Chapter 5

CODE MOTION

5.0 Summary

Code motion is the program optimizatioh concerned with
the movement of code as far as possible out of control
cycles into new locations where the code may be executed
less frequently. Methods are discussed for approximating
certain functions used to ensure that the relocated code may
be computed properly and safely, inducing no errors of

computation.

The effectiveness of code motion depends on the
goodness of our approximation to these functions, as well as
~on tradeoffs between (1) the primary goal of moving code out
of control cycles and (2) the secondary goal of providing
that the values resulting from the execution of relocated

code are utilized.

Two versions of code motion are formulated: the first
emphasizes the primary goal, whereas the other insures that
the second goal is not compromised. Almost linear time (in
bit vector operations) algorithms are presented for both
these formulations of code motion; the algorithm for the
first version of code motion is restricted to reducible flow

graphs, but the other runs efficiently on all flow graphs.
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Previous algorithms for similar formulations of code motion
have time cost lower bounded in the worst case by the length

of the program text times the number of nodes of the control

flow graph.



Original Program P Improved Program P

"O A s(zeaxs)

Figure 5,1. A simple example of code motion.



5.1 Introduction

We assume here the global flow model described in
Chapter 1. Let F = (N, A, s) be the control flow graph of
program P to which we wish to applyvcdde motion. Nodes in
the set N correspond to linear blocks of code, edges in A
specify possible control flow immediately between these
blocks, and all flow of control begins at the start nodé S.
A coptrol path (cycle) is a path (cycle) in F. Every
‘execution of the program P corresponds tp a control path, —
‘though some control paths may not cdrrespond to possible
executions of P. The essential parameters of the model are
n = |N|, a = |[A|], and ¢ = the length of the program text
(each block in N .is assumed to contain at least one text
expression, so n 5'1). We assume bit vectors of 1length
may be stored in a constant number of words and we have the
usual logical and arithmetic operations on bit vectors, as
well as an operation which Shifts a bit vector to the left
up to the first nonzero element. (This operation is
geherally used for normalization of floating point numbers;
"here it allows us to determine the position of the first
nonzero element of. the bitAyector in a constant number of
steps.) An algorithh runs in almost ligggn number of steps
relative to this model if it requires O((a+2)a(a+s)) bit
vector and elementary operations, where o is £he extremely
siow-growing function_of_[T3] (a is related to a functional

inverse of Ackermann's function).
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Consider a text expression t located at node loe(t) in
.N. To effect code motion (see also [CA,AUZ,E,G) for
descriptions of code motion optimizations) on the
computation associated with t, we relocate the computation
to a node movept(t) by deleting t from the text of node
loc(t) and installing an appropriate text expression t' (not
necessarily lexically identical to the string t) at
movept(t). On execution of‘ the ‘modified program P' the.
result of the computation at movept(t) might be stored in a
special register or ﬁemory location to be rétrieved when the

execution reaches node loc(t).

~——

To insure that P' is semantically equivalent to the
original program P, we require that if node w is the movept
of t, then: |

R1 All control paths from the start node s to loc(t)
contain node w. ‘ _

B2 The computation is possible at node w; i.e., all
quantities required for the computation must be defined
at node w. _

R3 The computation must be gafe at w; thus if an error
occurs in a particular execution of P', an error must

also have occurred in the corresponding execution of
the original program P.

Observe that the nodes satifying R1 form a chain,
called a ggmigiign chain, from s to loc(t). The birth point

of text expression t is the first node on this chain that
satisfies R2. We show in Chapter 1 that if the program P is

interpreted within the arithmetic domain, the problem of
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computing birth points exactly is'recursively unsolvable, so
we must be content with computable approximations. Chapters
2 and 4 give algorithms for computing such approximations.
The approximation of Chapter 2 is somewhat weaker than that
of Chapter 4, but may be computed very swiftly; in fact the
algorithm of Chapter 4 requires‘an almost linear number of
bit vector operations for all control flow graphs to compute

an approximation BIRTHPT to the true birth point.

The first node on the dominator chain from the birth
point of t to 1loc(t) which satisfies restriction R3 is
_called the safe point of t. Section 5.3 discusses an
approkimation to the safe point, called SAFEPT, which may be
eomputed in an almost 1linear number of bit vector
operations, given an efficient test for safety of code
motion (we rely on a global flow algorithm by Tarjan[T5] for
this). Unfortunately, known algorithms (including Tarjan's)
for testing safety of code motion are efficient only on a
restricted class of flow graphs which are called reducible
(see [HUT]).

Let us continue the formulation of the code motion
problem. We add a further restriction' A _

RY4 the movept of t may not be contained on a control

cycle avoiding loc(t).

Let M1 consist of all nodes occurring on the dominator

chain from SAFEPT(t) to loc(t) that satisfy R4. We choose
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movept(t) from the nodes in M1 based on the following goals:

G1 movept(t) is to be located on as few control cycles
as possible. :

G2 As few control paths as possible may contain
movept(t) and reach the final node f in N without
passing through loc(t) (we assume f is reachable from
all nodes).

The above goals conflict, for to satisfy G1 we would

choose movept(t) earlier in the dominator ordering than we

would if we were to also satisfy goal G2.

We consider two formulations of code motion. In the
first formulation we stress G1 and in the other we stress

G2. Let My be the set of nodes in Mq which also satisfy the

restriction:

RS All control paths from the movept of t to the final
node f must contain loc(t).

For i = 1,2 let

M = those nodes in Mj which satisfy R4 and are
contained in the minimum number of control cycles

and let moveptj(t) be the first node in M{ relative to the

dominator ordering of F.

More general formulations‘ of code motion have been
described by Geschke[G], including the movement of code to
several nodes (rather than to a single node), and also the
movement of code to nodes occurring éfter (rather than
before) loc(t) in the dominator ordering of F, Prev1ous
formulations of code motion [E,G, CA] simllar to ours requlre

2(2) (the "big omega"™ notation denotes a lower bound in the
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worst case; see [Kn2]) operations per node in the flow

graph, or a total worst-case time cost of a(ren).

The next Section defines the relevant digraph
terminology. Section 5.3 presents an algorithm for
- computing SAFEPT, wusing Tarjan's algorithm for testing
safety of code movement. Section 5.4 reduces the first
version of code motion to the computation of SAFEPT and a
pair of functions C1 and C2 related to the cycle structure

of flow graphs. We show that the function C1 suffices to
solve the second type of code motion; in this formulation we
éyoid testing for safety of code motion. Sections 5.5 and
5.6 present algorithms for computing the functions C1 and C2
over certain domains in an almost 1linear number of bit
A vector operations. 'The algorithm for computingACZ requires
'a special hfunétion ‘DDP; in Section 5.7 an algorithm,
restficted to reducible flow 'graphs,- is presented which
computes.DDP in O(JAje(lA})) Dbit Qector steps. We conclude
in Section 5.8 with a graph-transformation (similar to those
described in [E,AU2]) which improves the results obtained
from the two versions of code motion and in certain cases

simplifies our algorithms for computing C1 and C2.
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5.2 Graph Iheoretic Notjons
A digraph G = (v, E) cohsists of a set V of elements
called podes and a set E of ordered pairs of nodes called

edges. The edge (u,v) departs from u and enters v. We say

u 1is an immediate predecessor of v and v is an immpediate
sSuccessor of u. The outdegree of a node v is the number of

immediate successors of v and the indegree is the number of

immediate predecessors of v.

