Lower bounds on the computational efficiency of optical

computing systems

Richard Barakat and John Reif

A general model for determining the computational efficiency of optical computing systems, termed the
VLSIO model, is described. Itisa 3-D generalization of the wire model of a 2-D VLSI with optical beams (via
Gabor’s theorem) replacing the wires as communication channels. Lower bounds (in terms of simultaneous
volume and time) on the computational resources of the VLSIO are obtained for computing various problems

such as matrix multiplication.

. Introduction

The advent of very large scale integrated (VLSI)
circuitry has led to considerable decrease in the physi-
cal size of computers with a corresponding increase in
speed of execution of operations. The development of
algorithms which utilize the inherent capabilities of
:}.11% chips has led to questions of the ultimate powerof

1.

The computational constraints of VLSI were first
investigated by Thompson.! For an introduction to
this work see the basic text of Ullman2 which contains
references to subsequént work. It has been shown
that any VLSI circuit with area A and time T requires
at least AT? = Q(n) to solve various computational
problems such as FF'T, convolution, and m X m matrix
multiplication where n = m2. The symbol Qis defined
in Ref. 2, f(n) = 2[g(n)] means that a positive constant
¢ exists such that for an infinite number of values of n
we have f(n) = cg(n).

VLSI suffers from the limitation that the technology
on which it relies is inherently two-dimensional. Sny-
der’s recent review® contains a very useful discussion of
the constraints imposed on VLSI as regards planarity.
In particular, conventional VLSI chips are constructed
by superimposing a small number of layers on top of a
substrate. This substrate has a thickness which is an
order of magnitude greater than the size of the transis-

The authors are with Harvard University, Division of Applied
Sciences, Cambridge, Massachusetts 02138.

Preprint of paper appearing in Journal of Applied Optics, Vol. 26,
1015-1018.

No. 6, March 15, 1987, pp.

tors and wire width. Input and outpuit from a conven-
tional VLSI chip must be made by a limited number of
pads located on the sides of the chip. VLSI chip
technology is changing almost daily; however, some of
the more basic aspects are discussed in Barbe* and
Einspruch.5 Although an ensemble of 2-D chips can
be placed on top of each other with holes drilled down
through them for interchip communication, the total
number of layers is seriously limited by the substrate
thickness of each chip: consequently the resulting
device cannot be properly termed 3-D VLSI. For this
reason, it appears that truly 3-D VLSI will most likely
not be possible to fabricate. Nevertheless some inter-
esting theoretical investigations of 3-D VLSI have
been carried out.57

The purpose of this paper is to investigate the com-
putational performance of 3-D devices which make
hybrid use of electronic and optical components to
perform operations. In addition to the 3-D character
of the problem, we have to deal with the replacement of
electrical currents by optical beams. Our goal is to
facilitate general statements on such electrooptical
computations ith specific reference to lower bounds on
their complexity, Since such devices may contain a
large number of components, we term them VLSIO,
with the O denoting optics. We note that a very useful
overview of optical computing (more properly elec-
trooptical computing) may be found in Caulfield et al.8

Il. Preliminaries

To carry out such an analysis we outline the develop-
ment of an abstract model of VLSIO which is essential-
ly technology independent but incorporates the physi-
cal restrictions of light beam propagation as expound-
ed by Gabor,? especially with respect to the very im-
portant fact that the amount of information carried by
an optical beam is bounded. This physical constraint

1015

allows us to adapt previous VLSI lower-bound argu-
ments to the VLSIO situation and allows for compari-
sons of electrooptical computing devices in terms of
their volume V and the time 7" taken by VLSIO on a
given input (= number of time units that elapse from
the first input signal until the last output signal). We
avoid making assumptions about the precise physics of
the devices utilized as this would only limit the later
. application of these ideas as the physical models are
improved and modified. We assume that any 2-D
convolution of an n X n array of points can be achieved
by a VLSIO device in unit time step. This assumption
is reasonable because optical devices already exist
which perform thusly and our lower bounds will even
hold in this case.

We begin by discussing the well-known abstract 2-D
model of a VLSI chip as an L; X Ly X L3 grid graph with
height L3 («L; or Lo) held constant. The distance
between grid points is w, the feature width. The chip
processors are located at various distance nodes of the
grid graph with each processor storing a state consist-
ing of b bits. Furthermore the processors execute
synchronously on a step consisting of a time unit dura-
tion 7 seconds. The remaining nodes are used for wire
routing or for input and output pods. Each wire can
run along a path in the grid graph from an input pod, or
a processor, to various output pods, or processors.
Wires are not allowed to intersect. On each time step,
a value consisting of b bits of information is transmit-
ted across the wire grid from either an inpout pod or a
processor, The state of each processor is then updated
on each step by a fixed function of the values transmit-
ted by the wires leading into the processor, and by the
state of the processor, in the previous step. This unit
step transmission time across wires is justified by the
fact that wire transmission can be made generally fast-
er than transistor switching times. This remarkably
simple model is sufficient to determine the computa-
tional efficiency of VLSI devices.

Following the 2-D version, the fundamental building
block of our VLSIO device is the optical box B. It is
parallelepiped having lengths L;, Ly, and L3 with input
and ‘output faces Fi, and Foy. These faces are as-
sumed to take as input and as output 2-D integer
arrays I(x,y) and O(x,y), respectively. For conve-
nience, we consider the input sources and output de-
tectors to be very small compared to the size of the
optical box (in order to minimize optical diffraction
effects), furthermore they are uniformly spaced a dis-
tance w apart (where again w is the feature width, a
fixed constant). The input sources are taken to be
LEDs and the detectors are unspecified except to state
that they are sensitive only to the intensity of the LED
radiation, assumed given within only b bits accuracy,
where b is a fixed constant. Thus we may assume for
simplicity that all variables and functions are Boolean
as utilized in our lower-bound construction. The an-
cillary optical equipment (lenses, prisms, gratings,
etc.) which spreads and then collects the light can be
neglected in this version of the abstract model. The
output array is computed on each time step with a

1016

duration 7 as a fixed function Ap of the input array; Ap
will, of course, depend on the detailed optical charac-
teristics of B. (r is assumed to be a fixed constant.)
Let a VLSIO device consist of an ensemble of optical
boxes with nonintersecting interiors. However, we
allow communication between optical boxes via their
2-D surfaces.

VLSIO, in addition to being three-dimensional, also
differs from VLSI in another way; namely, optical
beams rather than wires provide storage and cross
flow. Since the modus operandi is incoherent radia-
tion, these beams can intersect without interacting.
The basic questionthat now arisesis: “Towhat extent
do optical beams behave as wires?” A wire can only
transport information at a finite rate depending on
wire cross section, skin effects, etc. We would also
expect an optical beam to perform similarly notwith-
standing the greater information rate. This problem -
has already been addressed by Gabor.? The conclu-
sion he draws is that a light beam always has a finite
upper limit with respect to information rates, the up-
per limit depending on wavelength of light, smallest
effective beam area, and solid angle of divergence.
Although we do not require the explicit formulas (for
our purposes it suffices that we can interpret an optical
beam as a wire), technical details are outlined in the
Appendix.

Given this equivalence, we turn to the important
problem of determining lower bounds (in terms of
simultaneous volume and time) on the computational
resources required for VLSIO to solve various prob-
lems. In order not to unduly lengthen the text, it is
assumed that the reader is familiar with Sec. 1.4, 2.1,
and 2.2 of Ullman.2

. Proof of Lower-Bound Theorem

Consider a Boolean function f with a set X of n input
variables and a set Y of m output variables. Let X’ be
a subset of X; also let P = (X,Xg,Y1,Yr) where X, Xz
and Y7, YR are partitions of X and Y, respectively. We
term P balanced if between one-third and two-thirds
of X’ lies in X and note it by P,. If @ and 8 are two
input assignments, we term them a fooling pair of
assignments to X if:

(1) output Yy is distinct for input assignments a(X)
and a(X7)B(Xr), : '

(2) output Ygis distinet for input assignments 5(X)
and a(X7)8(XR). ‘

In addition, let the fooling set for P be a set of
assignments A of X such that for all distinct o, € A, at
least one of (a,B), (8,a) is a fooling pair.

Finally, we require that the locations and times of
the input and output are given only once.

Crucial to the analysis is the concept of information
content (essentially the amount of information that
must cross a boundary in order to solve the problem).
Formally, the information content of the Boolean
function fis

I = i ! , 1
= max n}%n max og,(14]) 1)

where A denotes the fooling set corresponding to Ps.
The following functions (of importance in electroopti-
cal computing) are known to have information content
I; = Q(n) (see Ullman,? p. 75):

(a) n point.discrete Fourier transforms and convo-
lution,

(b) Multiplication and division of two n bit binary
numbers.

