Efficient Algorithmic Learning of the
Structure of Permutation Groups by Examples

S. AzHAR AND J. H. REIF*
Computer Science Department, Duke University
Durham, NC 27706, U.S.A.

Abstract—This paper discusses learning algorithms for ascertaining membership, inclusion, and
equality in permutation groups. The main results are randomized learning algorithms which take
a random generator set of a fixed group G < Sn as input. We discuss randomized algorithms for
learning the concepts of group membership, inclusion, and equality by representing the group in
terms of its strong sequence of generators using random examples from G. We present O(n®logn)
time sequential learning algorithms for testing membership, inclusion and equality. The running time
is expressed as a function of the size of the object set. (G < Sa can have as many as n! elements.)
Our bounds hold for all input groups. We also introduce limited parallelism, and our lower processor
bounds make our algorithms more practical.

Finally, we show that learning two-groups is in class NC by reducing the membership, inclusion,
and inequality problems to solving linear systems over GF(2). We present an O(log® n) time learning
algorithm using n* processors for learning two-groups from examples (where n X n matrix product
takes logarithmic time using n“ processors).

1. INTRODUCTION

1.1. Motivation

In mathematical discussions, we often employ a set of illustrative examples to demonstrate general
principles as well as to supplement the “theorem-proof” discourse. The use of examples to exhibit
creative mathematical ideas dates back to ancient Greek philosophers. Effective examples can be
gainfully engaged to appeal to the audience’s intuition, and can be successfully used to introduce
creative theorems. Examples are also used as a research tool to cultivate a deeper appreciation
of, and to draw inference about, virgin ideas. As Halmos said: “the heart of mathematics consists
of concrete examples and concrete problems”.

This paper is primarily concerned with learning mathematical concepts from examples. Since
algebraic groups find applications in a diverse arena of topics, we specialize our investigations to
mathematical concepts involving algebraic groups. Of special interest to us are the permutation
groups. The problems in group theory (see [2,3]) are not only interesting on their own accord,
but they also find applications in several areas of computer science, physics, chemistry, and
engineering. For example, computer scientists working in graphics and vision are interested in
computing symmetries of intricate multidimensional solids.

*Supported by Grants NSF/DARPA CCR-9725021, CCR-96-33567, NSF IRI-9619647, and ARO Contract DAAH-
04-06-1-0448. An extended abstract of this paper appeared in (1].

Prep{:'int'of paper appearing in Computers & Mathematics with
Applications, Volume 37, Issue 10, May 1999, pp 105-132.

106 S. AZHAR AND J. H. REIF

See [3-10] for efficient algorithms (and also parallel algorithms [11,12]) for various group theo-
retic problems given the generators. There also has been work using a group-theoretic approach
to the graph isomorphism problem [13-15]. This approach involves reducing the isomorphism to
a membership test in the group of all automorphisms (bijective mapping onto itself) of the graph.

Our methods rely on a source of examples of the group elements, and they demonstrate how
succinct representation of the group structure can be efficiently computed, and used to efficiently
ascertain membership, inclusion, and equality in groups. We say that we have learned the
structure of a group, if we have a polynomial time algorithm to construct a representation of the
group, such that we can answer the membership question in polynomial time. The complexity is
measured in the terms of the size of the underlying object set. Our algorithms can be employed
to efficiently learn a feasible representation of symmetries of such multidimensional solids. For a
more empirical example, consider the Rubik’s cube. The set of all permutations of the cube form a
group under the function composition. Our results imply that it is possible to generate the entire
group (with arbitrarily high probability) from a very small number of examples. Furthermore, our
algorithms can be used to verify (with arbitrarily high probability) the correctness of a “solution
method” to the cube, by applying the “solution method” to a small number of permutations.

Some practical applications of our algorithms lie in peripheral fields of physics and chemistry,
in particular, solid state physics and molecular symmetry. Suppose that you are examining a
model of a water molecule (which consists of an oxygen atom bonded to two hydrogen atoms).
The model is so well constructed that it is impossible to distinguish between the two hydr. -n
atoms. Now, if you were to momentarily close your eyes, someone can rotate the model so that
both the oxygen atoms have moved but it is impossible to distinguish between the initial and
final positions of the molecule. See Figure 1.

Configuration 1. Configuration 2.

Figure 1. Both configurations appear similiar after swapping two H atoms.

The symmetry of a molecule is characterized by the fact that it is possible to perform operations,
which while interchanging the positions of some of the atoms, give arrangements of atoms which
are indistinguishable from the initial arrangement. The set of symmetry operations (on a molecule
or a crystal) form a group under the function composition. In a simple structure like the water
molecule, it is not very difficult to deduce all the symmetries. Nevertheless, when one studies more
complex structures, with an increasing number of symmetries, it becomes exceedingly difficult
to deduce all symmetries of the molecules or the crystals. Our results can be used to learn
the structure of the entire symmetry group by analyzing relatively few examples of symmetry
operations. Furthermore, symmetry groups find important applications in theory of angular
momenta, which is a topic in itself.

1.2. Learnability

The ability to learn new concepts is an essential manifestation of intelligent behavior. We
say that a concept has been acquired by learning if the method for identifying the concept has
been developed without explicitly programming the concept itself. Human beings are capable of
grasping a fresh concept with the aid of their sensory perceptions and reasoning faculties. The
five sensory abilities serve as a protocol for collecting information. This information is used by the

Structure of Permutation Groups 107

reasoning faculty to learn the concept by associating it with some features. Similarly, a learning
machine consists of a learning protocol and a deduction procedure. The protocol accumulates
information, which is used by the deduction procedure to assimilate the concept. Learning in our
world implies deduction of a recognition procedure by which a machine can correctly classify a
given input as being a positive or a negative example of a concept.

The learning protocol can be thought of as a data collector for the deduction procedure. We
employ the most commonly used learning protocol®: a source of examples (which will be referred
to as EXAMPLE, henceforth). Generally, an example can be a completely or an incompletely
specified vector. A request to this source, EXAMPLE(G), produces a positive example of the
concept G. Our preliminary analysis is based on the assumption that a call to EXAMPLE(G)
produces every possible positive example of the concept G with a probability 1/|G|. This fa-
cilitates our developing a thorough comprehension of the methods. In the strict definition of
learnability, we are not allowed to place any restriction on the distribution of EXAMPLE(G).
Consequently, we extend the analysis of our algorithms to other fixed distributions.

Our goal is to devise sequential and parallel algorithms which would learn to represent any
group in such a way that we are able to ‘efficiently’ answer the membership query. For our
models of computation, we assume the unit cost Random Access Machine (RAM) for sequential
computation and the CRCW parallel RAM (PRAM) for parallel computation (see also the texts
of [16,17]).

The succinct representation of an arbitrary algebraic group is the concept we desire to learn,
and the members of the group are the examples of the concept (which would enable us to learn
the concepts).

Suppose, we are learning a class C' of concepts, where each element in the class consists of
a representation of some group (which is a subgroup of the the group of all bijective mappings
from a set of n elements onto itself, i.e., S,). A single concept c is selected from the class C,
and we are given a set of examples of this concept. Now, a learning algorithm for class C is a
function which takes the relevant examples, and returns as its hypothesis some concept in class C.
This hypothesis is a suitable representation of some subgroup G of 5, (symbolically G < S,).
Formally, a concept is defined as follows.

DEFINITION 1.2.1. CONCEPT. Concept is defined in terms of its component features which in
turn may themselves be concepts or primitive sensory inputs. A concept consists of a domain
of n relevant features, where each of the features may take a range of values. A concept G is a
subset of all possible vectors.

If we are interested in answering group theoretic questions, the group representation scheme
we deploy is of paramount importance. We are concerned with space conservation as well as time
efficiency. When we talk about representation of groups as concepts, there are several conceivable
ways to describe them in terms of their component features. For example, we may represent a
group by enumerating all its members. Such a naive approach has its obvious shortcomings
because a permutation group on n elements can have size n! (which is O(n™)). Even though
the membership question can be answered with some degree of efficiency, this representation is
forbidden due to its space consumption and other notable shortcomings. Instead, we can choose
to represent the groups in terms of their generators. This representation is easy to compute, but it
does not lend itself to efficient algorithms for ascertaining group membership, and answering other
group-theoretic concepts. Nevertheless, there are some merits to representing groups by their
generators, and several fundamentally productive concepts become evident in the development
of this idea. However, we will see that it is preferable to depict them in terms of their strong
sequence of generators because it is more computationally efficient representation. This technique
involves recursively representing a group by elements of its cosets.

1 Another commonly used protocol is ORACLE(z) which determines if the input z is a possible example of the
concept.

108 S. AzZHAR AND J. H. REIF

There are several learning paradigms, and most of these paradigms (like failure-driven or
exploratory) are dependent on examples to formulate and strengthen their hypothesis for the
concept they are learning.

DEFINITION 1.2.2. EXAMPLES. IfZ € G, then T is a positive example of the concept G, otherwise
it is a negative example of the concept G. For our applications, the positive examples are elements
of the group G < Sy, and the negative examples are the elements of S,, which are not in G.

We treat representation of groups as concepts, and the members of the groups are examples of
the concept. Valiant formalized the notion of complexity-based learning from examples. In this
paper, we extend and specialize Valiant’s model to learning concepts defined by group structures.

In learning a class C' of concepts from examples, a single concept is selected from C, and we
are given a finite set of positive examples of this concept (which would be members of the group
at hand).

DEFINITION 1.2.3. LEARNING. Learning is a recognition procedure by which a machine can
correctly classify a given input as being a positive or a negative example of a concept.

A learning algorithm for a class C is a function that returns a representation of G < S,,, which
is its hypothesis for the given concept. A learning algorithm operates by drawing m examples
of the concept to be identified, and then forms a hypothesis of the concept. The bounds on the
number of examples drawn, in order to learn the concept, are required to be independent of the
underlying probability distribution of the examples. The model of a learning machine has the
following properties.

e For sufficiently large m, the learning machine should be capable of achieving arbitrarily
small error with arbitrarily high probability. Let U be the set of all concepts, and consider
G,H € U. Let A(G, H) represent the symmetric difference between the two concepts. So
A(G, H) is the set of all vectors for which G and H disagree:

{#|Ze (G- H)U(H-G)}.