A path fropu to w in G is a sequence of nodes
P = (u=vy,v2,...,vk=w) where (vi,visi) ¢ E for all i,

TN ¢ i < k.

The path p may be built by composing subpaths:

P=(vy,.o,vi) * (vi,...,vk).

The path p is a ¢ycle if u = w. A path is simple if it

contains no cycles.

A node u is reachable from a node v if either u = v or

there is a path from u to v.

A flow graph (V, E, r) is a triple such that (V, E) is
a digraph and r is a distinguished node in V, the root, such
éthat r has no predecessors and every node in V is reachable

from r.

A digraph is acycljc if it contains no cycles. If u_is
reachable from v, u is a descendant of v and v is a angestor
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of u (these relations are proper if u £ v). Immediate
’-successors are called sons. An acyclic flow graph T is a
tree if every node v other than the root has a unique
immediate predecessor, the father of v. T is oriented if
the edges departing from each node are oriented from left to

right.

The preordering of oriented tree T is defined by the
following algorithm (see also Knuth{Kn1]).

Algorithm 5A
INPUT An oriented tree T with root r.

' QUTPUT A numbering of the nodes of T.

begin
brocedure PREORDER(W):
begin
if w is unnumbered then
begin
Let w be numbered k := k+1;
for all sons u of w from left to right do

PREORDER(u) ;
H
- end;
k := 0;
PREORDER(P),
end;

Given a preordering, we can (see [T1]) test in constant
time if any particular pair of nodes is in the ancestor

relation. if a node 1is an ’ancestor of .any other. A

.bostordering is the reverse of a preordering.

Let G = (V, E, r) be an arbitary flow graph., A
Spapping tree of G-is an oriented-trge ST rooted at r with
node set V. and édge'°1ist. contained in E. The edges
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contained in ST are called 4tree edges, edges in E from
descendants to ancestors in ST are called g¢ycle edges,
non-tree edges in E from ancestors to their descendants in
ST are forward edges, and edges in E between nodes unrelated

in ST are ¢cross edges.

A special spanning tree of G, called a -first

Search spannipg tree is constructed by a 1linear time
algorithm by Tarjan[T1] and has the property that if the

nodes are preordered by the algorithm above, then for each_:.

cross edge (u,v), v is preordered before u.

~ A node u dominates a node v if évery path from the root
to v includes u (u properly dominates v if in addition, u #

v). It is ‘easily shown that there is a unique ' tree TG}
called the dominator tree of G, such that u dominates v in G

iff u is an ancestor of v in Tg. The father of a node in

the dominator tree is the immedjate domipator of that node.

The cycle edges are partitioned by their relation 'in
- the dominator tree DT: |

(a) A-cycle edges are cycle edges from a node to a proper.
dominator.

(b) B-cycle edges are cyélé edges between nbdes unrelated oh 

the dominator tree.

o

G is reducible if each cycie p of G contains a 'unique

node dominating all other nodes in‘p. Programs writteh in a
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well-structured manner are often reducible. Various
- characterizations of reducibility are given by Hecht and
Ullman{HU1]); in particular they show that

Inggggm 5.2 G is reducible iff G has ngo B-cycle edges.

* Tarjan gives in [T2] a test for reducibility requiring an

almost linear number of elementary steps.



5.3 Approximate Safe Points of Code Motion

Text expression t is safe at node w if no new errors of
computation are induced when t is relocated to node w. To
approximate the safe point of t we require a good method for

determining if t is safe at particular nodes.

| A text expression t is dependent on a program variable
if that variable occurs within the text of t (this need not

imply functional dependence). The text expression t is
dangerous if there exists some assignment of values to the
variables dependent on t which induce an error in the
eomputation of ¢t. For example, an expression with a
,division operation is dangerous, since an error occurs if
the operand evaluates to zero. Following Kennedy[Kel], we
say there is an gxposed instance of text expression t on a
simpie (acyelie) control path p if there is some text
expression t' located in p, with the same text string as t,
“and such that no variable on which t is dependent is defined
at any node in p occurring after the first node of p and
before loc(t'). Let SAFE(w) consist of all text expressions
which are not dangerous plus all dangerous text expressions
which have an exposed instance on every simple control path
'frbm w to the final node f. | o |
Thegorem 5‘3;1 (due to Kennedy[Ke1]) If w occurs on the

dominator chain from BIRTHPT(t)'td loc(t) andrtA; SAFE(w)V

then t is safe at node w.
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Proof Let P' be the program dérived from P by relocating the
computation of t to node w. If there is an error resulting
from the computation of t on control path p in the modified
‘prégram, then since t ¢ SAFE(w) the error would also have
occurred (although somewhat later) in the execution of the

original program on control path p. [

Recall the parameters n = |N|, a = |A|], 'and ¢ = the
number of text expressions. Tarjan[T5] presents an
algorithm for solvihg éertain general path problems, and
which may be used to computé SAFE in a number of bit vector
Z?perations almost linear in a+t if the program flow graph is
feducible. Also, '-Graham_and Wegman [GW] and Hecht and
'UIIman[HUél~give algoriihms for. computing SAFE ﬁith time

cost often linear in 2+a, but with worst case time cost

gp(g+a-log(a)) and a(g+n2), respectively.

Leﬁ loc(t) be the node where text expression t is
located. To approximate the safe point of t, we take
SAFEPT(t) to be the first node w of the dominator chain from
BIRTHPT(t) to loc(t) such that t e SAFE(w).

Let IDOM map_from nodes in. N-{s} to their immediate
dominators in F. For each w ¢ N; let EARLY(w) consist of
‘those text expressions ﬁ with BIRTHPT(t) = w plus, if w £ s,
all t ¢ EARLY(IDOM(w))-SAFE(IDOM(w)). Let LATE(w) be the
set of all text expressions t e‘ SAFE(w) such that w

dominates loc(t).
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Lemma 5.3.1 SAFEPT(t) = w iff t ¢ EARLY(w) n LATE(w).
E;ggﬁ. Clearly, for each node.w on the dominator chain from
BIRTHPOINT(t) to loc(t), t ¢ LATE(w) iff SAFEPT(t) dominates
w. Hence, for each node w on the dominator chain following
BIRTHPT(t) to SAFEPT(t), if t e EARLY(IDOM(w)) then since t
# SAFE(IDOM(wW)), t ¢ EARLY(w). Also for any w on the
“dominator c¢hain following SAFEPT(t) to 1loe(t), t
SAFE(IDOM(w)), so t ¢ EARLY(w). Thus w = SAFEPT(t)'
iff w dominates SAFEPT(t) and SAFEPT(t) dominates w
iff t ¢ EARLY(W) n LATE(W). ]

Lemma 5.3.1 leads to a simple algorithm for comphting
SKFEPT. EARLY is computed by a preorder pass through the
dominator tree DT and LATE is computed by a postorder (i.e.

reverse of the preorder of Section 5.2) pass through DT.
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Algorithm 5B
INPUT Control flow graph F = (N,V » 8), the set of text
expre331ons TEXT, BIRTHPT, and SAFE.

