI'Gyg*. Suppose for ¥', ¥ e r'gyg*, v min ¢' is
defined, so there is a text expression t such that y(t) min
v'(t) is undefined but v(u) minp v'(ﬁ) is defined for all u
which are proper subexpressions of t' such that (t)- =
v(t'). Thus t is either a selection operation or an input
variable. Consider any control path p from the start block
8 to loe(t). By Lemma 3.3.1, we can construct a maximal
access sequence (t=uq,...,uy) such that loe(uq),...,loc(uk)
are unique blocks of p. Let J be the maximal integer Lk
such that ¥(uq) = ... = ¥(uj). By the proof of Theorem
2.2.1 of Section 2.2, we need only consider the case wheré
tj is a selection operation (sel u). Since J is maximal, tj
is not simplified by v and v(tj) = (sel w(u)). If tj is
also not simplified by ¥' then v'(tj) = (sel y'(u)) and by
the 1induction hypothesis o = v(u) min ¢'(u) is defined, so
v(tj) min v'(ty) = (sel a). Otherwise, suppose tj is
simplified by v'. .If v'(tj) = error then v(t3j) min v'(tj) =
grror. If t is properly simplified by ¢' then by Theorem
3.3.2,_0rigin(t'(tj)) 3 origin(v(tj)), so v(tj) min t'(tj) =
¥ (t3). O | | |
Ihggﬁgm 3.3.4 ¥' has a unique, minimal fixed point v* which



3-33

is the minimal element of r'gyg®.

Proof Clearly, any fixed point of ¥' is an element of
T'Gvg*. By Theorem 3.3.3, TI'gyg*® has a unique minimal
element ¥* - min T'gve*. Let ¥% = wvr(y*). In proof of
Theorem 2.2.1, we showed:that V'(X*n) =z X*n for each input
variable X*N such that v¥(X*N) = x*n. Now suppose there is
a selection t € V such that ¥*(t) = o where a = ¥*(t') for
all selection pairs (t,t'), but ¥*(t) # a. Let ¢ be the
mapping from text expressions to EXP such that for each text
expression u, ¥(u) is derived from ¥*(u) by substituting
for each occurrence of ¥(t) in ¥*(u), and reducing the
resulting expression. Hence ¥ ¢ r'gyg* but by Theorem 3.3.2
origin(y(t)) 3 origin(v¥(t)), a contradiction with the

assumption that w' is the minimal element of r'gyg*- O

In the next section we describe a method for actually

constructihg v*, the minimal eleﬁent of r'gyg®*.



3-34

3.4 The Computation of ¥, the minimal fixed point of ¥'

Now we describe a method for actually constructing ¥,
the minimal fixed point of ¥' which was shown in Theorem
3.3.4 to be the minimal element of r'GVGk. There are two
main steps. We first reduce constant propagation with
selection and constant reductions to constant propagation
with only constant Eeductions; the latter problem is solved
efficiently by the methods of Chapter 2. We then find v¥ by
cohstructing, by the methods of Chapter 2, the minimal

element of rgygy, rgygy, ... TGVGg where GVGo, GVG1, ...,

GVGR is a sequence of global value graphs derived from GVG¥.

Associate with each text expression t which is a

selection (sel u), a new , distinct program variable SVt

called the gselection 1§gi§hl§'gﬁ 1. The corresponding input
variable svzloc(t) will be wunambiguously represented by

dropping its superscript. The selection variable Svty 1is
installed in place of t in GVG* by relabeling t with the
selection variable SV¢, deleting the edge (t,u) originally
departing from t and adding the selection pairs departing
from t to the edge set. Conversely, the selection variable

SVt is replaced by t by reversing this process.

Let GVG be a 1labeled digraph derived from GVG* by
replacing apy number of selections with their corresponding
selection variables. Note that by definition of selection

pairs, for any seléction't relabeled in GVG with selection



3-35

variable SVt, if p is a control path from the start block s
to loc(t) then t has a departing selection pair (t,u), which
is also a value edge of GVG, such that 1loc(u) is distinct
from loc(t) and contained in p. Hence, GVG is a global
value graph.' Also, note that since the node set of GVG 1is
V, the node set of GVG¥, we continue to identify the nodes
in V with text expressions. However selections in V may now
be 1labeled in GVG with selection variables rather than
selector signs. By Theorem 2.2.1, Tgyg has a unique,
minimal element y. Chapter 2 gives an efficient method for

the construction of ¢. Let us review these results.