(c) Any transitive problem of size n. A problem is
defined to be transitive if its n inputs are partitioned
into data .inputs xj,...,t,, and control inputs
Zm+1s - - » %5 80 that for any permutation # of (1, . .. ,m)
there is a corresponding setting of the control inputs
Xm+1 .- % and that with this setting the output
(Y1, ...,Yn) = [Xzq) - - « »Xa(m) is this permutation of

the inputs [note that problems (a) and (b) can, for

example, be shown to be transitive].

(d) Multiplication and inversion of two binary m X
m matrices where n = m2

The following important result on lower bounds is
due to Thompson! and Ullman2 “Any two-dimen-
sional VLSI chip computing a Boolean function f re-
ql.l‘il:(es;.2 simultaneous area A and time T satisfying AT 2
= QA).”

Wenow prove: Any 3-D VLSIO device computing a
Boolean function f requires simultaneous volume V
and time T satisfying VT 2 = Q(I7/?).

The proof is an adaptation of the 2-D technique.
Let the device be a parallelepiped having dimensions
Ly £ Ly < Lywithvolume V= L;L;L3. Choose X’tobe
the subset of X such that I = I{(X’). Foreachi=1,2,3
we can find a cut C; of area

ASOVIL, i=1; (@)

which disconnects the device into two components
each of which contains at most two-thirds, but no less
than one-third, of the inputs of X’. By definition at
least I bits must be transported across each cut; this
requires time

T2 I/A, ®)
Consequently
V2T® 2 A,4,4,T¢ 2 132, “
or
VT = 9(13),)

" which is the sought-for result.. The main point to
emphasize is that this result depends on the fact that
we can treat light beams as if they were wires.

-An immediate consequence of this theorem is that
the VT3/2 =Q(n3/2) lower bounds hold for optical com-
puting on the following problems:

(a) n point convolution or n point discrete Fourier
transforms,

(b) multiplication or division of two n bit binary
numbers,

(c) any n input transitive problem,

(d) multiplication or inversion of two binarym X m
matrices where n = m2.

These results follow from the statements quoted

after Eq. (1). It is important to remember that these
bounds hold in spite of the fact that we allow the entire

‘'volume of each optical box in the VLSIO device to be

operative.

Appendix

It is a basic principle of information theory as ex-
pounded by Shannon that a communication channel
can transmit only a finite amount of data in a fixed
(finite) time interval; in Gabor’s language the channel
constrains the signal to have only a finite number of
degrees of freedom even though the signal initially had
an infinite number of degrees of freedom.

Following Gabor® let us consider two planes a dis-
tance z apart with the first plane containing the light
source. This source sends out a beam of radiation u of
wavelength A governed by the scalar wave equation

(V2 + B9y = 0. (A1)

We could use the full vector approach but this will only
affect the final answer by some proportionality factor;
the qualitative conclusions are the same. This beam
will be intercepted by the second plane.

The field u of the beam can be written as

ulyz) = tbn(y2), (A2)

n=1

. where the ¢,(x,y,x) are a complete set of orthogonal

functions in the cross section of the beam at a distance
z from the source plane. In the practical case where
the source is a circular disk, the appropriate orthogo-
nal functions are the circular prolate functions of Sle-
pian.}? Although the above series contains an infinite
number of terms in principle, Gabor makes plausible
(but does nof actually prove) that the number Ng
(hereby termed the Gabor number) of independent
traveling wave solutions of Eq. (A1) are given by (here
o,8 are the angles of the rays with the coordinates x,y in
this plane)

N, =

£~ 32 § J dxdyd(cos a)d(cos)

=—AQ, (A3)

where A is the cross-sectional area of the beam in this
second receiving plane and Q is the solid angle sub-
tended by the maximum angular spread of the beam.
Crudely speaking N is the number of degrees of free-
dom of the optical beam (= structural information).
Thus the finite series in Eq. (A2) can be replaced by

Ng

wxy2) = tabp(%3,2), (A9)

n=1
reflecting the fact that u(x,y,2) has only a finite num-
ber of degrees of freedom and thus is only capable of
transmitting a finite amount of data in the sense that
only the low frequency components of u(x,y,2) are
viable, in particular, only those with wavelength fea-
ture width w. See Ref. 11 for valuable supplementary
information on Gabor’s theorem.

1017

We should point out that the number of degrees of
freedom as counted by Gabor is very crude. See New-
sam and Barakat!? for a different approach to the
concept of degree of freedom via the essential dimen-
sion of a compact operator which includes a more
refined counting.

Richard Barakat was supported in part by AFOSR
under contract F49620-85-C-001 with RGB Asso-
ciates, Inc. In addition, he was supported (through
RGB Associates, Inc.) by the Innovative Science &
Technology Office of the Strategic Defense Initiative
Organization, administered through the Office of Na-
val Research under contract N00014-85-K-0479.

References
1. C.D. Thompson, “A Complexity Theory for VLSI,” Ph.D. The-
sis, Carnegie-Mellon U., Pittsburgh, PA, 1981).
2. 4. D. Ullman, Computational Aspects of VLSI (Computer Sci-
ence Press, Rockville, MD, 1984). Chap. 8.

3. L. Snyder, “Supercomputers and VLSI: The Effect of Large
Scale Integration in Computer Architecture,” in Advances in
Computers, Vol. 23, M., C, Yovits, Ed. (Academic, Orlando, FL,
1984). pp. 1-33.

4. D.F, Barbe, Ed., Very Large Scale Integration (VLSI): Fun-
dementals and Applications (Springer-Verlag, New York,
1980).

5. N. G. Einspruch, Ed., “VLSI Electronics,” in Microstructure
Science, Vols. 1-7 (Academic, Orlando, FL, 1980-1985).

6. A. L. Rosenberg, “Three-Dimensional Integrated Circuits,” in
VLSI Systems and Computation, H. Kung, R. Sproul, and G.
Steel, Eds. (Computer Science Press, Rockville, MD, 1981), pp.
69-79.

7. F. Leighton and A. Rosenberg, “Three-Dimensional Circuit
Layouts,” unpublished memorandum (MIT, Cambridge, 1982).

8. J.Caulfield, J. Neff, and W. Rhodes, “Optical Computing: The
Coming Revolution in Optical Signal Processing,” Laser Focus/
Electro-Optics 38, 100 (1983).

9. D. Gabor, “Light and Information,” Prog, Opt. 1, 109 (1961).

10. D. Slepian, “Prolate Spheroidal Wave Functions, Fourier Anal-
ysis and Uncertainty—IV,” Bell Syst. Tech. J. 44, 4009 (1964).

11. A. Walther, “Gabor’s Theorem and Energy Transfer Through
Lenses,” J. Opt. Soc. Am. 57, 639 (1967).

12, G. Newsam and R. Barakat, “Essential Dimension as a Well-
Defined Number of Degrees of Freedom of Finite-Convolution
Operators Appearing in Optics,” J. Opt. Soc. Am. A 2, 2040
(1985).

1018

Polynomial convdIUtidn algorithm for matrix multiplication
with application for optical computing

Richard Barakat and John Reif

First, we describe an algorithm (the polynomial convolution algorithm) for the multiplication of two rectangu-
larmatrices Aand B. The algorithm codes the matrix elements of A and B into two polynomials in a common
indeterminate; the degree of the polynomial characterizing A depends on the size of both A and B, while the
degree of the polynomial characterizing B only involves the size of B. The matrix elements of the product C =
AB are obtainable from the convolution of the two polynomials. Althoughi the resultant analysis is quite
complex, its implementation in optical computing can be carried out in straightforward fashion (see Sec. ITI).
The algorithm is at least as fast as the outer product and Kronecker product algorithms advocated by Athale-
Collins and Barakat, respectively, in the assumed conditions of equally accessible matrix elements. Second,
we consider the situation where the matrices are so large that they cannot be stored éim’ultapeously on optical
masks. Itisshown that the speed advantages of the outer product and Kronecker product algorithins are now
lost in this situation, whereas the polynomial convolution algorithm, because of its modular structure, is
robust with respect to the storage problem. Finally, we consider some partitioning strategies in the light of

the storage problem.

I. Introduction

It is generally agreed that in the realm of computa-
tional linear algebra, particularly the multiplication of
two matrices, optical computing has an inherent speed
of execution advantage over digital electronics (but see
Sec.IV). Investigators in optical computing have gen-
erally taken matrix multiplication algorithms directly
from the mathematical literature and modified them
for use in optical computing. Some representative
papers are Refs. 1-4. Alternately optical architec-
turés have been developed to carry out such computa-
tions, e.g., Refs. 5-11.

One purpose of the present paper is to describe our
polynomial convolution algorithm which is an ab initio
development of matrix multiplication for use in optical
computing. A second purpose is to consider the situa-
tion where the matrices are so large that they cannot be
stored simultaneously on optical masks (hereafter
termed the storage problem). As we show in Sec. IV,
the speed advantage of the methods advocated in Refs.