QUTPUT SAFEPT.

begin S
declare LATE, EARLY := arrays length n = IN|;
declare SAFEPT := array length g
Compute the dominator tree DT of F;
Number nodes in N by a preordering of DT
for w := 1 to n do
L1: EARLY(w) := LATE(wW) := the empty set {};
for all text expressions t ¢ TEXT do
L2: add t to EARLY(BIRTHPT(t)) and LATE(loc(t)),
for w := 1 ton do
L3: EARLY(w) := EARLY(w)
v (EARLY(IDOM(w))- SAFE(IDOM(w)))
for w :=n by -1 to 1 do
begin
for all sons u of w in DT do
L4: LATE(w) = LATE(w) v LATE(u);
comment Apply Lemma 5.3.1;
for all t ¢ EARLY(w) n LATE(w) do
L5: SAFEPT(t) I

end;
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We assume that a bit vector of length g may be stdred
in a constant number of words and that in a constant number
of bit-vector operations we may determine the first nonzero
element of a bit vector (this is not an unreasonable
assumption since most machines have an instruction for
left-justifying a word to the first nonzero bit).

Theorem 5.3.1 Algorithm 5B is correct and requires
O((a+t)a(a+s)) elementary and bit vector operations.

Proof. The correctness of Algorithm 5B follows immediately
from Lemma 5.3.1. The dominator tree DT may be constructed
by an algorithm by Tarjan[T4)] in time almost linear in a =
|A}l, (if G is vreducible, an algorithm due to Hecht and
Ulkman[HUZ] computes DT in a linear number of bit vector
operatioﬁs). Steps L1, L2, L3, L4, LS5 each require a
constant number of elementary and bit vector operations and
‘are  executed 0(n), 0(z), 0(n), 0(n), O0(y) times,
respectively. Since F is a flow graph, a > n-1. Hence, the
tofal timé cost of Algorithm 5B is 0((a+%)a(a+t)) bit vector

operations. [J
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5.4 Reduction of Code Motion to Cycle Problems

For an arbitrary flow graph G = (V, E, r) and w,x ¢ V
such that w doninates x in G, let Cig(w,x) be the latest
node, on the dominator chain in G from w to x, wWhich is
contained on no w-avoiding cycles. Similarly, let Ceg(w,x)
be the first node, on this 'dominator chain, which is
contained on no x-avoiding cycles.

Lemma 5.4,1. For nodes x,y ¢ V such that y dominates x, let
M be the 1ist of nodes on the dominator.chain from y to x
and contained on no x-avoiding cycles, let w ‘be the first
element of M, and let M' = those nodes in M contained in a
midimal number of cycles. Then Cig(w,x) is the first node
in M' relative to the doﬁinator)ordering éf G.

Proof Observe that C1g(w,x) e;M; for otherwise Cig(w,x) is
contained on a x-avoiding ecycle which also contains w, a
cbntradiction_with the asSumptioﬁ that Q e Mis cdntained on

no x-avoiding cycles.

Suppose p is a cycle containing C1g(w,x) and avoiding
some y € M-{C1g(w,x)}. If y properlyrdOminates C1G(va)
then since w dominates y, p is w-avoiding, a contradiction
with the assumption that 'C1G(w,x) is contained on no
w-avoiding cycles. Otherwise, if y is properly dominated by
Cig(w,x), then since vy dominates' W, p is xgavoiding,

contradicting the assumption that C1¢(w;x) e M.
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Suppose some z ¢ M' properly dominates Cig(w,x). If z
is contained on no w-avoiding ecycles, then c1g(w,x)
dominates 2z, contradiction. If z 1is contained on a

w-avoiding cycle, then so is Cig(w,x), a contradiction. [

Let F = (N, A, s) be the control fléw graph. Our first
variation of code movement, moveptq, may be described in
terms of Clp, C2p, and SAFEPT. |
Iheorem 5.4.1 For each text expression t,

movept (t) = CIF(C2F(SAFEPT(t),loc(t)),loc(t)).
Proof. Clearly, any node on the dominator chain from
SAFEPT(t)  to loc(t) satisfies R1-R3. Recall that M,
consists of those nodes on the dominator chain  from
SAFEPT(t) to loc(t) which satisfy RY4; i.e., they are
contained on no control cycles avoiding loe(t). By
definition of C2F, w = C2p(SAFEPT(t),loc(t)) is the first
node in Mq relative to the domination ordering in F. - Hence
by Lemma 5.4.1, movept(t) = C1G(w,loc(t)) is the first node

of M} relative to the domination ordering. U

From the control flow graph F = (N, A, s) we derive the

- reverse control flow graph R = (N, AR, f) which is a digraph
rooted at the final node f ¢ N and with edge set AR derived

from A by reversing all edges. R is assumed to be a flow
graph; so every node is reachable in R from f.
Lemma 5.,4.2 If x dominates y in F, y dominates z in F, and z

dominates x in R, then y dominates x in R and z dominates y
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in R.

Proof by contradiction. Suppose there is a y-avoiding path
py in R from f to x. Since z dominates x in R, pq MUSt
contain z. The reverse of piq, p§v is a path in F. Since x
dominates y in F, there must be a y-avoiding path pp2 in F

from s to x. Composing p» and pq' we have a path in F from

s to f which contains z but avoids y. But this contradicts
our assumption that y dominates z in F. Hence, y dominates
x in R. Similarly, we may easily show that z dominates y in
R. O

Theorem 5.4,2 If w dominates x in F and x dominates w in R,
then C2p(w,x) = C1gr{x,w).

Proof. Ii is sufficient to observe by Lemma 5.4.2 that the
dominator chain from w to x in F.is the reverse qf the

dominator chain from x to w in R. The symmetries in the

definition of C2p and C1F then give the result. O

Let HPT(t) be the flrst node on the domlnator chain of
F from BIRTHPT(t) to loc(t) which is dominated by loc(t) in
the reverse flow graph R. Also, for each W e Nlet H(w) be
the first node, on ﬁhe dominator chain in F from the start
node s to w, which is "~dominated in R by w. H may be
computed by a swift scan 6f the nodes in N, in preorder of
the dominator tree of F by the following rule:
H(w) = H(x) if w dominates x in R, where x is the immediate

dominator of w in F, and otherwise H(w) = W,
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HPT is given from H by the following 1lemma, which is
trivial to prove.
Lemma 5.4.3 HPT(t) = H(loe(t)) if BIRTHPT(t) dominates
H(loc(t)) in F and otherwise HPT(t) = BIRTHPT(t).