Then
d(G,H)= > Prob(z)
zEA(G,H)

is the probability that a call to EXAMPLE(G) will produce an element of A(G, H) with
respect to a fixed distribution D. For our purposes, d(G, H) is a measure of difference
between concepts G and H. Given parameters e, 6, where 0 < {¢,6} < 1, we require that
Prob(d(L,, Lp) > €) < 6, where L, is the actual concept to be learned, and Lj is the
deduced concept (which is the output of the learning algorithm).

e It is capable of learning a whole “class” of concepts. By a “class” of concepts, we mean a
set of concepts which have some common properties such that if the machine can “learn”
one of them, it can also learn the other concepts in the same class. In this spirit, our
learning algorithms work for all groups.

e The computational procedure by which the machines learn, i.e., the learning algorithm,
learns the desired concept such that the number of steps are polynomial in the inverse
error probabilities as well as in the size of the sample. Our analysis accounts for worst-case
possibility.

Observe that we are not allowed to explicitly program the recognition procedure itself.

In his paper, Valiant [18] laid the foundation for the theory of the learnable. He formalized the
notion of learnable and proposed a framework for the development of the theory of the learnable.
To learn a concept, we have to devise a polynomial time algorithm to construct a representation
of the concept, such that we can answer the membership question in polynomial time. Valiant
definition of learnable states the following.

Structure of Permutation Groups 109

DEFINITION 1.2.4. LEARNABLE. A class C of concepts is learnable, with respect to a given
learning protocol, if and only if there exists a deduction procedure P invoking the protocol with
the following properties.

1. For all programs f € C, and all distributions D over vectors v on which f outputs 1, the
procedure will deduce with probability at least (1 — h~!) a program g € C that never
outputs yes when it should not, but outputs yes ‘almost always’ when it should. More
specifically,

(a) for all vectors v, g(v) = yes implies f(v) = yes;
(b) the sum of D(v) over all vectors v such that f(v) = yes but g(v) # yes is at most
i

9. The running time of the algorithm is polynomial in the adjustable parameter h, the size

of the underlying object set of G, and other measures of size of the concept.

Valiant’s paper [18] triggered a considerable interest in the theory of the learnable.

1.3. Overview of Results and Organization

In Section 1, we introduce and motivate the topic of probabilistic group theoretic algorithms,
and also describe our results.

Section 2 covers these preliminary concepts. We discuss the three fundamental group theoretic
problems we will be concerned with in this paper.

1. Group Membership: given an arbitrary input z € S, where G < Sy, determine whether
z €@

2. Group Inclusion: given two groups G and H, determine whether G < H.

3. Group Equality: given two groups G and H, determine whether G = H.

Section 3 describes methods for generating examples, and to infer group representation from
random examples. We present algorithms for constructing strong sequence of generators for a
finite abstract group, and algorithms for ascertaining membership, inclusion, and equality.

In Section 4, we specialize the discussion to permutation groups and present several learning
algorithms for permutation groups. We introduce methods to compute G-orbits, and an algorithm
to construct the Sims’ table of a permutation group in O(n®logn) sequential time. We then
proceed to show how the Sims’ table can be used to ascertain group membership in O(n?)
sequential time, and group inclusion as well as group equality in O(n%k) time (where k is the
number of generators required to generate the groups at hand).

Subsequently, in Section 5, we shift our attention to parallel algorithms for general permutation
groups. We can use the parallel algorithm of Shiloach and Vishkin [19] to compute connected
components of a graph in logarithmic time with a linear number of processors. (Alternatively,
we may use the randomized parallel algorithm of Gazit [20], which uses logarithmic time with
linear work; that is, the product of processors and time is linear.) This leads to several parallel
algorithms for the problems mentioned above. Realizing that membership, inclusion, and equality
problems appear inherently sequential for general permutation group, we introduce some limited
parallelism for these problems. We parallelize the algorithm for constructing Sims’ table to run
in O(n) time using O(n?logn) processors. We then exhibit how the Sims’ table can be used
to ascertain group membership in O(n) time using n processors, and group inclusion as well as
group equality in O(n) time using nk processors (where k is the number of generators required
to generate the groups at hand). Our modest processor bounds make our algorithm particularly
feasible. '

Section 6 presents some specialize polylog algorithms for two-groups. We show that learning
two-groups is in class NC by reducing the membership, inclusion, and inequality problems to
solving linear systems over GF(2). Using parallel algorithms for the solution and basis vectors of
linear systems, we present an O(log3 n) time learning algorithm using n* processors for learning

110 S. AzHAR AND J. H. REIF

concepts of two-groups from examples (where n x n matrix product takes logarithmic time using
n“ processors).

2. GROUPS, SUBGROUPS, AND TOWER OF SUBGROUPS

2.1. Fundamentals of Group Theory

There are several algebraic structures which exhibit similar properties. The unifying theme
of abstract algebra is to construct adequate abstraction of algebraic structures to prove general
results. In turn, these general results which can be specialized to the particular structure to
which we decide to apply them. A group is one of the most elementary algebraic structures.

DEFINITION 2.1.1. GROUP. A group (G,-) is a set G together with a binary operation mapping:
G x G — G, written (a,b) — a - b such that: '

Associativity: the operation - is associative;
Identity: there is an element e € G such thate-g =g =g - e for all geG;
Inverse: for this element e, there is to each element g € G an element g~ € G with
-1 -1
g-9 =e=g -4

A one-to-one mapping from a finite set (5) onto itself is called a permutation. A permutation
group (G) on the set S is a collection of permutations acting on S that form a group under the
function composition (the group operation). § is called the object set of the group G. In this
paper, we will use the Cauchy’s cycle notation to represent permutations. For example, (134)(25)
denotes the following mapping: 1~ 3,3—4,4—~1,2— 5,5 — 2, and the rest of the elements
map to themselves. In general, a permutation 7 of n elements can be represented as

T = (a1_1a1|2 s al‘jl)(02,1a2‘2 i (.12,_1’2) “ i (G,m|1am‘2 s am,jm),

where ag,; € {1,...,n}, and 7 represents a; — i2,8i2 7> @i3, ...y Gijj_yy — g, and ag 5, —
a;,1 for all positive i < m.

The order of a group G is the cardinality of the group (|G|), and the degree is the cardinality
of the object set (|S]). If a subset, H, of a group, G, is itself a group under the group operation,
then H is called a subgroup of G (symbolically, H < G). For a subgroup H of G, and some
a € G, the set aH = {ah | h € H} is called the left coset of H in G containing a. G/H represents
the set of all distinct cosets of G with respect to H < G. Some well-known properties of cosets
are listed in the following lemma.

LEMMA 2.1.1. Let H be a subgroup of a group G, and let a,b € G, then
l. acaH;
2. aH = H ifand only ifa € H;
3. oH =bH if and only ifa='b € H;
4. |G| = |G/H||H| (Lagrange).

For detailed exposition of the fundamental concepts of group theory, Wielandt’s book [2] is
recommended.

2.2. The Tower of Subgroups

Our goal is to efficiently compute a group representation (from random examples), which will be
capable of accurately and efficiently answering the membership query and other related questions,
with high probability.

Consider a finite group, G, which is generated by a finite set of generators (g1, 2,93, .., k).
Let I = {e} denote the identity group, where e is the identity element. A computationally
feasible representation of a group is in terms of its Strong Sequence of Generators (SSG). The

Structure of Permutation Groups 111

fundamental underlying idea is to represent any finite group G using the notion of factor groups
as follows.

We start by setting Go +— G. If Gy # {e}, then we “factor” Gy by representing it as (Go/G1)G1
for some subgroup G, of Gg. If G; # {e}, then we continue the process and “factor” G by
representing it as (G1/Gz)G?2, for some subgroup G of Gi.

We continue to repeatedly “factor” G; by representing it as (Gi/Gi+1)Git1, for some subgroup
Gi+1 of G;, until G; = {e} (for some i = h). Since the cardinality of G; is monotonically
decreasing as i increases, and Gy is finite, we are guaranteed to find some i (= h) such that
G; = {e}. Thus, we can write

Go\ (G1) (G2 [Gs Gh-1
c-a-(2) (%) () @) - (&)

EXAMPLE 2.2.1. For example, consider the group of integers under addition (mod30) (de-
noted Zsg). We can represent Zso by (Z30/G1)(G1/G2)(G2/G3)G3, where

G, is the group {0,2,4,6,8,10,12,14,16,18,20,22,24, 26,28} under addition (mod 30);

G, is the group {0, 6,12, 18, 24} under addition (mod 30);

G5 is the group {0} under addition (mod 30);
and consequently,

Z
63_0 = {0+ Gy;1+ G} = {(0,2,4,6,8,10,12,14,16,18,20, 22, 24, 26, 28);
1

(1,3,5,7,9,11,13,15,17,19, 21, 23, 25,27, 29)},

% = {0+ Ga;2 + Gy; 4+ Go} = {(0,6,12,18,24); (2,8, 14,20, 26); (4, 10,16, 22, 28)},
2
G2 _ (0-Gy;6- G312 G 18 G524 Ga) = {(0)3(6); (12); (18); 200}

3

We are now in a position to formally define Tower of Subgroups.

DEFINITION 2.2.1. TOWER OF SUBGROUPS. A permutation group G can be represented by a
finite tower of subgroups Go,G1,Ga,G3,...,Gh, such that

C=Gy>G1>Gy>G3>->Gr=1.

The tower has height h. We can write G as follows:
v _[Go\ [G1) (G2 (G3 Gh-1
G=Co= (Gi) (Gz) (Gs) (6’4) (Gh)Gh’
where G, = {e}.

ExXAMPLE 2.2.2. The subgroup tower for Z3o defined above is

Zag=Gu>G1>G2>Ga=I,
and can be represented as follows:

Gs = {0},

G, = {0,6,12,18,24},

G = {0,2,4,6,8,10,12,14, 16, 18, 20, 22, 24, 26,28},

Go = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29}
Now, using the concept of subgroup tower, we introduce a representation scheme which is

computationally more powerful than representing the concept of a group by the generators of

the group. This scheme represents groups by their Strong Sequence of Generators which are
defined as follows.

112 S. AzHAR AND J. H. REIF

DEFINITION 2.2.2. STRONG SEQUENCE OF GENERATORS (SSG). For each G; in the subgroup
tower, let R; be a set containing exactly one element from each coset of G;_1 /G;. By construction,
R; is a set which contains one representative from each coset. Each R; is called a Complete Set
of Coset Representatives for G;_1/G;. The sequence of sets Ry, Ra,..., Ry, is called a strong
sequence of generators.

EXAMPLE 2.2.3. In the running example, from the cosets associated with the subgroup tower
of Z3y we can select the SSG of the group Zsq:

Rl = {01 1}:
Ry = {6: 8, 4}!
Rs = {0,6,8,12,18,24}.

REMARK 2.2.1. Now, every element m € G has a unique representation of the form 7= =
mymem3 ... Ty such that for all 1 € {1,...,h}, m; € R;.