The authors are with Harvard University, Division of Applied
Sciences, Harvard University, Cambridge, Massachusetts 02138.

1-4 are compromised because the matrix elements are
not equally accessible. Furthermore, we make plausi-
ble that the polynominal convolution algorithm is ro-
bust with respect to this debilitating situation in that it
is still possible to obtdin a reasonable concurrency over
the more classical algorithms because of the simplified
bookkeeping and modular structure of the convolution
algorithm.

IIl. Polynomial Convolution Algorithm

In view of the initial complexity of the algorithm we
proceed in three stages. In the first stage we give the
explicit expressions and verify these formulas in the
second stage. Finally, we outline a construction which
leads to the various formulas.) o

We begin by considering the matrix product C =
AB, where A is of the size n; X ns, B is of size ny X ng,
and C is of size n; X ng, with corresponding matrix
elements a;j, bjx, and c;. Let x be an indeterminate
and associate with A and B the polynomials P(x) and
Q(x):

(ny—)ngngtng—1)
P@= Y b)
s=0
ngna—1
Q) = > g @
=0

Note that the degree of P(x) is (n; — 1)nang + ng ~1;
which involves not only the size of A through n; and n,

2707

Preprint of paper appearing in Journal of Applied Optics, Vol. 26, No. 14,

July 15, 1987, pp. 2707-2711.

. . 0...0 . ..0
a121,2° 1,m,| ° 012y,1 22,2 2,n, *n),1 %n,,2 %0, ,m,
L) > mz‘%
.
w,my mym, >
b b
(A)
.. R b . b
®a,,1 Pm,-1,1 1,1| Pny,2 bmz—l,Z 1,2 ay,my Pmy-1,m, L,m,
m, S m, >
N
iy ral

(®)

Fig. 1. Layout of the p vector (A) and q vector (B).

but also the size of B through ns. The degree of Q(x) is
ngn3 — 1 and only involves the size of B, namely, n; and
n3. 'The p and g coefficients are related to the matrix
elements of A and B by

Ps=ay fs=(E—Dngmny+j—1 (3a)
=0, f(E-1)ngny+ny,<s=<inyn, (3b)
and
g =by, ift=kny—j (4a)
= 0, ift=s nyns, (4b)

with1<i{<nj,,1SjSnyandl<k=<n,
We claim that the elements of the matrix product C
.are given by selected coefficients of the polynomial

R(x) = P(x)Q(x)

Ryngg—l
= Z Fpt™, 6)]
m=(
where
m
Fm= Y Plim-s ®)

=0
is the discrete convolution of the p and g coefficients.
These selected r,, are given by

M

‘A formal proof (which is really a verification of the
formulas) is now given. We begin by rewriting Eq (6)
in the form

rp=cy, iftm=({-1)nyng+kn,—1.

'm= 2 Pelm—s = z ;05 8
s af,d
where the summation in the second series is over:
a: s=({—-nyny+j—1; (9a)
B (i —Dnyny <s < (i —1)nyng + ny; (9b)
v: t=m-—s=kny,—j; (9c)
0t <ngn,. (9d)

2708

The « term is simply Eq. (3a), while the 8 term is the
negation of Eq. (3b). The v term follows from Eq.
(4a), while the & term is the negation of Eq. (4b). On
substitution of the a term into the 8 inequality we
immediately see that this can only be true:

1<j<n, (10)

In like fashion, substitution of the vy term into the &
inequality leads to the requirement that

m=(—Dnyng+kn,—1,

which is Eq. (7). Thus the formulas are verified.

A construction which leads to the various formulas
for ps and g, in terms of a;; and b, respectively, uses
row vectors. Consider a row vector p whose elements
we denote by p; [coefficients of the polynomial P(x)]
composed of the matrix elements a;; of A and strings of
zeros as depicted in Fig. 1(A). The range of s is

(1)

0 <s=<nnyng—ngng+n,—1. (12)
Consequently

ps=0, ifs=(n;—Dnonz+ny (13a)

=0, ifs=<inyn, (13b)

Furthermore the p; is related to the a;; as given by Eq.
(3a), as the reader can verify by construction.

In like fashion, we construct another row vector q
with elements g, according to Fig. 1(B). Unlike p, q
has no strings of zero elements. The range of ¢ is

0<t=<nmg—1, (14)
so that
¢, =0, ift=nyn, (15)
Within the range of ¢, the g, is related to the bj;, by
q,= bjk’ ift=(k= 1)n2+n2—j,
which reduces to Eq. (4a).

As an illustrative example of the algorithm, consider

the case where Ais2X 2, Bis2X 8sothat Cis2X 3

(16)

(i.e., ny = 2, ny = 2, ng = 8). The upper limits on the
polynomials P, @, and R are 7, 5, and 11, respectively.
The py, q;, and ry, coefficients evaluated according to
Egs. (3), (4), and (7) are listed in Table. On carrying
out the convolution operation, Eq. (6), in conjunction
with this table we have

Iy = 611 = pody + P1qg = Gyybyy + agpbyy, (17a)
I3 = €13 = Pod3 + P1Gy = ay1by5 + 615bp, (17b)
Ts = €13 = Pod5 + P14y = 011013 + a35by5 (17¢)
T7 = ¢y = Pedy + Pty = apbyy + agobyy, (17d)
Tg = €32 = Ped3 + Prdy = Cg1byp + agobyy; (17e)
T11 = Co3 = PeQ5 + D1y = agibyg + aggbyy. (171)

These are the matrix elements as obtained by more
standard procedures.
This completes our description of the algorithm.

ll. Implementation and Parallelism of Algorithm

In spite of the complicated looking nature of the
algorithm, its implementation in optical computing
can be carried out in straightforward fashion.

Examination of Fig. 1(A) shows that the matrix ele-
ments a;; of A coded into the vector p consists of the
rows of A in which strings of zeros are interspaced.
Thus all we need to do to handle A in this algorithm is
to store it on an optical mask according to Fig. 1(A).
The vector g containing the matrix elements bj, is
simply the columns of B in reverse order [see Fig.
1(B)]. Obviously we need only code B as per Fig. 1(B)
on an optical mask for this aspect of the implementa-
tion. Given that both these operations have been
carried out, we proceed according to the various formu-
las quoted in the previous section.

The parallelism of the algorithm (assuming that all
the matrix elements of A and B can be stored in prima-
ry storage) manifests itself through the corresponding
p and q vectors. This is best seen by examination of
Table I; the first two components of p (i.e., a;; and a;2)
can then be combined simultaneously with (bs;, b17),
(b2o, by2), and (bgs, by3) of the vector q. While these
- operations are being carried out, the last two (nonzero)
elements of p (i.e., @21 and ago) are to be combined with
(21, b11), (bag, b1a), (b3, b1g). Thus we are able to carry
out the manipulations leading to the six matrix ele-
ments of C simultaneously. The general case of two
rectangular matrices does not require detailed com-
ment. Consequently, the polynomial convolution al-
gorithm is at least as fast as the methods advocated in
Refs. 2 and 4 under the assumed conditions of equally
accessible matrix elements.

IV. Influence of Storage Problem on Algorithm
Parallelism in Matrix Multiplication ‘

Although the issue of matrix multiplication, in the
context of optical computing, has been cast as one of
speed of execution of manipulations, this is only one
aspect of the problem as we will now see. Realistic
signal-processing requirements demand very large ma-

Tablel. Listing of the p, ¢, and r Coefficlents for the Case Where Als2X
v 2,Bis2X3,andCis2 X3,

Ds qe 'm
0 an ba
1 ap bn en
2 0 boe
3 0 b1 c12
4 0 bas
5 0 b3 c13
6 as
7 G2z ca1
8 0
9 0 Ca2
10 0
11 0 Co3
12 0

trices to achieve the resolutions necessary to fulfill the
desired goals. Because such large matrices are needed
we must study the effect of storage (that is, the extent
to which all matrix elements in the two matrices under
multiplication are not equally accessible) on the inher-
ent parallelism, and hence speed, of the various algo-
rithms proposed.

When the matrices are small (for convenience we let
them both be square and of size n X n), the entire
arrays containing the matrix elements of A and B can
reside simultaneously in primary storage in the form of
matrix masks as described in Goodman.!2 Then it is
possible to carry out all the manipulations such as
described in the algorithms promulgated in Refs. 1-4.
Under the small n regime it is essentially true that all
matrix elements are equally accessible. Infact, all the
papers that we have succeeded in locating on matrix
multiplication (via optical computing) tacitly make
the assumption that all matrix elements are equally
accessible, independent of n.