GVG is reduced if ¢(t) is the label of t in GVG for all
t ¢ V such that y(t) is a constant sign. A reduced global
value graph may be derived from GVG by the simple constant
propagation algorithm presented in Section 2.3. We now

assume GVG is reduced.

Recall that our method proceeds by induction on rank of

text expressions. The rapk of t ¢ V labeled in GVG with a
constant sign in GVG is 0. If t is labeled in GVG with a
function sign ¢, and ut,...,uk are the immediate successors
of t in GVG, then the rank of t in CVG is

1+MAX{rank(ut),...,rank(ug)},
and by definition of Igvg:

v(t) = (8 ¥(uq) cee ¥ (uk)).

Note that the rank induces a topological ordering (from



3-36

leaves to roots) of the dags of blocks from which GVG is
built.

The case in which t is labeled with an input variable
X*nvis more difficult. Recall that a value path in GVG is a
path p traversing only nodes linked by value edges and p is
maxjmal relative to a fixed beginning node if p ends at a
node with no departing value edges. The rank of t is

MIN{rank(w) | w lies at the end of a maximal
value path in GVG from t}.

This t ¢ V is a yalue source relative to v if y(t) = x»n,

We have from Chapter 2
Theorem 2.4. t is a value Source of y iff there exist two
maximal, almost disjoint (containing only one element in
common) value paths in GVG from t to ut,u2 € V such that
V(uq) £ ¥(up). Furthermore, for each t ¢ V labeled with an
input variable X;na either
(1) ¥(t) = ¥(u) for all u contained at the end of maximal
value paths in GVG from t, or
(2) ¥(t) = y(u) where u is the unique value source contained
on-all maximal value paths in GVG from t.
The problem of discovering the value sources of ¢ is reduced
in Section 2.6 to the computation of dominator trees, for

which there is an efficient algorithm due to Tarjan[T4].

The next Theorem reduces constant propagation with

selection and constaht reductions, to constant propagation



3-37

with only constant reductions.

For this we will require two special mappings
M1(GVG): rgvg to Tr'gygH*

M2(GVG); r'Gvg* to rgyg

For any Vv € Tgyg, let M1(GVG)(¥) be the mapping v1 from
V to EXP such that for all t ¢ v, v1(t) is derived from t by
repeatedly
(1) substituting (sel ¥(u)) for each selection w = (sel u)
such that ¥(w) = SVt is the selection variable of t. “
(2) substituting w(u) for each u ¢ V labeled in GVG with an

input variable.

Observe that ¥q € r'gyg®.

Let vo = M2(GVG)(¥) be the mapping from V to EXP such
that for each t ¢ V, |

(1) t' is derived by substituting selection variable SV, for
each nonsimplifiable selection u ¢ V such that u is labeled
in GVG with the selection variable SV,

(2) vo(t) is derived from t' by substituting ¢*(u) for each
u labeled with an input variable in GVG and such that v¥(u')
= ¢(u') for each u' ¢ V such that v*(u') is a proper
subexpression of v¥*(u).

dbserve that v, é rgvg.

Ihggggm 3.4.1 If GVG is derived from GVG® by substituting
selection variables for all selections, and ¥ is the minimal

element of rgyg, then for each t ¢ V, v®(t) is a constant



3-38

sign ¢ iff y(t) = c.

Proof IF. Suppose ¥(t) is a constant sign c, but v®(t) £ c
Let ¥1 = M1(GVG)(¥). Hence ¥1(t) > ¥*(t) and ¥1 ¢ T'ayg*s
contradiction with the assumption that +¥ is the minima
element of T'gyg¥.

ONLY IF. Suppose v¥*(t) is a constant sign ¢, but ¢'(t) £ ¢
Let V2 = M2(GVG)(¥). Then ¥2(t) 3 ¥(t) and v2 ¢ rgye
contradiction with the aSsumption that ¥ 1is the minima

element of rgyg- O

We now define a sequence of global value graphs
GVGp,GVGy, .

derived from GVG. GVGp is the reduced graph derived fro
GVG. For r = 0,1,... let NSS(r) be the set of selection
of rank r which are not simplifiable and let GVGp,i b
derived from GVGr by restoring each t e NSS(r); i.e., if t
(sel u) then the label of t is set to sel, all selectio
pairs departing from t are deleted, replaced by the ohigina
edge (t,u). Let VYp be the minimal element of TGVGp. Let
= MAX{r | GVGp contains a node of rank r}.
Theorem 3.4.2 vg = v*,
Proof Observe that each selection t ¢ V is 1labeled with
selection variable SVy {iff t is not simplifiable. Alsow
have ¥ ¢ FGVGg which impliés that v": VR, and we have ¥R

T'GVG* which implies that VR 3 w’. Hence w* = yr. O

The remaiﬁing problem is ‘ the | determination o]



3-39

simplifiable selections in V.