The unique representation is a direct consequence of the fact that 7 belongs to a fixed coset
at each level ¢ coupled with the construction of the sequence {R;};=;,. 4, such that each coset
has exactly one representative. As we sift down (up) the tower, we filter out the appropriate
components. For example, consider the representation of Zzy as R; = {0,1}, Ry = {6,8,4},
R3 = {0,6,8,12,18,24}. In this SSG, 7 has has a unique representation as 1 + 6 + 0. 24 has a
unique representation as 0 + 6 + 18. Also, 3 has the unique representation 1 + 8 + 24 (recall + is
addition mod 30.

For permutation groups, we are able to use a restricted SSG notion known as Sims’ table
(see [2,3]). The main idea is to specialize the definition of the subgroup tower by requiring that
the i subgroup contain only elements which do not affect the elements 1,...,4. Consequently,
in the tower each subgroup fixes one additional element of the object set.

DEFINITION 2.2.3. POINT STABILIZING TOWER. Consider a permutation group G < S,, over
the points {1,...,n}. Fori =1,...,n, let G; be the subgroup of G fixing the points 1,... 1.
The resulting tower G = Gg > Gy > -+- > G, = I of height n is called the point stabilizing tower
of G.

EXAMPLE 2.2.5. The point stabilizing tower of

Sz = {(1), (12), (13), (23), (123), (132)}

is as follows:

Gs ={(1)},

Gz = {(1)},

G1={(1),(23)},

Go = {(1),(12), (13), (23), (123), (132)}.

DEFINITION 2.2.4. SiMs’ TABLE. A strong sequence of generators Ry,. .., R, for a point stabi-
lizing tower is called the Sims’ table.

EXAMPLE 2.2.5. The coset of S3 with respect to its point stabilizing tower are

Go

&, = (), (3 ((12), (132)5 (23), (1231,
G

& = (ke

Gz

& = (.

Structure of Permutation Groups 113

The Sims’ table for S3 is
Ry ={(1),(12),(23)}; R2={(1),(23)s Rs={(1)}-

REMARK 2.2.2. Now, every permutation 7 € G has a unique representation of the form m =
mimeTs ... Ty such that for all i € {1,...,n}, m; € R;, where m; does not effect the elements

For example, (12) € S3 has a unique representation (12) - (1) - (1). Similarly, (132) has the
unique representation (12) - (23) - (1).

LEMMA 2.2.1. For any group G < S, there is a point stabilizing tower of height n.
PROOF. The lemma follows from definitions (Definition 2.2.3).]

Representation of group elements is more succinct in terms of SSG. Moreover, computations
involving group elements can be carried out by sifting through the coset representatives. These
preliminary concepts introduced above will prove to be useful in the development of our learning
algorithms later.

2.3. An Illustrative Example

Consider the dihedral group of order 8 (D) associated with the group of symmetries of a
rectangle. This group has two generators, namely, 7/2 radians rotation (o = (1234)), and
reflection across the horizontal plane (8 = (14)(23)). See Figure 2.

1 2 2 3
(8]
—

4 3 : 4
1 2 1 3
- A—

4 3 4 2

Figure 2. The « and 3 generators.
Dy consists of the following elements:

e = (1), a = (1234), a? = (13)(24), o® = (1432),
B=(14)(23), Pa=(24), Ba® = (12)(34), Bo’ = (13).

We start with Go = D4, and select G; = {e,¢,a?,a}. So G = {e,,0%,0%} and BG; =
{8, Ba, Ba?, Ba®}. Consequently, we can express Go /Gy = {€G1,8G1}. We can choose R; to
consist of € and 8. Now, since G1 = {¢,@,a?,a®}, we can select G = {e,a?}. This leads
to G1/G2 = {€G2,aG,} and Ry = {¢,a}. Finally, G2 = {e,0?} forces G3 = I = {¢} and
G2/G3 = {€G3,0?G3}. As aresult R = {g, a?}.

Thus, a subgroup tower for Dy is Go = (Go/G1)(G1/G2)(G2/G3)Gs, with Gy =Dy, G, =
{e,0,02,0%}, Gg = {¢,0?}, and G3 = I = {e}. The associated strong sequence of generators will
be Ry = {¢,8}, Ry = {¢,a}, and Rs = {¢,a*}.

114 S. AZHAR AND J. H. REIF

3. RANDOMIZED ALGORITHMS FOR FINITE GROUPS

3.1. Generating Examples

We choose to employ the most commonly used learning protocol for our algorithms: a func-
tion EXAMPLE(G) which returns an example of the concept group G. The distribution of
EXAMPLE(G) conforms to some arbitrary prespecified probability distribution function. In the
strict definition of learning, we are not allowed to make any assumptions about the distribution
of EXAMPLE(G).

However, we shall first derive some results using uniform distribution.

DEeFINITION 3.1.1. UNIFEX(G). The function UNIFEX(G) generates examples of elements of
a group G according to uniform distribution.

1. For all z € G, Prob(UNIFEX(G) is z) = 1/|G|.

2. For all z ¢ G, Prob(UNIFEX(G) is z) = 0.

Given some function EXAMPLE(G), we also need to define A\(EXAMPLE(G)) and A(EX-
AMPLE(G)) to be lower and upper bound (respectively) on the probabilistic distribution corre-
sponding to EXAMPLE(G).

DeFmvITION 3.1.2. A(EXAMPLE(G)) and A(EXAMPLE(G). We define A(EXAMPLE(G)) €
[0,|G]] to be the greatest real number such that for all z € G:

EXAMPLE(G))
G|

Prob (EXAMPLE(G) is z) > il

And, we define A(EXAMPLE(G)) € [0,|G|] to be the smallest real number such that for all

T € G:
A(EXAMPLE(G))

|G|

Suppose we have two distributions EXAMPLE4(G) and EXAMPLEg(G). We define the
relation = and =~ as follows.

DEFINITION 3.1.3. We say that EXAMPLE4(G) ~ EXAMPLE(G) if

Prob(EXAMPLE(G) is z) <

A(EXAMPLE4(G)) = A(EXAMPLE(G))

and
A(EXAMPLE 4(G)) = A(EXAMPLE(G)).

We say that EXAMPLE 4 (G) =EXAMPLEg(G) if both EXAMPLE 4(G) and EXAMPLEg(G)
have the exactly the same probability distribution function, that is,

¥g€G, Prob(EXAMPLE4(G) is g) = Prob(EXAMPLE(G) is g).

Observe that EXAMPLE4(G) ~ EXAMPLEg(G) does not imply that every element occurs
with exactly the equal probability in both EXAMPLE4(G) and EXAMPLEg(G). It merely
indicates that the lower and upper bounds of the two corresponding probabilistic distribution are
the same. Observe that EXAMPLE 4(G) = EXAMPLE(G) is a much stronger condition.

LeEmMMA 3.1.1. If G is a group and z € G, then UNIFEX(G) = z - UNIFEX(G).

PRrooF. We can define a function X, : G — G such that x(y) = z - y. Now, the function Xz IS
one-to-one and onto. (zy; = zy, implies y; = y», and for any y € G, Xz(¢~'y) = y.) The lemma
follows. E]

Structure of Permutation Groups 115

LEMMA 3.1.2. Let H < G, and let R be a complete set of coset representatives for G/H. Then
UNIFEX(G) = UNIFEX(R) - UNIFEX(H).
PROOF. Suppose UNIFEX(R) = r for some arbitrary r € R, and UNIFEX(H) = h for some
arbitrary h € H. We are interested in the element selected z = rh. Intuitively, choice of r
determines the coset rH € G/H which contains z, then choice of h determines the particular
element z within the coset rH. Our task is to prove that z is uniformly distributed in G.

We define a function f : R x H — G such that f(r,h) = rh. This function f: Rx H— G is
one-to-one and onto because of the following.

1. For f: R x H — G defined above, let g; = f(r1,h1) and g2 = f(r2, h2). If g1 = g2, then
r1hy and rohy are in the same coset. This implies r; = r2 because R contains one and
only one element from each coset. Multiplying both sides by r ! we get hy = hy. Thus,
f is one-to-one.

2. For all z € G, there exists a coset 71 - H € G/H such that x € r; - H. It follows that
Jh € H such that z = r1h. Therefore, f is onto.

Consequently, for = € G,

Prob[(UNIFEX(R) - UNIFEX(H)) is z
1 1 1
= Prob[UNIFEX(R) is] - Prob[UNIFEX(H) is Z| = %57 = -

By Lagrange’s Theorem |G/H||H| = |G]|.

Thus, for any fixed z, there is a probability of UNIFEX(R)-UNIFEX(H) isz is 1/(|G/H||H|) =
1/|G|. The lemma follows.

A more concise but less instructive proof of this lemma can be formulated by the use of Bayes’
theorem. g

EXAMPLE 3.1.1. For the SSG of Z3p described in Example 2.2.3, observe that the probability
of generating any element of Go by UNIFEX(R;)-UNIFEX(G) is exactly (1/2)(1/15) = (1/30).
This is exactly the probability of generating any element of G using UNIFEX(Gy).

Given a strong sequence of generators Ry,..., R, for group G, with respect to its subgroup
tower G = Gy > G1 > Gg > -+ > G, = I, we will present a simple algorithm for random
element generation based on the following lemma.

LemMA 3.1.3. UNIFEX(G) = UNIFEX(R;) - - - UNIFEX(Rp).

PROOF. The proof is by induction on the height of the subgroup tower in conjunction with
Lemma 3.1.2. By Lemma 3.1.2, UNIFEX(Gy) = UNIFEX(R;) - UNIFEX(G}), and for all ¢ such
that 1 <i < n—1, UNIFEX(G;) = UNIFEX(R;}1)- UNIFEX(Gi+1). Finally, UNIFEX(Rp) = e.
Consequently, UNIFEX(G) = UNIFEX(R,) - - - UNIFEX(Rp).]

Intuitively, this lemma relies on the fact that each element of any group G can be represented
uniquely by selecting elements from its SSG (see also Remark 2.2.2). Now, we can compute
UNIFEX(G) from strong sequence of generators by a simple algorithm.

ALGORITHM 3.1.1. EXAMPLE GENERATION.

INPUT: strong Sequence of Generators R = {Ry, Rz, . .. ,Rn} of a group G.
OUTPUT: an example element of group G.
BEGIN

fors=1to h do

z; = UNIFEX(R;);

end for

return -« ... T
END

116 S. AZHAR AND J. H. REIF

THEOREM 3.1.1. Algorithm 3.1.1 can produce any element of the group G with equal probability
in O(h) sequential time.