Let us consider, for example, the inner, intermedi-
ate, and outer product methods for the multiplication
of matrices. Reference is made to the Appendix for
development of an efficient formalism that yields
these representations. Examination of these repre-
sentations reveals that it is possible to perform the
matrix—matrix productat two levels of parallelism. At
the first level, the intermediate product methods
speed up the execution over the inner product method
by afactor of n. At thesecond level, the outer product
method achieves a factor of n? over the inner product
method. In fact, there are n parallel multiplications
and (n — 1) paralle] additions to be performed rather
than the n3 sequential multiplications and (n® — n?)
sequential additions required at the original element
level algorithm. Unfortunately when n is large, the
entire arrays cannot reside in primary storage but only
portions thereof. This means that the speed advan-
tage of the outer product method is now lost when
computing large matrices, because the matrix ele-
ments are not equally accessible! A second tacit as-
sumption is that all arithmetical operations of the
same type are equivalent in both cost and accuracy.
This too is violated when n is large.

2709

Thus we cannot simply dismiss the use of the inter-
mediate product representations when n is large. To
improve the efficiency of the computation in this situa-
tion, it is necessary to maximize the use that is made of
the matrix element data on a given matrix mask (con-
taining parts of A or B) while it is in primary storage.
It is probably advantageous to store matrix elements
by columns, This is precisely what the column inter-
mediate representation does: Ce; is formed as a linear
combination of Ae, with a combination coefficient
drawn from Be;. Obviously one can choose to stow
rows so that the row intermediate representations are
‘appropriate. In this scenario, we can only achieve a
factor of n in the parallelism to accommodate the
storage problem. There is also the bookkeeping ques-
tion as to efficient storage and subsequent manipula-
tion of the matrix elements in accordance with the
particular algorithm requirements. See Hockney and
Jesshope!? for an overview of such considerations in
digital electronic computers.

One possible solution for increasing parallelism
when n is large is via partitioning. The idea is certain-
ly not new as witness the recent paper by Caulfied et
al.3 who choose to use 2 X 2 matrices for the partition-
ing. Another viable approach using the formalism of
the Appendix is the following. Suppose that A, B,and
C are partitioned into submatrices. This means that
the partitioning of the rows of A and those of C is the
same, that the partitioning of the columns of B and
those of C is the same, and that the partitioning of the
columns of A and of the rows B is the same. The
matrix product can then be formed blockwise. The
foregoing remains valid if transcribed by replacing e;
by E; ete. E;is the ith block column of the appropri-
ately partitioned identity matrix, the appropriate par-
titioning being that which is symmetric with respect to
rows and columns for the matrix multiplication in
question. Consequently, we recognize AE; as the jth
block column of A, E} A as the ith block row of A, and
E; AE; as the (i,/)th block element of A; thus we have

I= Z E.B} - (18)
k

It may be possible to store large matrices in partitioned
form with the natural units to be stored and manipu-
lated being the submatrices constituting the blocks.
What of the other approaches as influenced by the
storage problem? The reduction to an equivalent ma-
trix-vector problem advocated by Barakat* suffers the
same fate as the outer product representation when n
is large in that all the matrix elements are not equally
accessible. Reference 4, see Eq. (1), shows that the
Roth column decomposition of AB contains replicas of
the matrix A along the principal diagonal, so that in
this version all the matrix elements cannot be held in
primary storage. Thus for large n, the parallelism
inherent in the general reduction to the Roth column
decomposition for matrix-vector multiplications is in-
hibited. However, there is also a Roth row decomposi-
tion of AB [see Eq. (4) of Ref. 4], in which the matrix
elements of A are now spread along diagonals. It was

2710

hoped, in view of the previous work by Madsen et al.14
on matrix multiplication by diagonals, that the storage
problem could be circumvented. A detailed analysis
which we need not reproduce indicates that the row
decomposition is no more efficient than the column
decomposition regarding the primary storage of matrix
elements.

Finally we come to the algorithm of the present
paper. The implementation of the algorithm as dis-
cussed in Sec. ITI bears directly on the storage problem.
When the matrices are large enough to violate the
equal accessibility condition, we can still maintain a
reduced degree of parallelism because the convolution
algorithm does not require the rather complicated
bookkeeping that the column middle product decom-
position necessitates before calculations can be carried
out. Even though we cannot simultaneously store all
the matrix elements of A and B, the convolution algo-
rithm only requires the rows of A to be stored on
separate optical masks so they can interact with the
successive columns (in reverse order) of B and sequen-
tially stand on optical masks to produce the various
rows of C. Consequently when both A and B are large,
we can still maintain a degree of parallelism because we
do not require all the matrix elements of A and B to be
in primary storage simultaneously. All we need in
primary storage are the respective row and column of A
and B. Thus the polynomial convolution algorithm
seems to be more immune to the storage problem than
do the algorithms in Refs. 2 and 4. This is because
both the outer product and Kronecker product decom-
position algorithms are not modular in structure; if the
equal accessibility condition is violated there is no way
to patch them up to work in the situation where the
matrices are very large. It may be possible to employ
partitioning as deseribed in Ref. 8 or in the present
paper; however, the bookkeeping is probably going to
be a significant obstacle.

Richard Barakat was supported in part by AFOSR
under contract F49620-85-C-001 with RGB Asso-
ciates, Inc. In addition, he was supported (through
RGB Associates, Inc.) by the Innovative Science and
Technology Office for the Strategic Defense Initiative
Organization and was administered through the Office
of Naval Research under contracts N00014-85-K-0479
and N00014-86-K-0591.

Appendix

The purpose of this Appendix is to outline an effi-
cient formalism (due to our colleague D. G. M. Ander-
son, unpublished) describing the inner product, inter-
mediate product, and outer product representations of
matrix multiplication. We further employ this for-
malism to discuss matrix partitioning, see Eq. (18).

To begin we avoid unnecessary complications by
assuming that the two matrices, call them A and B, are
square. Itisalsoconvenient to use the vector ek which
is the kth column of the unit matrix, i.e.,

I=) epef: (A1)

and the plus sign denotes the transpose (thus etisa
row vector). Given the square matrix A, we have

jthcolum of A = Aej,

ithrowof A = e} A,

(i,/)th element of A = e} Ae;.

The usual element representation of the matrix
product C = AB reads in the above notation

efCe; = Z (efAey)(ef Be)). (A2)

The element representﬁtion is the old fashioned way
that matrices were multiplied before high level pro-
gramming languages were invented.

To obtain the inner product representation, we be-
gin with the element representation, Eq. (A2), and
delete the parenthesis on the right-hand; thus

¢} Ce; = z ef Aeyei Be;
%

= (efA) [Z ehe;,f] (Be))
F

= (e} A)(Be)). (A3)

The reason it is termed the inner product representa-
tion is that the matrices A and B are sandwiched
between the unit vectors.

At the other extreme, we have the outer product
representation which we obtain in the following fash-
ion from the element representation, Eq. (A2):

e} Ce; = z efAe,Be; = ef [Z (Ae,)(efB)] e. (A4)
% %
Consequently,
C= 2 (Ae) (el B). (A5)
%

The reason it is termed the outer product representa-
tion is that the matrices A and B now reside at the
extreme left and right of the summation. This expres-
sion can be shown to be equivalent to the expression
given in Athale and Collins?, see their Eq. (2).

We next consider two intermediate representations
which we term the column intermediate product
representation and the row intermediate product
representation. We return again to Eq. (A2):

e} Ce; = z e}AeefBe; = ef z (Aey)ef (Bep)], (A6)
k k

or

Ce; = (Aey)[e} (Be)). (A7)
k

This is the column intermediate product. The corre-
sponding row intermediate product is

e} Ce; =Z [(e} Ae,] (e} B)e; (A8)
k
or
e}C= Z [(efA)e,l(efB). (A9)
k

It is a straightforward exercise to extend the above
formalism to accommodate rectangular matrices; we
omit the details.

References '

1. D, Casasent and C. Neumann, “Iterative Optical Vector-Matrix
Processors,” in Optical Information Processing for Aerospace
Applications, NASA Conf. Publ 2207 (NTIS, Springfield, VA,
1981), p. 105.

2. R. A. Athale and W. C, Collins, “Optical Matrix—-Matrix Multi-
plier Based on Outer Product Decomposition,” Appl. Opt. 21,
2089 (1982).

3. H.Caulfield, C. Verber, and R. Stermer, “Efficient Matrix Parti-
tioning for Optical Computing,” Opt. Commun. 51, 213 (1984).

4. R. Barakat, “Optical Matrix~Matrix Multiplier Based on Kro-
necker Product Decomposition,” Appl. Opt. 26, 191 (1987).

5. A. R. Dias, “Incoherent Optical Matrix-Matrix Multiplier,” in
Optical Information Processing for Aerospace Applications,
NASA Conf. Publ. 2207 (NTIS, Springfield, VA, 1981), p. 71.