The following Theorem expresses moveptos in terms of C1
and HPT.
Ihggggm 5.4,3 For all text expressions t,
movepto(t) = CIp(C1R(loe(t),HPT(t)),loc(t)).
Proof. Recall that My is the set of nodes v € Mq which
satisfy restriction RS: that all control paths from v to f

contain loc(t).

We claim that w = C2p(HPT(t),loc(t)) is the first node
in M1 relative to the dominator ordering of F. Since
'SAFEPT(t) ddminates HPT(t) in F, w is cléarly an element of
Ms. If there exists some w' ¢ M2 which properly dominates
~ W, then since w' satisfies restriction RS, 1loc(t) is
'.containéd on all paths from Q"to f, which implies that

HPT(t) dominates w', a contradiction.

By Theorem 5.4.2, w = C2p(HPT(t),loc(t)) z
C1ﬁ(loc(t),HPT(t)). Hence, moveptp(t) = Cip(w,loc(t)) is

the first node in M) relative to the domination ordering. U

The next two sections describe how to compute C1 and C2

efficiently.
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5.5 The Computation of C1

Let G = (V, E, r) be an arbitary flow graph with the
nodes of V numbered from 1 to n = |V] by a preordering of
some depth-first search Spanning tree ST of G (see Section
5.2 for definitions of depth-first spanning trees and
preorderings). For certain W,X € V Sudh that w dominates x

in G, we wish to compute C1G(w,x); recall from Section 5.4

that this is the last node on the dominator chain from w to

X which is contained on no w-avoiding cycles.

For w = n,n-1,...,2 let I(w) be the set of all x e V
contained on a cycle of G consisting only of descendants of
W in ST, and such that x is not contained in any I(u)-{u}
for u > w. The sets I(n), I(n-1),...,I(2) are related to
the jintervals of G (see Allen[A]) and may be computed in

almost linear time by an algorithm of Tarjan[T2].

Let IDOM(x) give the immediate dominator of node x ?
V-{r}.
Lemmpa 5.5.1 (due to Tarjan[T2]) For each w ¢ V-{r} and x ¢
I(w), IDOM(w) properly dominates x. |
Proof by contradiction. Suppose the lemma does not hold; so
there exists a IDOM(w)-avoiding path p from the root r to x.
But by definition of I(w), there exists a cycle qQ, avoiding
all proper ancestors of w in ST and containlng both w and x.
Slnce IDOM(w) is a proper ancestor of w in ST, q avo;ds

IDOM(w). Hence, we  can construct from P and q a
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IDOM(w)-avoiding path from r to w, which is impossible. [

| Our algorithm for computing C1 will construct, for each
W ¢ V, a partition PV(w) of the node set V. 1Initially, for
W = n, PV(w) consists of all singleton sets named for the
nodes -which they contain. For w =z n,n-1,...,2 let J(w)
consist of 1I(w) plus all nodes ih V contained on a
w-avoiding' cycle and immediately dominated by some element
of I(w). Then PV(w-1) is derived from PV(w) by collapsing
into w all sets with at least one element contained in

J(w)-{w}.

For w,x ¢ V such that w dominates x, let g(w,x) be the
name of the set of PV(w) in which x is contained.
Lemma 5.5.2 g(w,x) is an ancestor of x in ST and if w > 1,
IDOM(g(w,x)) properly dominates x. '
Proof by induction on w. v
Basis step. For w = n, g(w,i) = X andv so IDOM(g(w,x)) =
IDOM(x) properly dominates x. h |
vlgggg&ixg step. SuppoSe, for_some w>'1, the Lemma holds
for all w' > w. Consider some x ¢ V such that w dominates
X. |
Case 1.l=Ing(w-1,x)
induction hypothesis.
Case 2. If g(w-1,x)

y ¢ J(w)-{w}. First we show that w is an ancestor of y in

g(w,x) then the Lemma holds by the

w then in PV(w), g(w,x) contains some

ST and IDOM(w) properly dominates y. If y ¢ I(w)-{w}, then
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w is an ancestor of y in ST by definition of I(w), and
IDOM(w) dominates y by Lemma 5.5.1. Otherwise, suppose y ¢
(J(w)-I(w))-{w} so y is immediately dominated by some y' e
I(w). Hence y' is a proper ancestor of y in ST and by
definition of I(w), w is an ancestor of y', so w is an
ancestor of y' in ST. By Lemma 5.5.1, 1IDOM(w) properly

dominates y', and hence IDOM(w) also properly dominates y.

Since the set g(w,x) of PV(w) contains y, g(w,x) =
glw,y). By the inductién hypothesis, g(w,x) = g(w,y) is an
ancestor of both x and y in ST. We have shown that w is an
ancestor of y in ST. Since w < g(w,x), w is a proper
ancestor of g(w,x) in ST, so w is also an ancestdr of x 1in

ST.

We claim that IDOM(w) properly dominates g(w,x). If
not, there ﬁ;ould exist an IDOM(w)-avoiding path p from the
root r = 1 to g(w,x). IDOM(w) is an ancestor of w in ST and
g(w,x) is not an ancestor of w, so g(w,x) is not an . ancestor
of IDOM(w) in ST. Also, since g(w,x) is an ancestor of y in
ST, there is a IDOM(w)-avoiding path p' of tree edges fﬁom
g(w,x) to y. Composing p and p', we have a IDOM(w)-avoiding
path from r to g(w,x), which is impossible since we have
previously shown that IDOM(w) properly dominates y. Hence,
IDOM(w) properly dominates g(w,x). By the induction:
hypothesis, IDOM(g(w,x)) properly dominates x, and so

IDOM(w) properly dominates x. [J
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Iheorem 5.5,1. Consider any x,w ¢ V such thaf w dominates
X. If x is contained in no w-avoiding cycles then g(w,x) =
x and otherwise g(w,x) is the highest ancestor of x in ST
such that IDOM(g(w,x)) properly dominates x and all nodes,
on the dominator chain following IDOM(g(w,x)) to x, are
~contained in w-avoiding cycles.

Proof (sketéh). If x ié contained in no w-avoiding cycles
in G then x can not be contained in I(w') for w < w' < x and

so in this case g(w,x) = x.