PROOF. The proof of correctness follows from Lemma 3.1.3. The complexity is clearly O(h). @

REMARK 3.1.1. It is interesting to observe that a random element of G can be generated by
this method in parallel by a binary product tree of depth O(logn) using O(n) processors. There
are n input nodes of the tree, and the i*" input node is fed with UNIFEX(R;). The rest of the
processors perform the group operation on the two inputs they receive.

EXAMPLE 3.1.2. It follows from the discussion in Section 2.3 that UNIFEX(D,) =UNI-
FEX({¢, 8}) - UNIFEX({¢, a}) - UNIFEX({¢, &?}).

3.2. Finding Generators from Random Examples

In this section, we will show an important result concerned with group inference from random
examples. Let G be a fixed finite group of permutations. Let L = {z1,22,3,...} be a possibly
infinite set of random elements chosen independently from G using UNIFEX(G). Our objective
is to find an upper pound on the number of examples required to generate G (with very high
success probability).

THEOREM 3.2.1. For0 < ¢ <1, Prob(G = (21,22, ..., 2m)) = 1—¢ ifm > 1+ (log [G]) log(1/e1),
where €; = 1 — (1 — €)1/ 108Gl

PROOF. Let J = {j € Z* | z; ¢< x),23,...,2j-1 >}. Intuitively, the set J indexes the
generators of the group by adding an element of the group (at each step) if it cannot be generated
with the set of generators found so far. Even though, the list J can be constructed by repeatedly
drawing a random element from the group, and appending it to the list of generators if it cannot
be generated by the previous set of generators. Since the main concern of the theorem is finding
an upper bound, and not actual computation, we will only keep track of the indices of the elements
we decide to keep. The idea is to repeat, m times, the process of finding new elements of the
group G, which cannot be produced by generator set found thus far. For example, if the list
L ={15,0,5,3,4,23} for Z3p would result in J = {1,4}, since only 15 and 3 cannot be generated
by previous generators.

List all the elements of J in ascending order, J = { JapsdiE - 0y J”}. This will give us a tower
of subgroups G =Gy > Gy > --- > G| = I, where G, = 411[11""’:”'5"%—.,1)' We can see that
Go = (Tjyy)s -2 Tjy,y) = G, and G|y = {e} by default. In particular, G = G, = T T
and an upper bound on jjj;; will also be the upper bound on the number of examples necessary.

By Lagrange’s theorem |G| < |G,s_1]/2. By induction |G| < |G|/2?, so for s = |J|, |G| <
|G|/2/1. Since |G| = 1, it follows from |G\ ;| < |G|/2"! that |J| < log|G]|. Since |G,| < |G|/2°,
if we choose a random example using UNIFEX(G), then the probability that this element is
in G, is equal to 1/2°. In other words, Prob (a:(j““_alﬂ) € <I(J'[11)" v 3 &y —a))) € 1/2°. This
is equivalent to saying that Prob (jjjjj—s+1 > Jiga-sy + 1) < 1/2° because if T(jyg1-g+1) €
(a:(jm), e ’x(ijJI—s])>’ then jjj71—s) + 1 is not added to the set J. Hence, the next element of J
(i-e., JjjJj-s+1]) is strictly greater than Jia-¢ + 1.

Now the probability of drawing k consecutive elements which are already in G, is less than
(1/2°)k. This implies that for any positive integer k, Prob ps-s+1) > (paj-o + k)] < 1/25s.
Consequently, Prob [(j[|J|_,+1] = Jy-s)) <k 21— 1/2%s. Substituting e; = 1/2%%, we can see
that Prob [(jiiyj-s+1) = Jjs1-s)) < (1/5)log(1/e1)] > 1 —e1.

Now, if m > jj s, then we can find the generators of the group. Note that g = Juy +
ZL‘Q;I(J'“ J|-s+1) = J[|J)-s])- Since the first element picked cannot be generated by a vacuous
generator set, by default jj;; = 1. Consequently, =1+ ZL‘ﬂfl(j“ﬂ_,H] = J[jJ1-s))- Now,
we know that Prob [(j1s1-s+1) = J{s1-s]) < (1/5)log(1/€1)] > 1 —€;1. Observe that (1 —¢;)l/I-1 =

Structure of Permutation Groups 117
((1 — €)1/108IGNYIVI=1'5 1 _ ¢, Hence, with probability greater than (1 — €)1~ > 1 -«
|JI-1

: 1 1
camereE (e (2))
s=

Replacing 1/e; by 2%s:
[J]-1

. 1 s
=gy S1+) (; log (2*))-
s=1
Simplifying
|J]-1
=>j[|J|] <1+ Z k< |J|k
s=1
Replacing k = (log(1/e1))/s:
[7]-1
: J|log(1/e 1
= 1) <14+ Z k< Lgs(/—l) < |J|log (a) p
s=1

Since |J| < log(|GJ),
_ 1
iy < 1+ (log(|Gl)) log (a) :

Consequently, m > 1 + (log(|G|))log(1/e1) suffices. The proof of the theorem is now com-
plete. |

REMARK 3.2.1. For small ¢, €; = ¢/log(|G|), so m = 1 + (log(|G|) - log((log |G|)/€). In practice,
this bound can be deceiving because for small € the log((log |G|)/€) factor can be fairly large.
For |G| = 21924 and ¢ = 271°, m = 20480.

Retracing our steps back through the proof of Theorem 3.2.1 above, we can also find upper
bounds on the total number of generators, and the height of the subgroup tower.

THEOREM 3.2.2. For any finite group G, there is a subgroup tower of height at most log,(|G|).
Furthermore, G can be generated by a subset K (of G) consisting of no more than log,(|G|)
elements of G.

PROOF. The proof is by induction. For any group G, we can construct the subgroup tower
G=Go>G1>Gy>G3> - >Gy = I. Inductively assume that G; =< K; > where K is a
subset of at most h — i elements of G;. Now, there must be a permutation m;—; of Gi_1 which is
not a member of the group G;. Let K;_1 = K; U {mi-1} and Gi—1 = (K;-1), and K, contains
no more than h — (i — 1) elements. This proves that there is subset Ko (of Go) which contains
no more than h elements.

Observe that G;_; > G;, so by Lagrange’s theorem |G;| < |Gi_1]/2. Hence, |Gi| < |Gol/(2").
Therefore, h < log,(|G|). Furthermore, since |Ko| < h, G can be generated by a subset consisting
of no more than log,(|G|) elements. |

3.3. Constructing Strong Generators

Suppose, we wish to find a complete set of coset representatives of G/H. Let L denote a
random list of m (= |L|) independently selected random examples of elements of G. With G, L,
and m defined above, the following two lemmas are due to [2].

118 S. AzHAR AND J. H. REIF

LEMMA 3.3.1. Forsome H < G, let E denote the event that L contains at least one representative
of each coset of G/H. If G/H contains c cosets (|G/H| = c), then Prob (E) > 1 —¢(1 - 1/c)™.

PROOF. Let C denote a fixed coset in G/H. Since UNIFEX(G) has an equal probability of being
a member of any coset in G/H, Prob (LNC = ¢) = (1 -1/c)™. Since there are c cosets in G/H,
Prob (-E) < ¢(1 — 1/¢)™. Thus, Prob(E) =1 - Prob(-E) >1—¢(1 - 1/c)™.]

Now, if LN C # ¢, choose a random r¢ € LN C for each coset C € G/H. We define
R={rc € LNC|C € G/H}. Since L contains at least one element from every coset with a very
high probability (> 1 —¢(1 —1/c)™), R contains exactly one element from each coset in G/H
with the same high probability > 1 — ¢(1 — 1/¢)™. For z € C, we define a function f¢ : C = H
as follows: fo(z) = r(_;l:c where r¢ is the previously selected element of L N C. Note that, by
property number 3 of Lemma 2.1.1, we know that ral.'r € H.

LEMMA 3.3.2. For C,G, H, and the function fc(z) = r;'z defined above,

fc(UNIFEX(C)) = UNIFEX(H).

Proor. For all z € G, there exists a coset C € G/H such that x € C. Consequently, fc(z) =
rE z € H because x € C implies r 'z € H. By property number 3 of Lemma 2.1.1, we know that
rz'z € H. By the definition of the function, the distribution of fo(UNIFEX(C)) is identical
to that of r (UNIFEX(C’)) for some randomly chosen C € G/H. Now using the fact that
¥YC e G/H, rz'C = H, we have

fc(UNIFEX(C)) = r5' (UNIFEX(C))
= UNIFEX(r5'C) = UNIFEX(H). 1

Given a subgroup tower G = Gy > G1 > G2 > G3 > --- > Gp_1 > Gy, corresponding to
G = Go (Go/Gl)(Gl/Gz)(Gg/Gg)(G3/G4) (Gh 1/Gh)Gh, where Gh =Jof h(alght h. and

width w = 1 {|G¢_1 /Gil}. We present an algorithm to construct a list of strong generators
for G with respect to this subgroup tower.

ALGORITHM 3.3.1. STRONG SEQUENCE OF GENERATOR.
INPUT: the input consists of the following.

(1) Lo be a list of m elements drawn independently from UNIFEX(G).
(2) A subgroup tower G=Go>G1 >G2>Gs> > Gho1 > Gp,.
OUTPUT: strong sequence of generators.
BEGIN
1. Let Lo be a list of m elements drawn independently from UNIFEX(G);
2. fori=1to hdo

begin
3. Initialize R; < ¢;
4. for each C € Gi—l/Gi do
begin
5. Initialize L; ¢ < ¢;
6. Let L; ¢ be list of elements of L;_; in C;
i if Ljc # ¢, then
begin
8. Choose and delete a random element r¢ from L; ¢
9. Add ro to R;
10. for each remaining element z € L; ¢ do
3. L < LU {rg'z}

end

Structure of Permutation Groups 119

end
end

12. return strong sequence of generators Ri,...Ej.
END

ExAMPLE 3.3.1. Let us work through Algorithm 3.3.1 for the group Sy. Let o = (1234), 8 =
(234), and v = (34). Then

Sy={c'Fy*|0<i<3,0<5<20<k<1}.