6. W.K. Cheng and H. Caulfield, “Fully-Parallel Relaxation Alge-
braic Operations for Optical Computers,” Opt. Commun. 43,251
(1982).

7. R. P. Bocker, H. J. Caulfield, and K, Bromley, “Rapid Unbiased
Bipolar Incoherent Calculator Cube,” Appl. Opt. 22, 804 (1983).

8. R. P. Bocker, “Advanced RUBIC Cube Processor,” Appl. Opt.
22, 2401 (1983).

9. R.Bocker, K. Bromley, and 8. Clayton, “A Digital Optical Archi-
tecture for Performing Matrix Algebra,” Proc. Soc. Photo-Opt.
Instrum. Eng, 431, 194 (1983).

10. H. Nakano and K. Hotate, “Optical System for Real-Time Pro-
cessing of Multiple Matrix Product,” Electron. Lett. 21, 436
(1985).

11. 8. Cartwright and 8. Gustafson, “Convolver-Based Optical Sys-
tolic Processing Architectures,” Opt. Eng. 24, 59 (1985).

12. J. Goodman, “Architectural Development of Optical Data Pro-
cessing Systems,” Kinam 5C, 9 (1983).

13. R.W.Hockney and C. R. Jesshope, Parallel Computers: Archi-
tecture, Programming and Algorithms (Adam Hilger, Bristol,
1981), pp. 276-279,

14. N. Madsen, G. Rodrigue, and H. Karush, “Matrix Multiplica-
tion by Diagonals on a Vector/Parallel Processor,” Inf. Process,
Lett. 5,41 (1976).

2711

Efficient parallel algorithms for optical computing
with the discrete Fourier transform (DFT) primitive

John H. Reif and Akhilesh Tyagi

Optical-computing technology offers new challenges to algorithm designers since it can perform an
n-point discrete Fourier transform (DFT) computation in only unit time. Note that the DFT is a
nontrivial computation in the parallel random-access machine model, a model of computing commonly
used by parallel-algorithm designers. We develop two new models, the DFT-VLSIO (very-large-scale
integrated optics) and the DFT-circuit, to capture this characteristic of optical computing. We also
provide two paradigms for developing parallel algorithms in these models. Efficient parallel algorithms
for many problems, including polynomial and matrix computations, sorting, and string matching, are
presented. The sorting and string-matching algorithms are particularly noteworthy. Almost all these
algorithms are within a polylog factor of the optical-computing (VLSIO) lower bounds derived by Barakat
and Reif [Appl. Opt. 26, 1015 (1987) and by Tyagi and Reif [Proceedings of the Second IEEE Symposium
on Parallel and Distributed Processing (Institute of Electrical and Electronics Engineers, New York,

1990) p. 14]. © 1997 Optical Society of America
Key words: Algorithms, discrete Fourier transform, optical computing, very-large-scale integrated

optics model.

1. Introduction

During the past 20 years, VLSI has moved from the-
oretical abstraction to practical reality. As VLSI de-
sign tools and VLSI fabrication facilities such as the
Metal-Oxide Semiconductor Implementation Service
(MOSIS) became widely available, algorithm-design
paradigms, such as systolic algorithms,? that were
thought to be of theoretical interest only have been
used in high-performance VLSI hardware. Along
the same lines, the theoretical limitations of VLSI
predicted by area—time trade-off lower bounds? have
been found to be important limitations in practice.
The field of electro-optical computing is in its infancy,
comparable with the state of VLSI technology, say, 10
years ago. Fabrication facilities are not widely
available—instead, the crucial electro-optical devices
must be specially made in laboratories. However, a
number of prototype electro-optical computing
systems3—perhaps most notably at Bell Laboratories

J. H. Reif is with the Department of Computer Science, Duke
University, Durham, North Carolina 27706. A. Tyagi is with the
Department of Computer Science, Iowa State University, Ames,
Towa 50011.

Preprint of paper appearing in Journal of Applied Optics, Vol. 36,

1997, pp. 7327-7340.

under Huang,*5—as well as optical message-routing
devices at the University of Colorado,é Boulder, Colo.,
Stanford University, Stanford, Calif.,, and the Uni-
versity of Southern California,™° Los Angeles, Calif.,
have been built recently. The technology for electro-
optical computing is likely to advance rapidly in the
1990’s, just as VLSI technology advanced in the late
1970’s and 1980’s. Therefore, following our past ex-
perience with VLSI, it seems likely that the theoretical
underpinnings for optical-computing technology—
namely the discovery of efficient algorithms and of
resource lower bounds—are crucial to guide its devel-
opment.

What are the specific capabilities of optical com-
puting that offer room for new paradigms in algo-
rithm design? It is well known that optical devices
exist that can compute a two-dimensional (2-D)
Fourier transform or its inverse in unit time (see,
for example, Goodman!! or any of Refs. 12-18,
which describe the fundamentals of optical comput-
ing). This is a natural characteristic of light. It
would be reasonable to assume the existence of an
optical-computing system with unit-time discrete
Fourier transform (DFT) operation (for more de-
tails, see Subsections 2.A, 2.E, and 2.F). This as-
sumption opens up exciting opportunities for
algorithm designers.

‘In the widely accepted model of parallel compu-
tation—parallel random-access machine (PRAM)—not

7327

many interesting problems can be solved in constant
O(1) time. In particular, the best-known parallel al-
gorithm for the DFT, the fast Fourier transform (FFT),
takes time O(log n) for an n-point DFT. Given this
powerful technology, the question we address in this
paper is which problems can gainfully use the DFT
computation primitive? It is not immediately clear
how a problem apparently distant from the DFT, such
as sorting, can be solved by use of several DFT appli-
cations. We identify two general techniques for algo-
rithm design with a DFT operation that benefit a host
of problems. First, we show a way to compute one-
dimensional (1-D) n-point DFT’s efficiently using a se-
ries of 2-D DFT’s. Note that the optical devices
compute a 2-D DFT. However, the 1-D DFT seems to
be the one that is more naturally usable in most prob-
lems. Second, we demonstrate an efficient way to
perform a parallel-prefix computation with DFT prim-
itives. Given n input values x,, x4, . .., X,_; and an
associative operation denoted by the symbol o, the
parallel-prefix problem is to compute all the prefix val-
UES X, X © X1, X © X1 Koy« o« , X9 9% °Xg©°...0K, ;10
parallel. The parallel-prefix computation problem is
important since it is used as an algorithm-design par-
adigm in the parallel-computing community.
Equipped with these two techniques, we propose con-
stant or near-constant time solutions for a variety of
problems including sorting, matrix computations, and
string matching.

Our results make a compelling argument in favor of
supporting several DFT computation units in a digital
optical-computing architecture. The algorithm de-
signer and the optical-computing-architecture comput-
ing communities should identify other optical-
computing primitives that result in efficient parallel
algorithms.

Here we consider discrete models for optical com-
puting with a DFT primitive. In particular, an n-
point DFT operation or its inverse can be computed in
unit time by use of n processors. The development of
anew model of computation is a task full of trade-offs.
Only the essential characteristics of the underlying
computing medium should be reflected in the model.
Any unnecessary characteristics serve only to under-
mine the usefulness of such ameodel. The PRAM?9.20
has provided a much needed model for the develop-
ment of parallel algorithms for some time now. The
existence of such a model frees up the algorithm de-
signers from worrying about underlying networks
and the details of timing inherent in the VLSI tech-
nology used to implement the processors. In a sim-
ilar vein, our objective is to develop a model that
captures the essence of the optical-computing me-
dium with respect to algorithm design. We believe
that the most important characteristic that distin-
guishes optical technology from VLSI technology is
the ability to compute a function of many spatial
points in unit time captured by a powerful primitive,
the DFT. Not surprisingly then, this is the focus of
our medels. Our new models are the

7328

* DFT-circuit model: Here we permit an n-
point DFT primitive gate along with the usual scalar
operations of bounded fan-in.

* DFT-VLSIO Model: Here we extend the stan-
dard VLSI model to three-dimensional (3-D) optical-
computing devices that compute the 2-D DFT as a
primitive operation. We refer to an electro-optical
computation as VLSIO, where the uppercase letter O
stands for optics (described in detail in Section 2,
below).

Note that, although we did not mention a PRAM-
DFT model, in which a set of n processors can perform
a DFT in unit time, all the algorithms in the DFT-
circuit model work for such a PRAM-DFT model. A
PRAM-DFT model can simulate a DFT—circuit of
size s(n) and time £(n) with s(n) processors in a time
of O(t(n)). Hence, a PRAM-DFT model is an equally
acceptable choice for the development of parallel al-
gorithms in optical computing.