Otherwise, consider the case where x is contained 1in
some w-avoiding cycle. Suppose some node w' on the
~dominator chain following IDOM(g(w,x)) to 1IDOM(x) is not

contained in a w-avoiding cycle. Then the set g(w',x) of

PV(w') is not merged into w' in PV (w'-1), so g(w',x)

g(w'=1,x) £ w', Fu}thermore we can show that for y
w',w'-1,.}.,g(w;x)+1; glw',x) ¢ J(y) so g(w',x) = g(y,x) #
y. Hence g(w',x) = g(g(w,x),x) # g(ﬁ,x). Since g(w,x) is
the name of a set 6f PV(w), g(w,x) is not merged into any
other - set of PV(g(w,x)),PV(g(w,x)-1),...,PV(Q), so

g(g(w,x),x) = g(w,x), and we have a contradiction.

Finally, suppose _IDOM(g(w,x)) is' contained - in some
w-avoiding cycle p. Each such path p must contain a unique
node wp which dominates 'iDOM(g(Q,x)) and no node in p
properly dominates -wb. Choose some such p with wp as late

as possible in the dominator ordering; i.e., as close as



5-26

possible to IDOM(g(w,x)). Then we can show that g(w,x) ¢
J(wp)-{wp} and so g(w,x) is merged into wp in PV(Wp-1)-
which 1is impossible (since g(w,x) is the name of a set in
PV(w)). O

Corollary 5.5.1 Let w,x € V such that w dominates x in G.
If x is contained in no w-avoiding cycles then C1g(w,x) = x.
Otherwise, Cig(w,x) = IDOM(g(w,x)).

Eggg;. If x is contained in no w-avoiding cycles then, by
definition, Ci1g(w,x) = x. Otherwise, suppose x is contained
in some w-avoiding cycle. By Theorem 5.5.1, all nodes id
the dominator chain following IDOM(g(w,x)) to x are
contained in w-avoiding cyecles, so Cig(w,x) properly
dominates g(w,x). Hence, IDOM(g(w,x)) is the last node in
the dominator chain from w to x which is contained in a
w-avoiding cycle and we conclude that Cig(w,x) =

IDOM(g(w,x)). (i

We require the disjoint set operations:
(1) FIND(x) gives the name of the set currently containing
node x.

(2) UNION(x,y): merge the set named x into the set named y.
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The algorithm for computing Cig is given below.
Algorithm 5C

INPUT Flow graph G = (v, E, r) and ordered pairs
(W1,x1),...,(Wg,X;) such that each wj dominates xj.

QQIEHI'C1G(W1,x1))...,Cic(w;,x;).

begin _
declare SET, BUCKET, FLAG := arrays length n = lV|;
Compute the depth-first spanning tree ST of G;
Number the nodes in V by preorder in ST;
Computer the dominator tree DT;
for x := 1 to n do
begi
SET(x) := {x};
BUCKET(x) := the empty set {};
FLAG(x) := FALSE; =

end;
for i := 1 to * do add xj to BUCKET(wi);
for w := n by -1 %o 1 do
: n
for all x ¢ BUCKET(w) do

n
if FLAG(x) then
cig(w,x) := the father of FIND(x) in DT;
else Cig(w,x) := x;
if w > 1 then ,
begi ' :
Compute I(w) by the Algorithm of [T2];
if I(w) is not empty then
begin o
for all y ¢ I(w) do
e .
z := FIND(y); v
if NOT FLAG(z) then
begin
D: for all x ¢ IDoM-1(z) do
: if FLAG(x) then
UNION(FIND(x),w);
FLAG(z) := TRUE;
end;
if z # w do UNION(z,w);
end;
end;
end;
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Theorem 5:5.2 Algorithm 5C correctly computes
Cig(w1,x1),...,C1g{(wg ,X,) in time almost linear in a+.

Proof (Sketch). We may show by an inductive argument that

on enterihg the main loop on the (n+1-w)'th iteration:

(1) FIND(x) gives g(w,x),

(2) FLAG(x) iff x is contained in a w-avoiding cycle,

and then apply Corollary 5.5.1 to show the correctness of

Algorithm 5C.

ST, DT, and I(n), I(n-1),...,I(2) may be computed by
the algorithms of [T1,T4,T2] in time almost linear in a =
[A}. The other steps of Algorithm 5C clearly require a
linear number of elementary and disjoint set operations.
These set operations may be implemented in almost 1linear

time by an algorithm analyzed by Tarjan[T3]. O
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5.6 The Computation of C2

The first f;rmulation ~of code motion was shown to
reduce to a number of subproblems including the calculation
of the function C2; recall that for flow graph G = (V, E, r)
and each w,x ¢ VAsuch that w dominates x, C2Gg(w,x) is the
first node on the dominatdr chain from'ﬁlid x which is not
contained on any x-avoiding cycles. For such w,x let a path
from x to w, which avoids all proper dominators of x other

than w, and which 1is either a simple (acyclic) path or a

as proper

subsequences), be called a dominator disjoint (DD) path.

Let DT be the dominator tree of G and for each x ¢ V-{r},

simple cycle (a cycle containing no other cycles

let IDOM(x) be the father of node x.

Our algorithm for computing C2g Will require a function
DDP such that for each x ¢ V, DDP(x) = x if x = r or there
is no DD path from IDOM(x), and! otherwise DDP(x) is the
‘first node y dn\ the dominator chain from the root r to x
such that there ef&sts an x-avoiding DD path from IDOM(x)-td
y- | 7
Lemma 5.6.1. If DDP(x) properly dominates x then all nodes
on the dominator ordering from DDP(x) to IDOM(x) are
contained on an x-avoiding cycle. Otherwise, DDP(x) = x and
IDOM(x) is contained on no x;avoiding éycles. \
Proof. If DDP(x) properly dominates X, then iet_p be 'a DD

path ~ from IDOM(x) to DDP(x). Since DDP(x) dominates
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IDOM(x), there is an x-avoiding path p' from DDP(x) to

IDOM(x). Hence pep' is the required x-avoiding cycle.

On the other hand, suppose DDP(x) = x #£ r and IDOM(x)
is contained on an x-avoiding cycle gq. | Let q' be the
subsequence of q from IDOM(x) to some node z immediately
dominating x, and containing no other broper dominators on
X. Then q' is a DD path, so DDP(x) properly dominates =z,
implying that DDP(x) # x, contradiction. U
Lemma 5.6.2 Let z € V have at least two sons and be
contained on a cycle avoiding some son of z in DT. Let X1
(X2) be a son of z with DDP value earliest (latest) in the

dominator ordering. Then for each y which is properly

dominated by =z, DDP(xq) is a dominator of DDP(y);

furthermore, if y # x5 and y is a son of z then DDP(y)
DDP(xq). |

Proof Suppose z is a proper dominator of y, but DDP(y) is a
proper dominator of DDP(xq). Then DDP(y) #£ y so there is a
DD path p from IDOM(y) to DDP(y). Let x' be a son of =z
which is not a dominator of y. Let p' be a simple
x'-avoiding path from z to y. Composing p' and p, we have
an x'-avoiding DD path from z to DDP(y). But this implies
that DDP(x') is a proper dominator of DDP(x1), contradicting .
the assumption that x; has DDP value earliest in the

dominator ordering. Hence, DDP(y) is dominated by DDP(x1).