Given INPUT:

(1) Lo = {e 8% By, e, aBv,af%,0B,0%y,0%,0° 6% ay,0° %},
(2) Go=8; Gi={f7"10<j<20<k<1}; Ga={y*|0<k<1}; Gi={e},

The algorithm proceeds as follows.
First Pass.
1. R1 = (15
2. G ={#*|0<;j<20<k<1})
3 Gu/Gl = {Gl,aGl,azGl,a"’G;}.
4. . Ll.G1 = {Esﬁznﬁ"f};
o Ll,aG1 — {as Olﬁ’}’, 0!1827};
o Ly g, «— {0*8,a%7};
. Ll,aaGi — {03?0'3.825337:a3ﬂ27}-
5. Ry « {¢,a,0%03,03}.
6. Ly — {¢, 0% B, 8%, 8,7}
Second Pass.
1. Go={y*|0<k<1}.
2. G1/Ga = {G3, 8Ga, f?G2}.
3. eLyg — {7k
o Lz s, — {67, 5};
o Ly p2g; — {8 6%}
4. Ry — {¢,Bv,5%}.
5. Ly {6, ‘}’}.
Third Pass.
1. G3 = {E}
2. G3/G3 = {G3,7G3}.
3. eLzg, — {e}
® L3 Gy — {7}
4. Rz « {e,7}.
5. Lz «— {e}.
Thus,
o R — {e,0,0%B,0%};
b R2 = {Es ﬂ7t:32}v
o R3 — {¢,7}.
THEOREM 3.3.1. For a subgroup tower of height h and width w, if m > hw, then Algo-
rithm 3.3.1 outputs a strong sequence of generators of G with very low error probability (<
hw(l — 1/w)™hw),
PROOF. By Lemma 3.3.1, the probability of failure at any stage i with ¢; cosets is no greater
than ¢;(1 — 1/¢;)™ "% < w(1 — 1/w)™~"*. Hence, the failure probability at one or more stages

120 S. AZHAR AND J. H. REIF

is at most Z?=1 ci(l = 1/e;)™he < hw(l — 1/w)™¥. Thus, with very high probability (1 —
hw(1 — 1/w)™="*), there is no failure. Hence, each R; is a complete set of coset representatives
for Gi—1/Gi.]

THEOREM 3.3.2. Algorithm 3.3.1 computes the strong sequence of generators of input group
G (using m > hw) calls of UNIFEX(G)) in O(mlog(|G|))) time, with a success probability
>1-hw(l = 1/w)™ e,

PROOF. The most expensive steps are 6 and 10,11. They can be executed in O(m) time (upper
bound). Since they are executed O(h) time, i.e., by Lemma 2.2.1 O(log(|G|)) times, the total
time is O(mlog(|G|)). B

3.4. Membership, Inclusion, Equality

Suppose G = Go > G; > G > -+ > Gy = [is a subgroup tower, and R;,..., R, is
the corresponding strong sequence of generators of G as discussed in the previous subsection.
Assume that for all z € G;_;, we can effectively find the coset representative y € R; such that
=y (le, vy 'z € Gy).

We will now describe Sims’ algorithm for group membership, in the general context of finite
groups. Given an input z, and a strong sequence of generators the Sims’ group membership is as
follows.

ALGORITHM 3.4.1. MEMBERSHIP TESTING.

INPUT: a strong sequence of generators for a group G < U, and an element z € U.
OUTPUT: whether z € Gor z ¢ G.
BEGIN
fori=1to hdo
begin
if (3y € R; such that z =; y)
then z &y~ 1z
else return (“z ¢ G”)
end if
end
return (“z € G”)

END
THEOREM 3.4.1. Sims’ group membership test has (worst case) sequential running time
of O(|G)).

REMARK 3.4.1. Sims’ group membership algorithm is inherently sequential in nature, and the
parallel time for its execution is at least £(h), where A is the height of subgroup tower.

The following tree sketches the path followed by the algorithm for testing membership of
6 € Z12, where Z) is represented by R; = {3,4}; R = {0,6}; R3 = {0,4,8}.
Consider another example in Sj.

EXAMPLE 3.4.1. Let us see how Algorithm 3.4.1 would ascertain a8y € S,.
Phase One.

Observe a € R; and a =; affy. So we set = «— f7.
Phase Two.

Observe 8 € Ry and 8 =; 3. So we set z «— 7.
Phase Three.

Observe v € R3 and v =3 . So we set T + .

Structure of Permutation Groups 121

Figure 3. Testing 6 € Z;2 from SSG.

Consequently, we return “z € G”.

REMARK 3.4.2. Given another finitely generated group G’ = (hy,...,hx), and a strong gener-
ator sequence for G, we can test group inclusion G’ < G by simply ascertaining Vi = 1,... K,
that h; € G.

REMARK 3.4.3. Moreover, given strong generator sequences for finitely generated groups G
{g1,.--,gk) and G’ = (hy,...,hx), we can test group equality (G = G’) by ascertaining Vi =
1,...,kthat g; € G',and Vj =1,...,k, that h; € G.

Il

THEOREM 3.4.2. Let A be class of representations of an arbitrary group G in terms of strong
sequence of generators. Then class A is learnable.

PROOF. A can be learned from examples in polynomial time using Algorithm 3.3.1. Thus, by
definition concept A is learnable. |

4. RANDOMIZED ALGORITHMS
FOR PERMUTATIONS GROUPS

4.1. Permutation Groups

Group theoretic algorithms may be classified into two categories: algorithms for abstract groups
(represented by generators and relations) and algorithms for permutation groups (specified by
permutations of an object set). Computer scientists have shown deeper interest in permutation
groups for several reasons. At the outset, permutation groups have a natural concrete represen-
tation on the computer, and to complement this there is a natural definition of group operations.
Furthermore, permutation groups have direct applications to the graph isomorphism problem as
well as solid state physics and molecular symmetry. In this section, we will specifically concen-
trate on problems which arise in permutation groups. We also take this opportunity to recall
Cayley’s theorem which assures us that every group has an isomorphic permutation group.

REMARK 4.1.1. Every group is isomorphic to a group of permutations.

4.2, Computation of Orbits

Let G < S, be a permutation group on the set A = {1,...,n}. Since, our algorithms rely
heavily on computation of orbits. We recall some elementary definitions before proceeding further.

DEFINITION 4.2.1. ORBITS. For all i € {1,...,n}, define i® = {n(i) | 7 € G}. The set
i C {1,...,n} is called the orbit of i under G. A G-orbit is the set of orbits, where each orbit
contains a collection of elements which have the same orbit in G.

122 S. AZHAR AND J. H. REIF

DEFINITION 4.2.2. STABILIZER. For alli € {1,...,n}, let G; = {m € G | 7(i) = i}. G; is called
the stabilizer of i in G. Furthermore, G; is a subgroup of G.

LEMMA 4.2.1. G-orbits partition {1,...,n} into equivalence classes.
PrROOF. For alli € {1,...,n}, G; < G, the lemma follows.]

LEMMA 4.2.2. Consider a graph (V, E), such that the vertex set V = {1,...,n} corresponds to
the elements of the object set. The edge set E = U;=1,... kE,,, where for a permutation m € S,
we define

E. ={(i,7) | 7(i) = j or n(j) = i}.
The G-orbits of G(g1, ..., gk) are the connected components of the graph.
ProOOF. The proof follows from definitions [13].]

This lemma is the harbinger of the utility of orbits in computing Sims’ table (the strong
sequence of generators for the point stabilizing tower of a group).

Let k be the number of G-orbits of the permutation group G. Let B be be any partition of
{1,...,n} into |B| blocks such that no block of B contains more than a single G-orbit. Now if
we are given any permutation 7 € G, we construct B, from B as follows.

Repeat until no further changes can be made.

o If there exist two different blocks b;, b2 € B, and 3i € {1,...,n}, such that ¢ € b; and
m(i) € ba, then merge by and bs.
Thus, the general scenario is the following.
e B is a (not necessarily proper) refinement of B, and the G-orbits.
e B, is a (not necessarily proper) refinement of the G-orbits.

We define a function v : B — Z to provide us a measure of how many blocks in B are still
unresolved.

DEFINITION 4.2.3. v FUNCTION. = : B — Z is defined as follows:
¥(B) = |B| - k.

Actually, v(B) is equal to the number of blocks which still need to be merged before we have
the G-orbits of the group. (When |B| =k, 4(B) = 0.) The two lemmas that follow will be used
in the proof of the next theorem.

LEMMA 4.2.3. If |B| > k and 7 = UNIFEX(G), then Prob[y(B,) < v(B)/2] > 1/2.

PROOF. In anticipation of a contradiction, suppose that Prob [y(B;) > 4(B)/2] > 1/2. This
implies that v(B)/2 > v(B;) for more than |G|/2 permutations # € G. To collect these per-
mutations, for every distinct block A of B we define the set Hy = {m € G | m(4) = A}. The
set H4 contains all the permutation which leave the member of the block A unaffected. Hence,
by the pigeon hole principal, there exists a a block A € B such that |H4| > |G|/2. (Suppose,
then, not all the blocks in B remain unaffected for < |G|/2. This counters our supposition that
v(B)/2 > «(By) for more than |G|/2 permutations 7 € G.) Now, we observe that H4 forms.a
subgroup of G, because Hy4 is closed under group operation and inverses.
e Group operation: Vmy,my € Hy, if m(A) = A and m(A) = (A), then obviously
™ '?Tz(A) = ‘.‘T1(.A) = A.
o Inverses: m(A) = A= A=rn"1(A).
Our supposition implies that |[H4| > |G|/2, but this is a contradiction to Lagrange’s theorem.
The lemma follows. |

Having developed the necessary machinery, we are ready to sketch our algorithm for computing
orbits: start with the partition B® = {[1],[2],...,[n]}, and (independently) choose m = aclog(n)

Structure of Permutation Groups 125

1 1
(123) (123) (123)
2
(123) 3
(123)
(132)

3
Figure 4. First iteration of the Sims’ table algorithm.

7 4

(465)
(478956)

(4856) (79)

(498756)

Figure 5. Computation of R4 from spanning tree.

THEOREM 4.3.1. Given (a + 1)cnlogn examples of a fixed permutation group G < S, we can
use the Algorithm 4.3.1 to construct a Sims’ table for G in expected sequential time of O(n®logn)
with very high probability (= 1 — 1/n® for sufficiently large constant ¢ given any large constant
a>1)

PROOF. In Algorithm 4.3.1, we shall fix m = (@ + 1)cn log(n), where ¢ > 1 is a sufficiently large
constant, and a > c.

Let us first prove the correctness of this algorithm. Assume inductively that for ¢ > 1,L;_;
is a list of (n — i)(a + 1)clog(n) elements of UNIFEX(G;_;). By Lemma 4.2.2, with probability
> 1-n"% V; is the G;-orbit (of G;) containing i. We can compute a spanning tree T; and
its preorder traversal in sequential time O(n?) using depth-first search since there are at most
n vertices. Observe that for all j € V;, the permutation r;; is in G;—; such that r; ;(i) = j.
Hence, R; = {r;; | j € V;} is a complete set of coset representatives for G;_1/G;, as required.
Furthermore, L; = {'rl.',;(z.) - | m € Fi_1} is a list of (n — 1 — 1)(a + 1)clog(n) elements of
UNIFEX(G;-1). Thus, Ry,..., R}, is the Sims’ table with very high probability > 1 —1/n®.