Our main results are efficient parallel algorithms
for solving a number of fundamental problems in
these models. The problems solved include

1. The prefix sum.

2. Shifting.

3. Polynomial multiplication and division.

4. Matrix multiplication, inversion, and transi-
tive closure.

5. Toeplitz-matrix multiplication,
GCD, interpolation, and inversion.

6. Sorting.

7. Ome-dimensional and 2-D string matching.

polynomial

The sorting and string-matching algorithms were
not at all obvious. Although we do not have any
lower bounds in the DFT—circuit model, many of
these parallel algorithms are optimal with respect
to the VLSIO model. The known lower-bound re-
sults for VLSIO are as follows: Barakat and Reif2?
showed a lower bound of Q(I,*/?) on VT%/2 of a VL-
SIO computation for a function f with information
complexity I, where V denotes the volume of the
VLSIO system computing f. We22 proved a lower
bound of Q[If (\/Tf)] on the energy-time product for
a VLSIO model with the energy function f(x). Ta-
ble 1 compares our results with the best-known
PRAM algorithms for the corresponding problems.
All the bounds are in uppercase letter O notation
(0), also known as big-O notation.

A summary of related studies follows. VLSIO
(electro-optical VLSI, introduced in Barakat and
Reif?1) is the more general model of optical computing
(described in Subsection 2.B). They considered
volume-time trade-offs and lower bounds in this
model. We22 demonstrated energy and energy—time
product lower and upper bounds for optical computa-
tions. We are not aware of any algorithm design
investigation in this model. Karasik and Sharir3?
proposed an enhancement of our model whereby the
architecture supports several unit-time primitives (in
addition to the DFT). MacKenzie and Ramachand-

Table 1. Comparison of the DFT-Circuit and DFT-VLSIO Algorithms with PRAM Algorithms

DFT-Circuit DFT-VLSIO PRAM-CRCW
Number of
Algorithm Size Time Volume Time Processors Time
1-D DFT n 1 n3? 1 n log n
Poly multiplication n 1 n®/2 1 n logn
Barrel shift n 1 ns/2 1 n log n
Prefix sum n 1 n3/2 1 n logn
Poly division® n? 1 n log n
Toeplitz-matrix multiplication® n? 1 n5/2 1 n? log n
Inverse and poly GCD and interpolation® n? log n n5/2 log n n? logn
Matrix multiplication n® 1 n'’? 1 n® logn
Matrix-inversion transitive closure® n3 logn n® logn n2376 logZ n
Sorting? n? 1 nb/? 1 n log n
Or Randomized Randomized
9/4
n3/2 __n_z 1 n logn
(log)
Or Randomized
8/2 9/4
n loglogn _n 1 n logn
log n (log n)**
Element distinctness Same as Same as Same as Same as Same as Same as
sorting sorting sorting sorting sorting sorting
1-D string matching®
n n3/2 1 - log log n
loglog n
2-D string matchin,
8 & n nd/2 1 _n log log n
loglogn

“PRAM-concurrent read concurrent write (CRCW) values as reported in Ref. 23.

*PRAM-CRCW values as reported in Refs. 24 and 25.
‘PRAM~CRCW values as reported in Ref. 26.
“PRAM—CRCW values as reported in Refs. 27 and 28.
*PRAM-CRCW values as reported in Ref. 29.

ran3! have studied an exclusive-read, concurrent-
write parallel random-access
motivated by the capabilities of a dynamically recon-
figurable optical network.

This paper is organized as follows. In Section 2,
we introduce the two models of computation—the
VLSIO and DFT-circuit. We describe briefly the
salient architectural characteristics of optical com-
puting in this section. The existence of a unit-time
DFT primitive is also justified. In Section 3, we de-
scribe the algorithms for a set of direct applications of
the DFT. In Section 4, we describe two sorting al-
gorithms and an algorithm for the element-
distinctness problem in these models. In Section 5,
we give both 1-D and 2-D string-matching algo-
rithms. In Section 6, we compare the performance
of DFT-VLSIO algorithms with the known VLSIO
lower bounds. In Section 7, we describe a generali-
zation of these models in which the model is param-
etrized by the displacement rank d.

2. Discrete Fourier Transform-VLSI Optics and
Discrete Fourier Transform-Circuit Models

A. Power of Optical-Electronic Processing

The primitives supported by an optical-electronic
computer are (i) all the usual operations done by
conventional electronic components, including (a) log-

memory model

ical operations and (b) fast communication along
wires by use of a small number of layers in a 2-D
substrate, and (ii) the operations done by conven-
tional 3-D optics, in particular the ability to do image
convolutions and 2-D DFT’s in constant time.

Optical processing provides new architectural par-
adigms as a result of the inherent parallelism in both
computation and communication. McAulay’® and
Feitelson¢ provide a good introduction to the capa-
bilities and limitations of optical computing. Opti-
cal communication, whether in free space or in optical
fibers, allows light beams to pass through one an-
other without distorting the information they carry.
Similarly, optical lenses provide unit-time parallel
linear computations, such as Fourier transforms and
convolutions. Spatial light modulators and spatial
light rebroadcasters are relatively recent components
used in optical computing. Spatial light modulators
are devices for interfacing both ways between optics
and electronics; spatial light rebroadcasters trap en-
ergy from the light and provide a mechanism for
performing arithmetic.

Conventional computer architectures suffer from
the limited, finite fan-in of electronic devices and lim-
ited memory and communication bandwidth, The
optical features discussed above help with computa-
tion and communication bandwidth. Holograms are

7329

a mechanism for providing a high-density and high-
bandwidth memory as well.

Optics has some disadvantages, as well, vis a vis
electronics. For instance, the degree of resoclution
when discretizing an analog amplitude in optics does
not compare favorably with the almost-infinite
analog-to-digital resolution in electronics. Both
electronics and optics have their strengths and weak-
nesses. This combination of electronics and optics
for exploiting the strengths of the two technologies is
what makes the nature of computation so different
with the new computing medium.

In summary, the key distinction of the physics of
optical computation over conventional electronic
components is the ability to perform communication
across three dimensions and in free space by means of
optical components. In contrast, conventional elec-
tronic components generally consist of only a small
number of layers in a 2-D substrate. An excellent
example is the use of conventional 3-D optics to com-
pute a 2-D convolution in free space. From an
architectural-implementation standpoint, we have
the freedom to do fast parallel communications across
a chip without having to deal with 2-D interconnect
constraints.

B. VLSI Model

It has been observed many times that conventional
electronic devices are inherently constrained by 2-D
limitations. Indeed, this was the original motiva-
tion for the VLSI model developed by Thompson32
that has been applied successfully to modeling such
circuits. The widely accepted VLSI model allowed
us both to compare the properties of algorithms, such
as area and time, and to determine the ultimate lim-
itations of such devices.

Let us first summarize the 2-D VLSI model, which
is essentially the same as the one described by
Thompson.2 A computation is abstracted as a com-
munication graph. A communication graph is very
much like a flow graph, with the primitives being
some basic operators that are realizable as electrical
devices. Two communicating nodes are adjacent in
this graph. A layout can be viewed as the convex
embedding of the communication graph in a Carte-
sian grid. Each grid point can have either a proces-
sor or a wire passing through. A wire cannot go
through a grid point with a processor unless it is a
terminal of the processor at that grid point. The
number of layers is limited to some constant +.
Thus both the fan-in and fan-out are bounded by 4v.
Wires have unit width and bandwidth, and proces-
sors have unit area. The initial data values are lo-
calized to some constant area to preclude encoding of
the results. The input words are read at the desig-
nated nodes, called input ports. The input and sub-
sequent computation are synchronous, and each
input bit is available only once. The input and out-
put conventions are WHERE—DETERMINATE, i.e., the lo-
cations of all the input—output ports are fixed in
advance but need not be WHEN—DETERMINATE, i.e., the

7330

times when certain input or output bits become valid
can depend on the input value.

C. VLSI Optics Model

The recent development of high-speed electro-optical
computing devices33.3¢ allows us to overcome the 2-D
limitations of traditional VLSI. In particular, the
optical-computing devices allow computation to be
done in three dimensions, with full resolution in all
the dimensions.

A rather different model for 3-D electro-optical
computation is described in Ref. 21, which combines
the use of optics and electronics components in ways
that model currently feasible devices. This model is
known as the VLSIO model, with the letter O stand-
ing for optics. In this model the fundamental build-
ing block is the optical box, consisting of a rectilinear
parallelepiped whose surface consists of electronic
devices modeled by the 2-D VLSI model and whose
interior consists of optical devices. Communication
from the surface is assumed to be carried out by
means of electrical-optical transducers on the sur-
face. Given specified inputs on the surface of the
optical box, it is assumed that the output to the sur-
face is produced in 1 time unit. Note that we do not
rule out the possibility of two wide optical beams
crossing while still transmitting distinct information.
However, there is an assumption (justified by a the-
orem developed by Gabor35) that a beam of cross sec-
tion A can transmit at most O(A) bits per unit time.
This is the only assumption made about the power of
the optical boxes.