Suppose y # xp and y is a son of z. Since 2z 1is
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contained on a cycle avoiding some son of z, there must be a
DD path ¥ from z to DDP(x¢). If P avoids all sons Qf z in
DT, then we have our result; DDP(y) = DDP(x1)- Otherwise,
let X be the last node in P which is a son of z. Let P71 be
the subsequence of P from X to z. For any x' ¢ vV-{x}, let
p2 be a x;-avoiding simple path_from z to X. Composing D1
and pp, we have a x'-avoiding bD path from z to DDP(x1y-
Hence, DDP(x') = DDP(x1). If X =z xp then y # X so we have
DDP(y) = DDP(xq). On the other hand, if X # x> then DDP(x2)
= DDP(x1). Since DDP(y) dominates DDP(xz)._ we again have
DDP(y) = DDP(x1). O

Let DT be the dominator tree of G with the edges
6riented so that for each node z ¢ V contained on a cycle
avoiding some node immediately dominated by z, the lefﬁ-most
son of 2z in DT has DDP value at 1eas£ as late in the
dominator ordering as the other sons of z (by Lemma 5.6.2,
ihe remaining sons have the same DDP), and number V by a

preordering of DT.

For each x e V-{r}, let K(x) consist of (1) the set of
nodes contained on the dominator chain from DDP(x) to
IDOM(x) blus (2) the immediate dominator of DDP(x) if it is

contained on a DDP(x)-avoiding cycle.

Let. PV'(1),PV'(2),...,PV'(n) be a sequence of
partitions of v‘such that:

(a) PV'(1) partitions V into unit sets, each set named for
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the node which it contains.

(b) For x = 2,...,n let PV'(x) = PV'(x-1) if DDP(x) = x.
Otherwise, let PV'(x) be derived from PV'(x-1) by collapsing
each set containing an element of K(x)-{IDOM(x)} into the
set containing IDOM(x) in PV'(x-1)‘andrthen renaming this
set to IDOM(x).

For w,x ¢ V such that w dominates X, let h(w,x) be the name
of the set containing w in PV'(x).

Theorem 5.6.1 If w is contained in no x-avoiding cycles, _
then h(w,x) = w and otherwise h(w,x) is the last node on the
dominatorvchain from w to x such that all nodes occurring up
to and including h(w,x) on this chain are contained on
x—avoiding cycles.

Proof Let (w=yt,...,yk=X) be the dominator.chain from w to

X.

Suppose w is not contained on an x-avolding cycle.
Consider some node yivon-this dominator chain following w.
If DDP(y;j) dominates w then by Lemma 5.6.1, w is contained
in  an  x-avoiding cycle, a contradiction. Thus w ¢
 K(¥i)-{yi-1} and w is not collapsed into yj_1, so W=
h(w,¥1) = ... = h(w,yk) = h(w,x). |

Otherwise, suppose w is contained on some x-avoiding
cycle. Assume there is a node yj, on the dominator chain
following w to h(w,x), which is net contained on an

x-avoiding cycle. By Lemma 5.6.1, DDP(yj) = yi. Then
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hiw,yji) properly dominates yj, sSo there is some yj-1 =
h(w,yj) on the dominator chain from yi to w such that

DDP(yj) dominates h(w,yi). By Lemma 5.6.1, yi is contained

on an x-avoiding cycle, a contradietion.

- Finally, assume h(w,x) # w and let Yi be the first node

following h(w,x) on the dominator cﬁain from w to x.
Suppose y; is contained on an x-avoiding cycle. Then by
Lemma 5.6.1, DDP(y;) properly dominates yj. Since h(w,x) #
w, h(w,x) is contained on an x-avoiding cycle, sd h(w,x) ¢
K(Yi+1)-{yi} and hence h(ﬁ,x) is merged 1into Yi,
contradicting our assumption that h(w,x) is the name of a
set in PV'(x). (
Corollary 5.6.,1 For w,x ¢ V such that W dominates x, if w is
contained on no x-avoiding cycles then C2g(w,x) = w and
otherwise, C2g(w,x) is the unique node dominating x and
immediately dominated by h(w,x).

Proof follows directly from Theorem 5.6.1.

Our algorithm for computing Cg will require the' usual
disjoint set operations UNION and FIND plus the operation

RENAME(x,y) which renames the set x to y.
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Algorithm 5D

INPUT Flow graph G = (V, E, r), DDP, and ordered
(W1,x1),...,(wg,xg) such that each wi dominates xji.
QUTPUT C26(w1,x1),...,C2¢(ws,x1).
begin
declare SET, FLAG, BUCKET := arrays length n = (Vs
Compute the dominator tree DT of G;
for all z ¢ V such that z has a son x in DT with
DDP(x) dominating z do
begin
let x' be the son of z which has DDP(x')
latest in the dominator ordering;
install x' as the left-most son of Z;
end;
Number the nodes of Vv by the preordering of the
resulting oriented tree;
for x := 1 to n do
begin
SET(x) := {x};
FLAG(x). := FALSE;
BUCKET(x) := the empty set {};
_end; ‘
for i 1 to ¢ do add wi to BUCKET(xi);
for x := 1 to n do
begin
if x > 1 and DDP(x) # x then
‘ begin
z := the father of x in DT;
FLAG(z) := TRUE;
NEXT(z) := x;
RENAME(FIND(z),z);
y := the father of DDP(x) in DT:
D: if FLAG(y) and y # z do .
. UNION(y,z);
u := FIND(DDP(x));

till u = z do
begin
FLAG(u) := TRUE;
UNION(u,z);
u := FIND(NEXT(u));
end;
end;

comment Apply Corollary 5.6.1;

for all w ¢ BUCKET(x) do

if FLAG(w) then C2G(w,x) := NEXT(FIND(w))
else C2g(w,x) := w; .

end;

pairs
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Theorem 5.6.2 Algorithm 5D correctly computes
c2g(wi,x1),...,C2g(wg,xy) in time almost linear in a+y. |
Proof (Sketch). It is possible to éstablish that for all w
clV after the x'th iteration of the main loop:

(1) NEXT(IDOM(W)) = w for w # r and w properly dominates x.
(2) The sets are just as in PV'(x), with h(w,x) the name of
the set containing W. |

(3) FLAG(w) = TRUE iff w is not contained in a x-avoiding
cycle.

Then the correctness follows from Corollary 5.6.1.

We compute DT by the algorithm of [T4] in time almost
linear in a+y. The other steps of Algonithm 5D may easily
be shown to require a 1linear number of elementary and
disjoint set operations. Hence, by the results of [T3], the
total cost in elementary operations is almost linear in a+s.