The complexity of the algorithm can be calculated by observing that the most costly step of
each iteration is Step 10. Step 10 takes O(n?log(n)) time because there are O(n log(n)) elements
in F;_1, and each it takes O(n) operations to compute product of two permutations of n elements.
Since there are n iterations of the loop, the total time complexity is O(n®log(n)). |

126 S. AzHAR AND J. H. REIF

4.4. Solving Permutation Group Problems Using Sims’ Table
Three lemmas follow immediately from the discussion of Section 3.4.

LEMMA 4.4.1. Given the Sims’ table of a permutation group G < S,, and an input z € Sy,
Sims’ membership test (x € G7) takes O(n?) sequential time in the worst case.

PrROOF. We can conduct membership test using Algorithm 3.4.1. The critical step in this al-
gorithm is to find a y € R; such that £ =; y. Since |R;| = n — i, the cost of the i*! step is
n —1i. Thus, in the worst case the total execution time is 3", (n —i) = 317! (i) = (n(n - 1))/2.
Consequently, the total running time is O(n?).]
LEMMA 4.4.2. Given a permutation group Gi = (g1,...,0k,), and the Sims’ table for a permu-
tation group Gz, where Gy,G2 < S,, then the group inclusion test (G; < Gq) takes O(n?k;)
sequential time in the worst case.

Proor. It suffices to test g; € G for all ¢ = 1,...,k;, because G; < G» if and only if Vi =
1,...,k1, gi € Go. This can be done by calling Algorithm 3.4.1, k; times (in the worst case).
By the above lemma, algorithm is O(n?). Thus, the total execution time is O(n?k;) in the worst
case. |

LEMMA 4.4.3. Given a permutation groups G1 = (g1,...,9,), and G2 = (g1, . .., gk,), as well as
the Sims’ table for permutation group G, and the Sims’ table for permutation group G2, where
G1,G2 < Sy, then the group equality test (G = G3) takes O(n?(k; + k3)) sequential time in the
worst case.

PRroOOF. It suffices to ascertain G; < G3 and G; < G;. By Lemma 4.4.2, this can be done in
O(nk1) + O(n%ks) = O(n?(k; + ko)) worst case time.]

LEMMA 4.4.4. A groups G; £ S, and G3 < S, are represented by minimum set of generators,
then inclusion and equality test take O(n®logn) time in the worst case.

PRroOOF. By Theorem 3.2.2, we can represent any group G; and Gy with at most log,(|Sx|)
generators. Since |S,| = n!, so k; < logy(n!) = O(nlog(n)) and k; < log,(n!) = O(nlog(n)).
The lemma follows. i

THEOREM 4.4.1. With canlogn random elements of permutation group(s) in S,, we can as-
certain permutation group membership, group inclusion, and group inequality in O(n3log(n))
expected time. These bounds hold with very high probability > 1 —n~=2 for any sufficiently large
constant o > 1.

PROOF. Using Algorithm 4.3.1, we can construct Sims’ table in expected sequential time of
O(n®logn) with very high probability > 1 — n™* for sufficiently large constant a > 1. Using
Sims’ table, we can perform group membership, inclusion, and equality test in O(n®log(n)) worst
case time. The corollary follows. |

THEOREM 4.4.2. Let A be class of representations of an arbitrary group G in terms of Sims’
table. Then class A is learnable.

PROOF. Algorithm 4.3.1 is a polynomial time algorithm, which computes a (correct) represen-
tation from examples of elements of G, with very high success probability. This representation
can be used to ascertain group membership, group inclusion, and group equality in polynomial
time. |

5. PARALLEL ALGORITHMS FOR PERMUTATION GROUPS

5.1. An Important Result from Graph Algorithms

We will assume CRCW PRAM (Concurrent Read, Concurrent Write Parallel Random Access
Machine) model described in [19] (see also [16,17]). Shiloach and Vishkin [19] show the following
lemma.

Structure of Permutation Groups 123

random permutations from G. For every i = 1,2,...,m in succession, compute B* from B ! by
using 7; to merge blocks in B* by the process outlined earlier. Repeat this procedure until | Bf| =
the number of distinct orbits in G (which is equal to k). We label the i*! stage as successful if
|Bt| = k (i-e., ¥(B*) = 0) or v(B%) < 4(B@#~1)/2. Observe that after at most logn successes
(at any stage before m) |[B™| = k, because k > 1. Furthermore, this B™ is exactly the set of
G-orbits.

LEMMA 4.2.4. Let X is a binomial random variable with m = aclogn trials, each with indepen-
dent success probability of 1/2. For sufficiently large ¢, Prob [X >logn] > 1 - 1/n%.

ProoF. This lemma is a result of known probabilistic bounds of [21,22]. 3
The above discussion leads us to an algorithm for computing G-orbits.

ALGORITHM 4.2.1. COMPUTING G-ORBITS.
INPUT: m random examples from permutation group G.
OUTPUT: G-blocks of group G.
BEGIN

Initialize B = {[1],[2],...,[n]};
fori=1tomdo
begin
If there exist two different blocks b1, b2 € B,
and 3i € {1,...,n}, such that ¢ € b; and 7 (i) € b,
then merge b; and bo;
end;
return (B);

END.
For merging blocks, we can use an efficient set union algorithm.?

EXAMPLE 4.2.1. Consider S5 = {a*877%¢'p™ |0<i<50<7j<40<k<3,0<1<20<
m < 1}. It is easy to verify that almost any couple of examples from Sg would be sufficient. For
instance, let m; = By = (246)(135) and m; = a®¢?p = (16432). Thus,

B® = {[1],[2],[3], 4], [5], [6]},
— Bl = {[11 3! 511 [2*4’ 6]}5
= B2 = {[1,2,31 4a5?6])}'

One of the worst cases would be 71 = (56), mp = (456), m3 = (3456), my = (23456), m5 =
(123456). In this case, five examples are necessary to compute G-orbits. Such cases are quite
unlikely.

THEOREM 4.2.1. Algorithm 4.2.1 successfully computes the G-orbits of the input group G with
very high success likelihood (at least 1 — 1/n® for any constant ¢) by at most calogn calls to a
set union algorithm (for a sufficiently large constant ¢). Algorithm 4.2.1 requires at most ca:logn
examples in order to accomplish its objective.

ProoF. The proof of this theorem follows from Lemmas 4.2.3 and 4.2.4. a0

Considering the fact that there is deep underlying interaction between groups and graphs, it is
not surprising that computing G-orbits is intimately related to determining connected components
of graphs (Lemma 4.2.2). This leads us to the following theorem.

THEOREM 4.2.2. There exists a constant ¢ > 0 such that for all sufficiently large o, if m =
aclog(n), and if 1, . . ., ™y, are independently chosen random elements of G, then with probability

2We shall not indulge in further discussion of set union algorithms since it is a tangential topic.

124 S. AZHAR AND J. H. REIF

at least 1 — 1/n®, the G-orbits are the connected components of graph with vertex set V =
{1,...,n}, and edge set E = Uj—1,... mEn,.

PRroOF. The proof of this theorem employs Lemma 4.2.2. From Theorem 4.2.1, with a probability
1—1/n%, B™ is the G-orbit of the group G. Furthermore, B™ is exactly the set of connected
components of the graph (V,E) = ({1,...,n},E;, U---UE,). |
COROLLARY 4.2.1. We can compute the G-orbits using O(logn) elements from UNIFEX(G) in
O(nlogn) sequential time, with error probability (n~% for any sufficiently large constant a)1.

ProOF. We use the depth first search algorithm developed by Hopcroft and Tarjan [23] to

compute the connected components of a graph. There would be at most n vertices ({1,...,n})
in the graph. Since |V| = n, and there are O(nlog(n)) edges (E;, U---U Er_). The corollary
follows from the O(|V| + |E|) complexity of the depth-first search algorithm.]

4.3. The Construction of the Sims’ Table

Unfortunately, it is very expensive to construct the Sims’ table by known techniques, and often
construction of the Sims’ table becomes the bottleneck of the algorithms that use it. The first
polynomial time algorithm (O(n®)) was presented by Furst, Hopcroft and Luks [5]. Jerrum [6]
(also see [8]) improved this time bound to the best known worst-case bound of O(n®). We present
an algorithm with O(n®logn) time complexity.

ALGORITHM 4.3.1. SiMs’ TABLE.

INPUT: m = (a + 1)enlog(n) elements of G < S,,.

OUTPUT: The Sims’ table for G.

BEGIN

e Let Ly be a list of independently drawn m random elements using UNIFEX(G);

e for i =1 to n do begin
1. Let F;_; be the set consisting of the first (n — i)(a + 1)clog(n) elements of L;_;.
2. Compute the connected components of the graph

(1/’ E) = ({13) 1n}1 U?rEF.-_lE‘Jr)-

3. Let V; be the connected component containing 7.

4. Compute the spanning tree T; rooted at ¢ of component V;.

5. Label each edge e € T; with a permutation I(e), where 7 € F;_;, and e € E,. The
edge connects the two vertices that are related by .

6. Let r; ; be the identity permutation.

7. In a preorder traversal of tree T;, iteratively compute for each j € V; — i the permu-
tation r; ; = 1y 5 - [(j', j), where (j’, j) is the edge connecting j to its parent j'.

8. Assign Ri ~ {T;',j |j € V;}

9. L; « ¢.
10. for each m € F;_; do Add T;;(i) - to L.
e end
e return the Sims’ table Ry,..., R,.

END

Consider Lo = {(123), (456), (5789)}. The connected component and the associated spanning
tree is given below in Figure 4.

Ry = {(1),(123),(132)} is computed, leaving with L; = {(1),(456), (5789)}, as shown in
Figure 5.

Now from Figure 5, Ry = {(456), (465), (478956), (4856)(79), (498756)}, leaving Lo = {(1),
(5789)}.

Finally, we can wind up the algorithm by computing Rs to be {(1),(5789), (58)(79), (5987)}.

Structure of Permutation Groups 127

LEMMA 5.1.1. Given an undirected graph of |V| vertices and |E| edges, the connected com-
ponents, a spanning forest, and a preorder of each tree in the forest can all be computed in
O(log |V|) time using |V'| + |E| processors.

Alternatively, we may use the randomized parallel algorithm of [20], which uses logarithmic
time with linear work; that is, the product of processors and time is linear.

5.2. Parallel Computation of Orbits and Blocks of Permutations Groups
Suppose G < S, be a permutation group over {1,2,...,n}.