Iheorem 3.4.3 For all selections t ¢ V of rank r and labeled
in GVGr with a selection variable, t ¢ NSS(r) iff t is a
value source relative to ¥p-. _

Proof IF. Suppose t ¢ NSS(r) but t is not a value source of
Vp, so ¥p(t) = & where a = yp(t') for all selection pairs
(t,t'). Let ¥p = MI(GVGr)(¥p). Then ¥p ¢ rgyg* and t is
simplified by ¥p, so by Theorem 3.3.2, origin(vpr(t)) 3
origin(¥*(t)), a contradiction with the assumption that %
is the minimal element of rgyg*.

ONLY IF. Suppose t is simplified by #*, so there exists an
expression ¢ such that v¥*(t) = v*(t') = o for all selection
pairs (t,t'). Let ¥r = M2(GVGp)(¥p). Then $p(t) = $p(t') =

o for all selection pairs (t,t') and §, ¢ rgygg: If t is a

++

value source of ¥p, then by Theorem 3.3.2, origin(ép)
origin(vp), a contradiction with the assumption that vp is
the minimal element of IGVGpr+ Thus t is not a value source

of vp. U

Let a trivial value path be of the form (t) where t e V

is a node labeled with either a constant or function sign.
Corollary 3.4,1 For each t ¢ V, t is of rank r in GVGgr iff
there is é_ (possibly trivial) maximal value path in GVG,
from t to a node of rank r in GVGr and such that p avoids
all elements of NSS(r). |

Proof Observe that for any t ¢ V labeled in GVGr with a

constant or function sign, t is of rank r in GVGp iff t is



3-40

of rank r in GVGR. Otherwise, suppose t ¢ V is labeled with

an input variable in GVGr-

Suppose t is of rank r in GVGpg. Then there is a
maximal value path p from t to some t' ¢ V such that all
nodes of p are of rank r in GVGpg, Hence, p avoids all
elements of NSS(r), and p is a maximal value path in GVG,,
Since t' is labelédAwith a constant or function sign, t' is

also of rank r in GVGp,

'Suppose, on the other hand, that there is in GVGr 2
maximal value path p from t to some t!' or rank r in GVGp
such that p avoids all elements of NSS(r). It 1is always
possible to. find such a p containing only nodes of rank r in
 GVGp. Hence, p is a maximal value path of GVGp and t is of

“rank r in GVGR. O



3-41

Our algorithm for computing v*, the minimal fixed point

of ¥', is summarized below.

Algorithm 3B.

INPUT GVG*.

QUTPUT v*, the minimal fixed point of ¢'.

ml—. -n .
Discover all selection pairs by Algorithm 3A;
Let TVC be derived from GVG*® by installing a seletion
variables in the place of each selection;
éggly Algorithm 2A to construct GVGg, the reduction of

for r = 0 by 1 to oo do
begin

Apply Algorithm 2B to construct Vp, the set of all text
expressions of rank r in GVG;;

if Vr is empty then return ¢°;

Compute by Algorithm 2C, +¥p, the minimal element of

r .
GVGp? .
Le¥ fss(r) be the set of selection of Vr which are value

sources relative to V¥p; '

comment By Theorem 3.4.3, NSS(r) 1is the set of

nonsimplifiable selections of rank r in GVGp;

for all t ¢ Vp contained on a (possibly trivial) maximal

value path in GVGp avoiding all elements of NSS(r) do
begin

: By Corollary 3.4.1, t is of rank r in GVGR:
v (t) = vp(t); '
end;
Let GVGpr,1 be derived from GVGr by replacing each

selection variable SVt in VSyr with the original
selection t;

end;
‘end;
Let ;5 be the length of the text of program P and recall
that GVG* is of size O(JV|+|E}) = 0(p+|z||A]).
Theorem 3.4.4 Algorithm 3B is correct and costs O(£2+|z||A|)
bit vector and O(e(e+|z]|A|)) elementary operations.