0
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5.7 Computing DDP on Reducjble Flow Graphs

This - section is concerned with the function DDP
required by Algorithm 5D to compute C2. Unfortunately, we
know of no algorithm which computes DDP efficiently fdr G
nonreducible. We assume henceforth that G is reducible, so
by the results of Hecht and Ullman [HU1], all cycle edges of
G are A-cycle edges (they lead from nodes to their proper
dominators). Let ST' be the spanning tree derived from} the
depth first search spanning tree ST of G by reversing thev
edge list. The nodes of G are numbered by a preordering of
ST'.

Lemma 5.7.1 If x > y and both x and y are unrelated in DT,
then any path p from x to y contains a dominator of x.

Proof It is sufficient to assume that p is simple (acyelic).
Let (u,v) be;the first edge through which p passes such that
v <y < u. Observe that the only edges of G in decreasing
preorder are A;cycle edges, so (u,v) is an A-cycle edge ahd
v dominates u. We claim also that v dominates x.  Suppose

not, so there is a v-avoiding path p' from the root r to x.

- "Composing p' with the subsequence of p from x to u, we have

a v-avoiding path from r to u, which contradicts the fact

that v dominates u. Hence, v dominates x. [

We now show that in the reducible flow graph G, DD
paths have a 'very special structure. Let p =

(X=yQy.+-syk=%) be a DD path from x to w passing through



5-37

edges e1,...,ek, where ej = (yi-1,yi)-

Theorem 5.7.1 ek is an A-cycle edge and e1,...,ek-1 are not.
Proof. Since p can not contain any dominators of x other
than w, yk-1 and x are unrelated in DT. Assume ek =
(Yk-1,%w) is not an A-cycle. Hence, x > w > yk-1 and
applying Lemma 5.7.1, (X=yQ,...,yk-1) Bust contain a node z
which is a proper dominator of x, contradicting our

assumption that p is DD.

Consider any ej = (yj_.1,yi) for 1 <-i < k. Since p is
DD, yj does not dominate x. Thus, there is a yi-avoiding
path py from the root r to x. Also, let p» be the
subsequence of p from x to yj_q. Composing p1 and pp, we
have a yj-avoiding path from the root r to yj_1, which
implies that yj_q is not dominated by yj. Hence, none of
~ ©€1,...,ek-1 are A-cycles. 0
Theorem 5.7.2 Let p be a DD path from x to ﬁ, where w
properly dominates x and let z be a immediate-predecessor of
x in G Such that z,x are unrelated in DT. Then p' = (z,x)°p
is a DD path avoiding all sons of z in DT.
Proof To show that p' is DD we need only demonstrate that w

properiy dominates z = and p avoids z, Let p

(X=yo,...,yk:w). Since Z,X are unrelated in DT and w

properly dominates x, w is distinct from z.

We claim that w phoperly dominates z in G. Suppose

not, then there must be a w-avoiding path p¢ from the root r
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to z. But py*(z,x) is a w-avoiding path from the root r to
x, contradicting our assumption that w properly dominates x.

Hence, w properly dominates z.

Suppose p contains z, sO Z = yi for some 1. < i < k.

Then (z,x=zyq,...,yi=zz) is a cycle in G and must contain an

A-cycle edge. Since z,x are unrelated in DT, this implies

that for some j, 1< j <1, (yj-1,yj) is an A-cycle edge,

contradicting Theorem 5.7.1. We conclude that p avoids z.
Hence, p' = (z,x)ep is DD. -

Now suppose p contains a node y domin;ted_py z. Since
X,z are unrelated in DT, there must be a z gyﬁi&ing path po
from the root r to x. Composing po and the pbrtion of p
from x to y, we have a z-avoiding path from r to y; wﬂiéh is
impossible. Hence, p' = (z,x)*p avoids all sons of z in DT.

o

Let p be a DD path from x to w. Let the first'Aedge
(u,v) through which p passes, such that u is dominated by x
but v is not properly dominated by x, be called the first
Jump edge of p. _ |
Theorem 5.,7.3 Let x' be a proper dominator of x. If either
(1) v = w dominates x' or (2) v # w and IDOM(v) properly
dominates x', then there exists -a DD path from x' to w with
first jump edge e = (u,v).

Proof Let pq be a simple path from x' to x. Suppose p1
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contains some node 2z not dominated by x'. Then the
subsequence of pi from z to x must contain x'. But this
impliés that x' occurs twice in p1, which is impossibie.
Hence, all nodes in p1 are dominated by x' énd p2 = p1°P is
a DD path. Since x' properly dominates x which dominates u,
x' also dominates ﬁ. If either (1) or (2) héld, then v does

not properly dominate x'. Thus, the first jump edge of p2

is e = (u,v). O
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Algorithm S5E

INPUT A reducible flow graph G = (V, E, r).
QUTPUT DDP.

begin
declare SET,FLAG,DDP,SONS :z arrays length n = 1V}
procedure EXPLORE(x,w,e):
begin
comment there is a DD path from x to w
and e is the first jump edge of pP;
Let e = (u,v);
for each y ¢ SONS(x) such that y,u are
unrelated in DT do

begin
delete y from SONS(x);
DDP(y) := w;
end;
if x # r and not FLAG(x) then B
begin
FLAG(x) := TRUE;
x' := IDOM(x);

if FLAG(x') then
UNION(x,FIND(x'));
if NOT x = w then
begin
comment Apply Theorem 5.7.3;
if (v=w dominates x') OR (v£w and
IDOM(v) properly dominates x') then
L1: EXPLORE(x',w,e);
comment Apply Theorem 5.7.2;
for all immediate predecessors z
of x in G such that x,z are unrelated
in DT do
L2: EXPLORE(z,w,(z,x));
end;
end;
Compute DT, the dominator tree of G;
Compute ST, the depth-first spanning tree of G;
Let ST' be derived from ST by reversing the edge list;
Number the nodes of V by preorder of ST';

for all x := 1 to n do
begin

n

SET(x) := {x};

FLAG(x) := FALSE;

DDP(x) := x;

SONS(x) := the sons of x in DT;
d; T

for w := 1 to n do
for all A-cycle edges (x, w) enterlng w do
L3: EXPLORE(x,w,(x,w));
end; ~
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Lgmmg 2.7.2 On each execution of EXPLORE(x,w,e), w dominates
x and there is a DD path from x to w with first Jump edge e.
Proof by structural induction. On each initial ecall to
EXPLORE(x,w,e) at label L3, e is a A-cycle edge (x,w) which
is clearly a DD path. Suppose on any other call to
EXPLORE(x,w,e) there is a DD path from x to w with first
'jump edge e. By Theorems 5.7.3 and 5.7.2, the recursive
calls to EXPLORE at L1 and L2, respectively, also satisfy

this lemma. [

It is also easy to prove by structural inductidn that:
Lemma 5.7.3 On each execution of EXPLORE(x,w,e), let y be a
dominator of x contained in the set named FIﬁD(yj. if y has
not previously been visited then FLAG(y) = FALSE and FIND(y)
= y; otherwise, FLAG(y) = TRUE and FIND(y) is the earliest
" node y' on the domination chain from the root r to y such
that. all nodes from y' to y on this chain have been

previously visited.