THEOREM 5.2.1. In the worst case, we can compute the orbits of the group G = (g1,...,gx) in
time O(log(n)) using O(min{nk,n?}) processors.

PrROOF. The proof follows from Lemma 4.2.2 and Lemma 5.1.1. From Lemma 4.2.2, we know
that G-orbits are the connected components of the graph with vertex set V' = {1,...,n}, and the
edge set E = U;=,....kEg,. This graph has n vertices, and min {nk, n?} edges. By Lemma 5.1.1,
we can compute the connected components in O(logn) time using O(min{nk,n?}) processors.
The theorem follows. i

THEOREM 5.2.2. If G is given by a random representation, we can compute the G-orbits in
O(logn) time using O(n?) processors, with very high probability > 1 —n~* for sufficiently large
constant o > 1.]
Proor. The proof follows from Theorem 4.2.2 and Lemma 5.1.1. Suppose we are given m
independently chosen random elements of G: 71,...,7,. We know from Theorem 4.2.2 that
there exists a constant ¢ > 0 such that for all sufficiently large a, there is probability at least
1 — 1/n®, such that if m = acnlog(n), then the G-orbits are the connected components of
graph with vertex set V' = {1,...,n}, and edge set E = U;=1, . mEr,. There are n vertices and
min {acn? log n,n?} = O(n?) edges, so we should be able to compute the connected components
in O(logn) time using O(n?) processors. i
Suppose we are given a group G represented by (g1,...,gx). For two distinct elements a,b €
{1,...,n}, let us construct the undirected graph with vertex set {1,...,n}, and edge set E, , =
{(a,b)} U {(gi(a),gi(b)) | 1 £ i < k}. Atkinson [4] shows (also see [3]) the following lemma.

LEMMA 5.2.1. The connected components of ({1,...,n}, E,) containing a is the smallest
G-block containing {a, b}.

We have essentially reduced the problem of finding G-blocks to the problem of computing
undirected graph connectivity.

THEOREM 5.2.3. The smallest G-blocks can be computed in O(logn) using n?(n + k + 1) pro-
Cessors.

PROOF. There are n vertices and k + 1 edges in the graph for each pair (a,). There are a total
of n? ordered pairs (a,b). For each of these ordered pairs, we can compute the smallest G-blocks
in O(logn) time using n + k + 1 processors (Lemma 5.1.1). If we compute smallest G-blocks in
parallel (for all pairs), we can do it in the same amount of time (O(logn)), using n?(n + k + 1)
Processors. |

THEOREM 5.2.4. If G is represented by a list of random elements, the smallest G-blocks can be
found in expected time O(logn) using O(n®logn) processors.

PROOF. There are n vertices and acnlogn + 1 edges in the graph for each pair (a,b). There are
a total of n? ordered pairs (a,b). For each of these ordered pairs, we can compute the smallest
G-blocks in O(logn) time using O(nlogn) processors (Lemma 5.1.1). If we compute smallest
G-blocks in parallel (for all pairs), we can do it in the same amount of time (O(logn)), using
O(n®logn) processors. |

128 S. AzZHAR AND J, H. REIF

5.3. Limited Parallelism for General Permutation Group

Sims’ group membership algorithm was improved by Furst, Hopcroft and Luks [5] to be a
polynomial time algorithm. Nevertheless, it appears to be inherently sequential (cannot be
speeded up to polylog time by parallelization). We face several obstacles in our effort to parallelize
our randomized algorithms. Our algorithms do not have a polylog running time, but our lower
processor bounds can prove to be useful from a practical point of view. We observe the following
results.

LEMMA 5.3.1. Given a Sims’ table for a permutation group in S, we can execute a membership
test (x € G?) in O(n) time using n processors.

PROOF. If we analyze the membership testing algorithm (Algorithm 3.4.1), it is easy to see that,
at each of the n levels, we can search in parallel for y € R; (such that z =; y) using n processors
in O(1) time. As a result, we can ascertain membership in O(n) time using n processors. (Note
the height, h = n.)]

LEMMA 5.3.2. Given a permutation group Gy = (g1,...,8k,), and the Sims’ table for a permu-
tation group Gq, where G1,Go < Sy, then the group inclusion test (G; < G) takes O(n) time
using O(nk;) processors.

PROOF. It suffices to test Vi = 1,...,k1, gi € Go because G; < Gs if and only if Vi =

1,...,k1, gi € Ga. This can be done by using parallel membership algorithm for all k; generators
(simultaneously). We can do this O(n) time using O(nk;) processors.]

LEMMA 5.3.3. Given permutation groups G1 = (g1,...,gx,) and G2 = (g1,...,9k,), as well
as the Sims’ table for permutation group G, and the Sims’ table for permutation group Gs,
where G1,G2 < Sy, then the group equality test (G = G3) takes in O(n) time using n(k; + k3)
Processors.

ProoF. It suffices to ascertain G; € Gz and G < G;. By Lemma 5.3.2, this can be done in
O(n) time using n(k; + k2)) processors.]

LEMMA 5.3.4. A Sims’ table can be constructed from a random representation of a given per-
mutation group G < S, in expected O(nlogn) time using n? processors.

ProoF. All the steps in the main loop in Algorithm 4.3.1 can be performed in O(logn) time
using at most n? processors. Since there are n executions of the main loop, the total time of
execution is O(n logn) using n? processors.]

COROLLARY 5.3.1. Suppose we are given a random representation of a group G < S, (conform-
ing to the requirements of Algorithm 4.3.1). We can ascertain permutation group membership,
inclusion and equality can all be done in O(nlogn) expected time using O(max{n?,n(k; + k2)}
Processors.

ProoF. The proof follows from Lemmas 5.3.1-5.3.4.]

6. POLYLOG TIME ALGORITHMS FOR TWO-GROUPS

6.1. The Structure of Two-Groups

In the previous sections, we traded efficiency for generality. However, if we restrict our atten-
tion to two-groups, then we can construct polylog time learning algorithms for group theoretic
problems.

DEFINITION 6.1.1. Two-GROUPS. A finite group G is a two-group if every element is of the
order 2! for some integer . (I is not an invariant for a given group, i.e., all elements are not
necessarily of the same order.)

Very frequently, two-groups prove to be useful in a vast variety of applications. In this section,
we will show that any two-group has a certain subgroup tower of height h = |logn|. Using

Structure of Permutation Groups 129

this, we can test for membership from the generators in O(logn)® time using n®) processors.
Moreover, if G is given by random presentation, we can construct such a tower in O((logn)®)
time using n°(!). Both problems are in class NC.

6.2. Structure Forest Representation of Two-Groups

We can represent the group S, where n = 22, for some integer a, by automorphisms of a
binary tree with n leaves (one for each element in the object set). In the same spirit, we can
construct a structure forest Fg of complete binary trees for a two-group Gy;. Each structure
tree is a complete binary tree, and can be identified by its leaves. The set of leaves belonging
to each structure tree is an orbit in Gy;. Hence, Gy is a subgroup of natural direct product of
the automorphism groups of the structure trees in Fg. Any two-group G, can be decomposed
into a subgroup of the natural direct products of the iterated wreath products. It follows that
if B; and B; are the set of leaves of two immediate subtrees of a (nonleaf) structure tree T', then
{Bi1, Bz} are required to be G-blocks in the set of leaves of T

LEMMA 6.2.1. The structure forest Fg of two-group G < S, can be constructed from the
generators of the group in O(logn)? time using O(n?) processors.

PROOF. Suppose we are given the set of generators {gi,...,gx} of a two-group Gy < S,. By
executing first the G-orbit Algorithm 4.2.1, we can compute the orbits of the group Gy;. This
can be done in O(logn) parallel time using O(n logn) processors (cf. Corollary 4.2.1). Now, we
can use the method suggested in Section 5.2 to compute G-blocks. This can be done in O(logn)
using O(n?) processors (see Theorem 5.2.2). Now the structure forest can be constructed in
O((logn)?) time by examination of each G-block. The structure forest becomes the cornerstone
in the design of efficient algorithms. The proof follows.]

6.3. Root Flips are Linear for Two-Groups

In this section, we will prove that root flips are linear, to exhibit that membership testing can
be reduced to solving linear system over GF(2). Let G be a two-group generated by (g1,. .., g).
Let ai,...,a: be the roots of the structure forest Fg. We say that # € G flips root a; if @
permutes the two children of a;. For any 7 € Sy, let A(m) = (aa(r), ..., an(n))7, where a;() = 1

if flips the root r;, otherwise a;(m) = 0. Thus, A(7) is a Boolean column vector which has 1 in
the i*P position (row), if 7 flips the it* root. The next lemma follows.

LEMMA 6.3.1. For A defined above, the permutations are commutative with respect to root flips:
Vi, 72 € Sp, A(my - m) = A(ma - m1).
PROOF. Basically a;(m;-m2) = 1, if and only if exactly one of the two permutations 7, and 7 flip
the root a; of the ith structure tree. Thus, A(m - mo) = A(my) @ A(my) = A(m;) + A(my)(mod 2).
Using the commutativity property A(m;) + A(mz)(mod2) = A(my) + A(m)(mod2) = A(m) &
A(my) = A(ma - m1). |
Thus, permutations flip commutatively on the roots of the structure forest. Now, we define a
r x k Boolean matrix M. We define i*" column to be exactly the column vector A(gi). Thus,
the element m; ; (in row major form) to be equal to 1 if g; flip a;. Let z € {0 | 1}, Let
A(G) = {A(r) | ™ € G}. The next lemma follows.

LEMMA 6.3.2. For the matrix M defined above, A(G) is the linear space {Mz | z € {0,1}*}
over GF(2).

PROOF. Suppose m € G, then m = g;, ...gj, where Vi = 1,...,d, the element g;, € {g1,92,
..,gk}. This is the canonical factorization of 7. Now, for all 1 = 1,...,k, let z; be 0 if g;
occurs an even number of times in the canonical factorization of m, otherwise z; = 1. So,
z; determines whether the g; factors in 7 have any effect on the root flips. By the previous

130 S. AZHAR AND J. H. REIF

lemma, A(r) = A(g* s git) = A’(gf‘)ﬁ(gf") Now, the j*! element of A(r) is the sum
Zf z;(mod 2). It follows from the definition that A(r) = Mz.]

Let G; be the subgroup of G consisting of permutations that fix the roots aj,...,a.. So
GV ={reqG| A(r) =(0,..., 0)T}. The next lemma follows.

LEMMA 6.3.3. 7 € G if and only if 3z € {0,1}* such that Mz = A(r) and (97 ---gp*)"m e
GO,

PROOF. If 3z € {0,1}* such that Mz = A(7) and (gf* --- g¥*)~1w € G, then 7 € G because
(g7* - -+ 9%*) € G (using closure property of groups).