Proof The correctness of Algorithm 3b follows directly from

Theorems 3.4.1-3.“.3.



3-142

By Theorem_3.2.2, the computation of all selector edges
by Algorithm 3A costs 0(22+|z][A]) bit vector operations.
For each r =1,2,... the computation of ¥pr ®may cost
0(2+|z||A|) elementary operations by the results of Chapter
2. Since the maximum r such that Vp is not empty is £ g,
the total time cost of Algorithm 3b is 0(22+|Z|[A]) bit

vector and 0(t(t+|Z||A])) elementary operations. U



Figure 3.95.
Figure 3.4.

The global value graph GVG® for the program

of

3-43



3-45

3.5 Iype Covers and Type Declaratiops.

lypes are expressions used to specify the shape of
structﬁred objects. A type cover of text expression t is a
closed form expression for the type of t which holds on alil
executions of the program P. We show that the methods of
the last section.ﬁay be applied to the construction of type
covers. Type éovers have applications analogous to the
;usual sort of covers used to represent yvalues of text
expressions. For example, if the type cover of teif
‘expression.t is a constant type, then the value of t has a
fixed type over all executions of P. Text expressions which
have the same type cover have values of the same shape on
each fexeCution of P (whereas, text expressions given the
same type declaration may have different values of different
shape over particular executions of P; see the latter part
of this Section). A text éxpression t which is a
construction operation is redundant if (1) every execution
of P from the start block s to loec(t) passes thru a block
containing a text expression t' with type cover common to t
and fur;hermore, (2) the structured object computed by t' is
dead (not referenced) on every execution path following
loc(t) (in other words, the Storage allocated for t' could

be used to storevt).

A type declaration of program P is used to specify, for

each text expréssion t, the set of all types of values that



3-46

t may evaluate to, over all executions of P. A recursiv

Lype ggg;g;g&igg uses recursion to specify infinite sets of
types. 1In the latter part of this Section we discuss
‘methods due to Tennenbaum[Te] and Schwartz[Sc2] for the
automatic construction of type declarations for "type-free"
programs (programs written without explicit type
declarations). The method due to Schwartz is vdirect
(noniterative) and mére powerful than Tennenbaum's iterative
method since it results in recursive type declarations for
text which may have an infinite set of types (whereas, the
method of Tennenbaum results in weaker, non-recursive type

declarations).

We shall observe that the set of all possible types of
a given text expression, over all executions of the program
P, need not be a context-free language although the type
declaration facilities of most brogramming languages are
essentially context-free grammars. Hence, it is not
possible to construct "tight" (exact) type declarations

within most programming languages.

Fix (U,I) as an interpretation of program P  as
described in Section 3.1. Recall that the unjverse of
sStructured values U is built from a set of atoms 1in the
fixed set ATOM and k-adic constructor signs in CONS. Also,
recall that EXP is the set of expressions built from input

variables (representing the value of program variables on



3-47

input to blocks in N), constant signs in C, and k-adie
function signs in e (including operator signs in oP,

constructor signs in CONS, and selector signs in SEL).

Let v be a mapping initially of domain ATOM v g into
EXP such that |

(1) For each a ¢ ATOM, t(a) is a symbol denoting the type of
a.
(2) For each program variable X ¢ g, there exists an unique

variable «(X) = TX.

Extend ¢ to a homomorphic mappihg from EXP to EXP

thusly:
(a) for each coﬁstant sign ¢ ¢ C, if ¢ is of the form X*S
(representing the value of program variable X on input to
the start block s)'let t(X*s) = 1(X)*s = Tx*S, Otherwise,
let t(c) = t(I(e)). f
(b) for each input variable x*“,‘r(x*n) = v(X)*0 = Tx*n.
(e) r distributes over function applications thus:

(6 aq ... ep) = (o 1(aq) ... 1t(ak))-
Also, extend r to subsets S of EXP and U:

1(S) = {+(a) | « ¢ S}.

A &ing gover of program P is a mapping ¢y from the text
expressions of P to +{(EXP) such that for each text
expression t 6f P, |

~ EXEG(y(t),p) = ¢(EXEC(t,p))

for all control paths p from the start block s to loc(t).



3-48

For example, consider the control flow graph of Figure
3.7. Let 7(1) = int. Note that ZP* and X@” do not have the

same covers but do have the same type cover (cons int TY*W).