Let p be a DD path from x to w with first jump edge e =
(u,v). For k > 1, the kth jump edge of p is recursively
defined to be the (k-1)th jump edge (if this is defined and
is not the last edge through which p ‘pasées) ‘of the
subsequence of p from v to w. _ |
Lepma 5,7.4 For each W,y € V such that w properly 'dominafés
Yy, if there exists a y-avoiding DD path p from IDOM(y) to w,

then EXPLORE(IDOM(y),w,e) is eventually called, where e =
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(u,v) is the first jump edge of some such p.

Proof by induction on w. Suppose the lemma holds for all w'
< w. Since e = (u,v) is the first jump edge of p, IDOM(y)
dominates u. If v = w, then (u,v) is an A-cycle edge so
EXPLORE(u,w,(u,w)) 1is executed at 1label L3, and by a |
sequence of recursive calls to EXPLORE at 1label L1, we

finélly have a call to EXPLORE(IDOM(y),w,(u,v)). Otherwise,

suppose the lemma.holds for all p lgading to w such that p

has 1less than k jump edges. 1If p has k jump edges, then by

the second induction hypothesis, EXPLORE(u,w,(u,v)) is
called at label L2. Again, by a sequence of recursive calls
to EXPLORE at 1label L1, we eventually have a call to
~ EXPLORE(IDOM(y),w,(u,v)). @

Theorem 5.7.4 Algorithm S5E correctly computes DDP for Gv
reducible, in time almost linear in a = |A].

Proof The correctness of Algorithm SE follows from Lemmas

5.7.2, 5.7.3, and 5.7.4. ST and DT may be computed (if they

have not been computed previously) by the metods of [T1,Tﬂj'
in almost .linear time. For each x ¢ V, the total cost of
all visits to x by EXPLORE is iIDOM-1[x]I + |indegree(x)| in

elementary and disjbint set operations. Hence, if we use a
good implementation of disjointvset operations (analyzed by
Tarjan[T3]), the total cost of Algorithm SE is almost linear

ina. [
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5.8 Niche Flow Graphs

Here we introduce a special class of flow graphs called
niche flow graphs which in certain cases simplify the
algorithms gi?en in Sections 5.5 and 5.6 for computing Cc1
and C2, As we shall demonstraté, the transformation of an
arbitrary flow graph to a niche flow graph can be done in
almost 1linear time; furthermore, béth versions of code
motion are improved by this transformation. [E,A02]
describe a similar process, where special nodes are added to¢

the flow graph just above intervals.

Let G = (V, E, r) be an arbitrary flow graph. For any
w ¢ V-{r} with immediate dominator IDOM(w) in G, if IDOM(w)
is contained on no w-avoiding cycles then IDOM(w) is called

the niche node of w. Intuitively, the niche nodes lie just

above cycles (relative to the dominator ordering of G) and

hence are good nodes to move code into. G is é niche flow
graph if each node w ¢ V-{r}, with an entering A-cycle edge

but no entering B-cycle edge, has a niche node.

If G is not a niche flow graph, then a niche flow'graph
G' may be derived from G by testing for each W e V-{r}
- whether w has an entering A-cycle edge and no entering
B—éycle edges. If so, then add a distinct, new node W whicb
is to be the niche of w in G', an edge from @ to w, and
replace each non-cycle edge (x,w) entering w with a new edge

(x,W). The resulting flow graph G' has no more than n = |vi
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additional nodes and edges. Since no B-cycle edges are
added to G', by Theorem 5.2, G' is reducible if G was. |
Lemma 5.8.1 If G is reducible and y ¢ V-{r} is contained of
an - IDOM(y)-avoiding cycle q, then y has an entering A-cycle
edge. | |

Proof Let x be the immediate predecessor of y in q. Since G
is reducible, q contains a unique node z dominating all

other nodes in q. But no proper dominator of y is contained

in q, so z y. Hence, y dominates x and (x,y) is an

A-cycle edge. U -

Let the nodes of G be numbered as in Section 5.5 by a
preordering of a depth first search spanning tree of G.
Theorem 5.8,1 If G is.a reducible niche flow graph, then for
W = n,n-1,...,2 the partition PV(w-1) is derived fﬁom PV(w)
by collapsing sets I(w)-{w} into w. |
Proof Recall that PV(w-1) is defined to be derived from
PV(w) by collapsing into w each éet z containing at least
one element y ¢ J(w)-{w}. Supposé there is a set z ¢ I(w)
in PV(w) containing some y € (J(w)-I(w))-{w}. Then, by
definition of J(w), y is contained on a w-avoiding cycle g
and IDOM(y) € 1I(w). But since z ¢ I(w), g avoids TDOM(y)
and IDOM(y) is contained in a y-avoiding cycie q'. By Lemma
5.8.1, y has an entering A-cycle edge. ASince C is a niche
flow graph,‘ IDOM(y) is the niche of y- But this is
impossible since IDOM(y) is contained on a y-avoiding cygle

q'. 0
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The above theorem allows us to simplify Algorithm 5D,
which was used to compute C1g, in the case G is a reducible
niche flow graph. ‘In particular, the statement 1labeled D
may be deleted from Algorithm 5D. Similarly, in this case
the statement labeled D may be deleﬁed}from Algorithm SE.
Ihggrem 5.8.2 If G is a reducible niche node and DDP(x) # x,
then K(x) = those nodes of the dominator chain from DDP(x)
to IDOM(x).

Proof Suppose there exists some x e V such that DDP(X{‘
properly dominates x and IDOM(DDP(x)) is contained on a
DDP(x)-avoiding cycle. Let p be the DDP path from x to
DDP(x) and let p' be a simple path from DDP(x) to x.
Composing p and p', we have a IDOM(DDP(x) )-avoiding cycle"
containing DDP(x). Hence by Lemma 5.8.1, DDP(x) has an
entering A-cycle edge. Since’ C .is a niche flow graph,
IDOM(DDP(x)) 1is the niche node of x. But by hypothesis,
this niche node of DDP(x) is contained on a DDP(x)-avoiding

cycle, which is impossible. O



Original Control Flow Graph

t is the text expression /Y located at ng

Figure 5.2. Transformation of a flow graph F into a

flow graph F'.

niche
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n,@ BIRTHPT ()

SAFEPT(t) ng (f

’,}46 movept, (1)

n3

A Y
n5Q movept, (1)

"50 -I‘-oc(t) .

Figure 5.3. The dominator tree of the control flow grapl
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