For the purposes of determining upper bounds we
would have to be more specific about the computa-
tional power of the optical boxes. The use of electro-
optical devices certainly will allow us to overcome the
2-D limitations. VLSIO potentially has more ad-
vantages over 2-D VLSI than just the 3-D intercon-
nections of 3-D VLSI.3637 In particular, it is well
known that a 2-D Fourier transform or its inverse can
be computed by an optical device in unit time. In
our discrete model we assume that an optical box of
size Vin X Vn X Vn with an input image of size Vn
X Vn can compute its 2-D DFT in unit time. We call
this the DFT-VLSIO model.

This assumption is consistent with the capabilities
of the electro-optical components constructed in prac-
tice. In this case, the VLSIO model is clearly more
powerful than is the 3-D VLSI model, e.g., since with
the VLSI model we cannot do a DFT in constant time.
A VLSIO device consists of a convex volume with a
packing of optical boxes whose interiors do not inter-
sect but may be connected by wires between their
surfaces. This allows for communication between
two optical boxes. Note that the VLSIO model en-
compasses the 3-D VLSI model as a subcase: More-
over, it is the particular subcase in which each optical
box is just a 2-D surface, with no volume.

A VLSIO circuit is an embedded communication
graph with the nodes corresponding to optical boxes
in a 3-D grid. The volume of a VLSIO circuit is the
volume of the smallest convex box enclosing it.

Since the Gabor theorems35 establishes a finite upper
bound on the bandwidth of an optical beam, without
any loss of generality we can assume that only binary
values are used for transmitting information.

D. Discrete Fourier Transform—Circuit Model

Let Rbe an ordered ring. A circuit over R consists of
an acyclic graph with a distinguished set of input
nodes and labeling of all the noninput nodes with a
ring operation. In the DFT-circuit model, we allow

1. Scalar operations such as multiplication, addi-
tion, and comparison with two inputs.
2. DFT gates with n inputs and n outputs.

Note that all the gate-level operations are limited to
occurring over an ordered ring R. This is not truly a
limitation since in electronic computing the number
of input bits to a gate is already fixed in the imple-
mentation (the data-bus width, usually 32 bits or 64
bits). This already limits the gate operations to oc-
curring over a de facto ring.

The only optical gate in this model is the DFT gate.
A spherical lens generates the Fourier transform of
an image in analog form. A DFT gate can be imple-
mented with such a lens-based optical device. The
resulting analog image needs to be discretized in both
space and amplitude (or some other parameter such
as phase) to interpret it as an n-point DFT. How-
ever, there are limits to the dynamic range of optical
systems, which is the approximate number of distin-
guishable intensity levels. Feitelsonl4 reports the
typical dynamic range to be a few hundred (of the
order of 8 bits of resolution) for the current technol-
ogy. Note that this limitation already constrains
each DFT gate to computing over an ordered ring.
In Subsections 2.E and 2.F, we describe how this
dynamic-range limitation affects our unit-time DFT
assumption.

The size of the DFT circuit is the sum of the number
of edges and the number of nodes. Recall from Par-
berry and Schnitger3s that a threshold circuit is a
Boolean circuit of unbounded fan-in, where each gate
computes the threshold operation. Threshold cir-
cuits are shown in Reif and Tate2? to compute a large
number of algebraic problems, such as polynomial
division, triangular Toeplitz inversion, integer divi-
sion, sine, cosine, etc., in an n“"" size and simulta-
neous O(1) depth. Many of these algorithms
translate into DFT-circuit algorithms.

Let a DFT gate have n input bits xg, x5, . . . , %,
Note that the least significant bit of the output 1s
3’4 x;. This observation, along with the availabil-
ity of comparison gates, shows that a DFT circuit is at
least as powerful as a threshold circuit of the same
size and depth. The question we address in this
paper is the power of the DFT operation above and
beyond its power to compute the threshold. Note
that no nontrivial lower bounds on a threshold circuit
computing a DFT are known. But just by its defini-
tion at least n threshold gates are required for a DFT
computation.

E. Chinese Remaindering

Here we explain how we can use the well-known
Chinese-remaindering techniques for encoding large
numbers so as to provide an equivalence between the
discrete and analog optical models. Recall that the
dynamic range of a typical optical-computing system
is limited to be of the order of 8 bits (Ref. 14, p. 40).
Hence we can reasonably well expect a unit-time DFT
primitive for an ~256-element ring. However, if we
wish to achieve higher accuracy of our DFT results,
we can use the following technique.

We assume that we wish to work with b-bit num-
bers for a large b, but the optical system processes in
analog form and permits only a very low accuracy
(say only a logarithmic number, log b, of bits of accu-
racy, where log & = 256 in the current technology).
Fix relatively prime (i.e., with no common factors)
numbers P1, - - -, Py such that their product is IT*_, p;
> 2%, By the prime-number theorem, the density of
b-bit primes among all 5-bit numbers is 0(1/b), sowe
can find 2 = b/log b such numbers p,, . . ., p;, such
that each number p; has <log & + O(log log b) bits.

Given a large integer x of b bits, we can represent
x by a sequence of numbers x4, . . . , x;, where for each
i =1,. kwehavex—xmodp, This is the
Chmese-remamdered representation of x. The
Chinese-remainder theorem states that, given the
Chinese-remaindered representation x,, . .., x;, we
can construct x uniquely: that is, there is a unique
x such that, for eachi = 1, .. ., k, we have a value x;
= x mod p;.

To apply the Chinese-remainder algorithm, we
need quickly to (i) compute a Chinese-remaindered
representation of a given b-bit number x, and (i1)
reconstruct x from this representation. Both these
problems have obvious O(bz) work algorithms that
can be executed in parallel in O(log b) time by cir-
cuits. Moenck and Borodin3® developed some of the
first subquadratic work algorithms (which are quite
simple and practical) for these modular arithmetic
problems, and later O(b log® b) algorithms were dis-
covered (e.g., see the texts by Borodin and Munro®
and Bini and Pan4?).

Thus we can use these well-known Chinese-
remaindering techniques for encoding large numbers
into a list of small numbers that are used in optical
processing (for example, in the optical DFT transform
used in this paper). This is not a new idea and has
been well known to the optical-processing communi-
ty.18 Given a b-bit number x, we compute a Chinese-
remaindered representation of x. We can then send
the representation over an optical channel, which
requires very low accuracy, in analog form by use of
=log b + O(log log b) bits. Then on reception we can
convert the representation to digital form, and we can
easily reconstruct x by these fast algorithms.

F. Discrete Fourier Transform by Means of Chinese
Remaindering

Next we explain how we can use the Chinese-
remaindering techniques described above to compute

7331

the DFT with high accuracy (b bits), assuming the
optical system computes the DFT only with low, say
logarithmic, accuracy. We use the fact that the DFT
is a linear operator. We take as input a vector Y =
(¥o» - - - » ¥n—1), which we assume contains -bit num-
bers. We wish to compute the DFT of this vector Y
with high accuracy, up to ' = O(b log n) bits, giving
an output of U = (uy, . .., u,_,) [that is, each output
u; is to be approximated by a b’ = O(b log n)-bit
number]. Note that each output u; is a linear com-
bination of the n inputs, with coefficients that can be
approximated by fixed O(b log n)-bit numbers.

Fix in this case relatively prime numbers, p,, ...,
Py, such that each of the p; has <log b’ + O(log log b’)
bits and [12_; p, > 2°. We represent each number ¥;
by a sequence of numbers y, 4, . . ., y; », which are the
Chinese-remaindered representation of the y; modulo
of the primes py, . . ., p,, respectively. We can com-
pute this representation in one step with several
modular arithmetic gates. Then, foreachj=1,...,
k, we use the optical system to generate an approxi-
mate DFT (up to a logarithmic number of bits) for
each vector (yo;, ..., ¥,-1,), yielding an approxi-
mate DFT vector (ag j, ..., a,_;;). This step also
takes unit time. Then we round each approximate
value a; ; to an integer J; ;, where 0 <I, ; <p,. This
rounding can also be done in one step by use of mod-
ular arithmetic gates. Finally, we apply the
Chinese-remaindering theorem to construct, for each
i=0,...,n — 1, the b'-bit number u;, 0 = u; < HJ’-‘=1
pj, from the integers I, ,, . .., I, ;, where I, ; = u, mod
p;. This takes work O(b' logé b') for each of the n
output points, which can be done in parallel for each
point,

This O’ log® b') work for each of the n output
points can be done with the classical circuit model in
O(log® b') steps, but it then requires O(b'2) VLSI area
per output point. Alternatively, it can be done in
O(b' log® b') steps, with O(b’ log? b') VLSI area per
output point. Note that the (b’ log n)-bit accurate
DFT can be performed in O(log? b') time, which is
dominated by the time for the Chinese-remaindered
representation, to obtain ring-R representation.
This provides our output (u,, . . . , u,,_;), which is the
DFT of a vector Y with up to &’-bit accuracy.