Let P, be the program derived from P by substituting
1(t) for each text expression t. Fix («(U), I,) be the
interpretation of P, where I, is the identity mapping over
r(ATOM), and for each k-adic elementary operation sign op
OP (recall that I(op) is a mapping from ATOMK to ATOM) and
a1,...,ak € ATOM,
L:(op)(x(ay),...,x(ak)) = *(I(op)(aq,...,ax)).

Theorem 3,5.1 ¢ is a cover of Py iff y is a type cover of P.
Proof Consider any text expression t and control path from

the start block s to loc(t). By the fact that t is a
hbmomorphism over EXP,
| EXEC(<(t),p) = <(EXEC(t,p)).
If y is a cover of P, then
EXEC(4(t),p) = EXEC(t(t),p),
= t(EXEC(t,p)).
On the other hand, if y is a type cover of P then
EXEC(v(t),p)) = t(EXEC(t,p))
= EXEC(<(t),p). [.



3-4g

X :=(cons 1Y)

X:= (plus(car X) 1)
Z:= (cons X Y)

" Figure 3.7. The control flow graph of a program P in LISP.




3-50

TX: = (cons int TY)

TX:=(plus (car TX)int)
TZ:= (cons TX TY)

igure 3,8. The type program P, derived from the program P
f Figure 3.7.



3-51

Let TV = {T1,T2,...} be a set of type variables; in the
following we assume TV and the special symbol opeof is
distinet from the elements of {(ATOM) and CONS. We
.'distinguish the type variable apy ¢ TV which will represent
the set of all types. Let TEXP be the set of expressions
built from t(ATOM), TV, and CONS. We shall assume that for

a fixed program P, CONS and 1(ATOM) are finite sets.

A Lype declaratjon for input variable X’n consists of a
statement of the form
declare X*N type o
where o« ¢ TEXP.

A type declaration is interpreted in the context of a
type varjable definition block TDEF,I consisting of a
seqﬁence of stateménts of the form
T = opeoff{aq,...,ak!}
(or just T = aq if k=1) where T « TV-{any} and a1,...,ax ¢
TEXP. We assume no T ¢ TV occurs more than once on the left

hand side of a statement in TDEF.

We now construct a set of productions (in the sense of
formal language theory) by substituting for each statement
T = oneof{aq,...,ax}
of TDEF, the context-free productions
T+ a1,T*ap,..., T+ ak.
Also, for the special symbol any we have the productions

any + «(a)



3-52

for each a ¢ ATOM, and
any + (cons any ...k-times... any)

for each k > 0 and k-adic constructor sign cons ¢ CONS. For
each T e TV, 1let TDEF[T] be the context-free language
generated by these productions with T considered to be the
start symbol, the type variables as nonterminals, and the
terminal symbols are taken from CONS v t(ATOM). Note that
TDEF[T] is a subset of +(U) and TDEF(any) = :(U). Also, for
eééh e ¢ TEXP, let TDEF[«] be the set {a' ¢ <(U) | o' |is
 derived from « by substituting some element of TDEF[T] for

each type variable T occurring in al.

For eaéh.q e 1(U), let EXPAND(a) = {a' ¢ (U) | o' is
'deriyed from o« by substituting some element of 1(U) for each
constant sign of the form X*Sj. For each input variable
XN, let TYPES(X*M) = {a | o ¢ EXPAND(T (EXEC(X*N,p)) and
such that p is some control path from the start block .s to

n}.

Congider again the type declaration
declare X*P type . | |
This type declaration is proper in the context of TDEF if
| TYPES(X*D) ¢ TDEF[q]
and is tight if
- TYPES(X*N) = TDEF[o]

For example, a proper type declaration for input

variable Xn+ of Figure 3.7 is



3-53

declare x*n type (cons int any).

Although the type definition facilities of many
programming languages employ essentially the above scheme,
it is interesting to note the scheme is not even powerful
enough to give tight type definitions of programs without
selection operations. Let f, g, and h be constructor signs
of arity 1,1, and 3 respectively. Also, let ¢(0) = int. 1In
Figure 3.9,

TYPES(Zm*) = TYPES(Z™n)
= {h(fk(int),gk(int),rk(int)) | k > 1}
which is clearly not a context-free language language and

hence is not definable by the above type declaration scheme.

o



3-54

‘igure 3,9. There is no tight type declaration for input

7rariable Z»*D,



3-55

We now describe a simplified version of the method of
Schwartz[Sc2] for constructing proper (but not necessarily
tight) type declarations. We require the special global
value graph GVG* and selection pairs of Section 3.2. To
simplify the method, we assume that for each k-adic
elementary operation sign op ¢ OP, there exists a unique eop

€ ©(U) such that ®op = t(I(op)(a1,...,ak)) for all a1,...,ak
¢ ATOM.