On the other hand, if 7 € G, then by Lemma 6.2.2, 3z € {0,1}* such that Mz = A(r), and
so A((g7" -+ g¢*)™") = A(r). Hence, A((g7" - gg*)'m) = (0,...,0)T, so (g5 -+ g5*)"!m € G.
The lemma follows. B

6.4. Two-Group Membership Testing Using Block Structure Tower

Let the block structure tower of G be a sequence of subgroups G;; = Go > Gy > -> Gy = 1.
We require that G; contains only the permutations that fix all nodes of depth less than i in the
structure forest Fz. Since the depth of Fg is at most [logn], the tower has height, h < |logn|.
This leads to an important result.

ALGORITHM 6.4.1. Two-GROUP MEMBERSHIP TEST.
INPUT: structure forest Fg and a permutation 7 to be tested for membership in Gy;.
OUTPUT: z € Gyj or z ¢ Gyy. ‘
BEGIN

Initialize Gy «— Gyr;
fori=0toh
begin
Define M and A for G;;
If there is a solution to Mz = A(n)
then solve for z and let 7 = (g7* --- gg*)~!m
else return (“z ¢ Gy;”);
end
return (“z € Gr;")

END

Let w be the smallest real number such that n x n matrix product can be done in logarithmic
time using n* processors.

THEOREM 6.4.1. Suppose we have gene;ators for the block structure tower Gy = Gy > G; >
-++ > Gy = I of the two-group G;. Then for the worst case input, we can test membership in G
in O(logn)® expected time using n processors.

PROOF. Given a permutation 7 € S, (> Gjs), we want to ascertain 7 € G? In order to do
this, we first determine if there exists a solution z € {0,1}* to the linear equation Mz = A(r),
for M and A defined previously. If a solution does not exist, then we can immediately reject 7.
Otherwise, we reduce to problem to testing (g7*---gf*)~!m € G;. We continue this process
iteratively until we determine whether or not z € G (as shown in the previous algorithm). Each
stage requires a rank test and a solution of a linear system of size at most n x n, over GF(2).
This can be accomplished by the parallel algorithm of [24] in O(logn)? expected time using n*
processors. This test is repeated at most logn times. So the total running time is O(log n)® using
n“ processors. |

Structure of Permutation Groups 131

6.5. Construction of Block-Structure Tower from Random Examples

Let L = {m1,...,Tm,} be list of mg permutation independently chosen from UNIFEX(G/;).
We fix m = mg/logn. Let Y be the linear space over GF(2) generated by A(m;),...,A(%n).
Since A(G) is a group of size < 2™. As a consequence of Theorem 2, we have the following lemma.

LEMMA 6.5.1. If m > 1+ n'log(1/e;), then Prob (Y = A(G)) > 1 — ¢, where n’ are the number
of nodes in the structure forest and e; = 1 — (1 — €)1/™

PROOF. Substituting |G| < 2" in Theorem 3.2.1, we get the desired bound. [
REMARK 6.5.1. Since the total number of nodes of the structure forest is 2n, we can bound the

probability of error to be at most e using m = 1 + 2nlog(1/(1 — (1 — €)*/?")). For € = n~%,
m = o(n) elements suffice.

Let M’ be an 7 x m matrix such that Vi = 1,...,m its i*® column is A(m;). We construct
Y = {M'z | z € {0,1}™}. Let Yi,...,Y; be the basis for Y. Now Vi = 1,...,l, we find Tt
such that M’z* = Y;, and using z* define the permutation o; = ‘:‘TT; ---11',3,,:". Since for all valid
i : A(o;) = y;, we have (by construction) Y = A((ay,...,07)).

LEMMA 6.5.2. The set R = {of'---0'} contains a complete set of coset representatives
for G/G.

PROOF. Now, let M” be the r x | Boolean matrix whose i*® column is /I(cr,;) forid =1, 0.,
Again, by construction, we have Y = {M"z | z € {0,1}!}. For the purposes of membership
testing, it is sufficient to have the list ¢1,...,0; which generate the coset representatives of
G/G;. |

LEMMA 6.5.3. For each 7 € Sy, let fo(m) = (0 ---0f*) "7, where Mz = A(r). Then
fc(UNIFEX(Gyr) = UNIFEX(G,).

PROOF. V7 € G, fo(n) € G;. Hence, the lemma follows from Lemma 3.1.1. (]
An application of the above lemma leads to the following important result.

LEMMA 6.5.4. Ly = {fo(Tm+1),---»fc(Tm,)} is a list of independently chosen examples
from G;.

PROOF. Since L = {m1,...,Tm,} is a list of independently chosen elements from UNIFEX(G),
and we have utilized only the first mgo/ log(n) elements of L to construct a random representation
of G, this lemma follows from Lemma 3.1.2 and Lemma 6.5.3.]

Lemma 6.5.4 implies that we can repeat the above procedure for construction of Gy from the
random elements of G;. We redefine mo = mo(1—1/logn), and then proceed in a similar fashion
using first m = my/ log n elements of the list. After logn stages of the procedure yields the entire
block structure tower.

The linear algebraic computations (such as computing basis vectors), required in each stage of
the above construction of G;, can be done using the method of [24]. This would take O(logn)?
using n* processors. Since there are at most logn stages, the theorem follows.

THEOREM 6.5.1. Given a random presentation of a two-group Gy, we can construct generators
foe each subgroup of the block structure tower in O((logn)®) time using n processors.

PROOF. Lemma 6.5.4 implies that we can repeat the above procedure for construction of G from
the random elements of G;. We redefine my = mo(1 — 1/logn), and then proceed in a similar
fashion using first m = my/log n elements of the list. Exactly logn stages of the procedure yield
the entire block structure tower. The linear algebraic computations (such as computing basis
vectors), required in each stage of the above construction of G;, can be done using the algorithm
of [24]. This would take O(logn)? using n* processors. Since there are at most logn stages, the
theorem follows. |

132 S. AZHAR AND J. H. REIF

COROLLARY 6.5.1. Given a random presentation of (worst case) two-group Gr; < Sy, and some
z € Sp, we can test membership in Gy in expected time O(logn)? using n“ processors.

PROOF. The proof follows from Theorem 6.4.1 and Theorem 6.5.1.]

COROLLARY 6.5.2. Given random presentations of (worst case) two-group Gr1,Gyp £ Sy, we
can ascertain Gy < GY;, and Gy = G}; in O(logn)® expected time using n* processors.

ProoF. The proof follows from Theorem 6.4.1 and Theorem 6.5.1. |

REFERENCES

1. J.H. Reif, Probabilistic algorithms in group theory, In Foundations of Computation Theory (FCT85), Cot-
tbus, Democratic Republic of Germany, September 1985, Lecture Notes in Computer Science, Vol. 199,
pp. 341-350, (1985).

2. H. Wielandt, Finite Permutation Groups, Academic Press, New York, (1964).

3. C.M. Hoffman, Group theoretic algorithms and graph isomorphism, In Lecture Notes in Computer Science,
Springer-Verlag, New York, (1982).

4. M.D. Atkinson, An algorithm for finding the blocks of a permutation group, Math. of Comp. 29, 911-913,
(1975).

5. M. Furst, J. Hopcroft and E. Luks, Polynomial time algorithms for permutation groups, In Proc. 215t [EEE
Symp. on Foundations of Computer Science, pp. 36-41, (1981).

6. M. Jerrum, A compact representation for permutation groups, In Proc. 237¢ Symp. on Foundations of
Computer Science, pp. 126-133, Chicago, IL, (November 1982).

7. M. Jerrum, A compact representation for permutation groups, J. Algorithms 7, 60-78, (1986); 126-133,
(November 1982).

8. C.A. Brown, L. Finkelstein and P.W. Purdom, An efficient implementation of Jerrum’s algorithm, Tech. Rep.
NU-CCS-87-19, Northeastern University, Boston, MA, (1987).

9. L. Babai, M. Luks and A. Seress, Fast management of permutation groups, In Proc. 29t% [EEE Symp. on
Foundations of Computer Science, pp. 272-282, (1988).

10. G.D. Cooperman, L.A. Finkelstein and P.W. Purdom, Fast group membership using strong generating set
for permutation groups, In Computer and Mathematics, (Edited by E. Kaltofen and S.M. Watt), pp. 27-36,
Springer-Verlag, Berlin, New York, (1989).

11. P. McKenzie, Parallel Complezity of Permutation Groups, TR713, Dept. of Computer Science, University of
Toronto, (1984).

12. P. McKenzie and S. Cook, Parallel complexity of Abelian permutation group membership problem, In Proc.
24th Symp. on Foundations of Computer Science, pp. 154-161, (1983).

13. L. Babai, Monte Carlo algorithms in graph isomorphism testing, Technical Report, D.M.S. No. 79-10, Dept.
of Math, Univ. of Montreal, Quebec, (1979).)

14. E.M. Luks, Isomorphism of graphs with bounded valence can be tested in polynomial time, In Proc. 21°
Symp. on Foundations of Computer Science, pp. 42-49, (1981).

15. Z. Galil, C.M. Hoffman, E.M. Luks, C.P. Schnorr and A. Weber, An O(n? logn) deterministic and an O(n?)
probabilistic isomorphism test for trivalent graphs, In 29"¢ Annual IEEE Symp. on Foundations of Computer
Science, pp. 118-125, Chicago, IL, (November 1982).

16. J. J&J4, An Introduction to Parallel Algorithms, Addison-Wesley, (1992).

17. J.H. Reif, Editor, Synthesis of Parallel Algorithms, Morgan Kaufmann, (1993).

18. L.G. Valiant, A theory of learnable, Comm. ACM 27 (11), 1134-1142, (1984).

19. Y. Shiloach and U. Vishkin, An O(logn) parallel connectivity algorithms, J. Algorithms 8, 57-67, (1982).

20. H. Gazit, An optimal randomized parallel algorithm for finding connected components in a graph, SIAM
Journal on Computing 20 (6), 1046-1067, (December 1991).

21. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations,
Annals of Math. Stat. 23, (1952).

22. D. Angluin and L.G. Valiant, Fast probabilistic algorithms for Hamiltonian paths and matchings, J. Comp.
Syst. Sci. 18, 155-193, (1979).

23. J.E. Hopcroft and R.E. Tarjan, Efficient algorithms for graph manipulation, Comm. ACM 16 (6), 372-378,
(1973).

24. A. Borodin, von zur Gothen and J. Hopcroft, Fast parallel matrix and GCD computations, Information and
Control 52 (3), 241-256, (1982). i