For each text expression t which is a selection, 1let
SVt ¢ TV be the unique selection varjable. Let T be the
mapping from text expressions to TEXP such that,
(1) For each constant sign c ¢ C,

(a) if ¢ is of the form X*s (representing the value of
program variable X on input to the start block s)
then 1(c) = any,

(b) and otherwise, let 7(c) = t(c).

(2) For each input variable X*n, 3(x*0) = rx*n,
(3) For each function application t = (g a1...ay),

(a) if ¢ is a elementary operator op ¢ OP then.

(t) = aop.

(b) if ¢ is a constructor sign cons ¢ CONS then +(t) =
(cons ?(a1),,,?(ak)),

(c) if o is a selector sign in SEL then

1(t) = SVg,

the unique selection variable associated with t.



3-56

We assume that TX”D ¢ TV, for each input variable X*R.
Consider the special type variable definition block TDEF¥
such that for each input variable X*N, we have  the
statement:

- TX*P = oneof{T(t) |

(X,t) is a value edge of GVG*},
and for each text expression t which is a selection, there
is a type declaration statement:

SVt = gn_gg_{{?(u)l |

(t,u) is a selection pair}.
Iheorem 3.5.,2 For each text expression t and each control
path from the start block s to loc(t), EXPAND(< (EXEC(t,p)))
is contained in TDEF*[T(t)].
Proof Let p be.the shortest control path from the start
block s to some block n containing a text expression t such
that EXPAND(t(EXEC(t,p))) is not contained in TDEF*[3(t)].
Clearly, n # s. We proceed by induction on>éubexpressions

of t.

Consider a constant sign ¢. If ¢ is of the form X*S
then‘ T(X*S) = any and so EXPAND(T(EXEC(X™*S))) = t(U) =
TDEF[any]. Otherwise t(EXEC(c,p)) = '1(c) z t(e) and so
EXPAND(+<(EXEC(c,p))) = {x(c)} = TDEF¥*[Z(c)].

For each inbut variable XN, EXEC(X*n,p) = EXEC(Xm*,p')
where p = p"(m,n); By the induction hypothesis,
EXPAND(t(EXEC(X®*,p'))) is contained in TDEF*[i(X®*)]. By



3-57

definition, TDEF*[T(X*D)] contains TDEF*[T(xm*)].  Henc.
EXPAND(T(EXEC(X*M,p))) = EXPAND(t(EXEC(X®*))) is containe
in TDEF*[T(x*n)].

If u is a selection contained within t, then u has

ns

departing selection pair (u,u') such that EXEC(u,p)
EXEC(u',pP) for some control path P which is a subsequence of
P starting at s. By definition, :(u) is the selectior
variable SV, and TDEF'[svu] contains TDEF*[7(u')]. Also, by
the induction hypothesis EXPAND(:(EXEC(u',p))) is contained

in TDEF*[I(u')]. Hence, EXPAND(t(EXEC(u,p))) is contained
in TDEF*[Z(u)].

Now suppose t is a function application (e tq...tg)
such that @ is not a selection and t(EXEC(ti,pP)) is
contained in T(tj) for i = 1,...,k. But
T(EXEC(t,p)) = EXEC((® t(t1)...t(tK)),p)

(8 v(EXEC(t1,p))...T(EXEC(tk,P)))

Hence t(EXEC(t,p)) is contained in 7(t) = (s T(t1)...T(tk)),
a contradiction. ({.

This immediately implies that

Corollary 3.5 For each input variable x*N,
declare X*Nn type TX*P
is proper, relative to type variable definition block TDEF®.

The above method for constructing type declarations 1is
due to Scwartz[Sc2]. We conclude by listing TDEF" for the

program of Figure 3.1. Let t(nil) = null, «(0) =z int, t =



(car X*N), and t' = (edr X*0).

TDEF® -

(TX?® = opeof{null, (cons int TX*m)},

TY’™ = null,

TZ'm = int,

TX*D = SV¢r,

TY’P =z oneof{TY’™, (cons SVt TY'n)},

svy = oneof{error, int},

SVt' = oneoff{error, null, Tx*m})

3-58