Thus we have shown that Chinese-remainder en-
coding of large numbers provides an equivalence be-
tween our discrete and analog optical models. In
particular, the available 8-bit accuracy of current op-
tical systems can be leveraged as follows. Chinese
remaindering allows us to obtain up to ~28 = 256 bits
of accuracy (approximately 10”® levels of accuracy)
within O(log” 2°) ~ 64 additional steps. In general,
a k-bit accuracy in the optical technologzy can be le-
veraged to a 2*-bit accuracy with ~k® additional
steps. Note that this technique requires all the ad-
ditions and multiplications to be performed modulo a
fixed prime number. Also note that these prime
numbers are not computed at run time. A set of
prime numbers is built into the architecture for a
desired level of accuracy. Again, this is not a new
idea. The residue number system uses the Chinese-

7332

remaindering representation. McAulay?® describes
both the residue number system and the use of Chi-
nese remaindering to extend the dynamic range of
spatial light modulators.

Another important point to note is that the data
that are processed optically need not always be con-
verted back and forth between Chinese-remaindered
and ring-R representations. For many applications
we need to compute additions and multiplications,
which are closed under these modular operations.
In fact, a compiler could optimize code for these ma-
chines to cluster operations closed under modular
arithmetic so that the need for conversion between
representations is minimized. This could enable us
to amortize the ~k* cost of conversion over several
modular operations to give a near-constant-time DFT
primitive of nearly arbitrary precision.

3. Algorithms

We use the following scheme to describe the algo-
rithms. For each problem, we state the problem,
follow it with the DFT—circuit algorithm, and in turn
follow that with the DFT-VLSIO algorithm.

Note that an optical device computes a 2-D DFT
operation. However, in most applications we find
it useful to employ a 1-D DFT. Hence, before we
describe the other algorithms, let us consider the
cost of computing a 1-D DFT using a 2-D DFT prim-
itive.

A. Cost of Computing a One-Dimensional Discrete
Fourier Transform

For DFT the input is a vector x = [xg, x4, ..., %,_;]
and the output is y = AX. A represents ann X n
DFT matrix whose (i, j)th element is »Y, where w is a
principal nth root of unity.

The following algorithm, a variant of that of Agar-
wal and Burrus,*2 uses a series of 2-D DFT operations
to realize a 1-D DFT. We assume a commutative
ring R with a principal nth root of unity such that
x; € R. Without a loss of generality, let us also
assume that V7 is a power of 2. Let us define the
following:

gy =i +j,
G, =)= (G\n,iyn +1,...,2n - 1),
(_:j>=(j’j+\/;£,"',j+n_\/;)-

Let AY™ be the Vi X Vn circulant matrix such that
AW = VR

1. Algorithm 1

1 Forj=0,...,\/r_1,—1inparallel,Doy(,~,_>=
AVRg

2. f«*orj=0,...,\/7z—1a_mdv=o,...,\/ﬁ—
1 in parallel, po z; ,, = y; o'

3, Forv=0,...v,\/r%—vlinpara]1el,nof(_v)=
AVRy ’

0y

The output is £ = [fo, f1, . .+ » fo—1l

2. Proof of Correctness

N
fum = 2 Zgoo V" by step 3,
=0
\/r_t—l
(@)oo VP by step 2,
j=0

[(x(z HO " w)wju]w VR
Xy Wrivjut Jnju

(i,)Cu,s v)

Hence, foralls = 0,...,n — 1,f, = 3221 x,0" O

Let us consider the cost of this algorithm. Recall
that in the DFT-VLSIO an n-pomt 2-D DFT takes a
time of O(1) and a volume of n%/2, In algorithm 1,
the first and third steps perform Vn, Vn-point 2- D
DFT computatlons hence they take a time of O(1)
and a volume of n 5/ 4, But the second step performs
an n-point 2-D DFT, hence it takes a time of O(1) and
a volume of n2. Thus, the total time and volume
used by algorithm 1 are O(1) and O(n%/?), respec-
tively. From now on we assume that the 1-D DFT is
also available as a primitive operation in the DFT—
VLSIO mode. The time and volume costs of per-
forming an n-point, 1-D DFT are O(1) and n®?2,
respectively. The term DFT refers to the 1-D DFT
throughout the rest of this paper, unless specified
otherwise.

Algorithm 1 also allows us to assume that DFT
gates in the DFT-circuit model perform 1-D DFT’s of
n bits in unit time. The cost of this operation in the
DFT-circuit model is O(1) gates, O(1) depth, and
O(n) size.

Let us present some polynomial algorithms. In
the following DFT, (x) refers to the n-point 1-D DFT
of the vector x = [xg, x;, . . . , x,_1], where the values
x; come from the underlying ring R on which the DFT
is defined. DFT, "(y) refers to the n-point inverse
1-D DFT of the vector y.

B. Polynomial Multiplication

1. Input

TWO (n - l)th degree polynomials with values of p(x)
= 34 ax* and g(x) = 2720 1 bx’ Let a = [a,,

@pyevny Gy 1] be the vector of the Ccoefficients of p(x).

Simllarly, b is the vector of the coefficients g(x).

2. Output

The product of p(x) and q(x), a 2n — 2)th degree

polynom1al with a value of p(x)g(x) = 3252 (i,
_j)xt = 3252 cx'. Let ¢ be the Vector of the

coefﬁments from p(x)q(x)

3. Algorithm

1. Compute a = DFT,,,_,(a) and b = DFT,, _,(b).

2. ¢=a-b,ie., the dot product of two vectors.

3. ¢ = DFT,,_, %(¢). Note that ¢ contains the
coefficients of p(x)q(x).

4. Analysis

DFT-circuit Model: The (2n — 1)-point DFT’s in
step 1 take (2n — 1)-size gates and O(1) time. The
dot product of the two DFT vectors requires unit
time with (2n — 1) two-input scalar gates. The dot
product can, therefore, be performed in unit time
with a (4n — 2) size. The inverse DFT in step 3 can
also be done in unit time with a size of (2n — 1).
The whole process takes (8n — 4) size and O(1) time.

DFT-VLSIO Model: Steps 1 and 3 can be imple-
mented directly in the DFT-VLSIO model with an
optlcal box, taking a time of O(1) and volume of
O(n®?). However, the principal difficulty comes
with the implementation of several integer multi-
plications in step 2. The DFT-circuit model has
an advantage with respect to this step, as scalar
gates performing multiplication in unit time are
available. To multiply (2n — 1) coefficients of log
n bits each, we can use a Wallace-tree-type multi-
plier realized in VLSI (Ref. 43, pp. A46-A49).
Such a multiplier takes O(log? n) volume with a
time of O(log log n). For n such multiplications,
the total volume is O(n log? n) with a time of O(log
log n).

However, we can do even better if we reduce the
integer multiplication of two (log n)-bit numbers to
a polynomial multiplication. A modulo p ring, for
an appropriate prime p, will have this property. A
(log n)-bit integer A = ayo4,_1, ..., 81, @ can be
considered as a polynomial %€ 1 aix‘, with x = 2.
To multiply the two (log n)-b1t integers A and B,
multiply A and B as polynomials. For the polyno-
mial multiplication, take their DFT’s in a volume of
O(log®/? n) and a time of O(1). The dot product of
these (2 log n — 1)-bit DFT vectors can again be
done recursively as a polynomial multiplication of
two (log log n)-bit numbers. This recursive proce-
dure for polynomial multiplication takes a time of
O(log* n), where &k = log* n if |[log® n| = 1. Here,
log® n stands for % repeated applications of the
logarithmic function, as in log log...log log n.
The resource requirement of this algonthm is also
O(n®/?) volume. To see this, consider the ith level of
recursion fori = 1, ..., log* n. At this point, there
are n log n log log n...log log? n instances of
(log®* ™ n)-bit multiplications. The volume required
for this step, then, is n log n log log n . ..log®
n[log(‘“) n]*2. This is O(n®?). Most of this anal-
ysis is a very simplistic elaboration of the point. A
more exact analysis builds recurrence equations for
T(n) and V(n), the time and volume, respectively, for

7333

computing the product of two nth-degree polynomi-
als:

T(n) = Tllog(2n — 1] +¢,
T1) =1, for a constant c,

Vin) = (2n — 1)*2 + (2n — 1)V[log(2n — 1)],
V(1) = 1, with no resource reuse,

V(n) = max{(2n — 1)*%, (2n — 1)V[log(2n — 1)]},
V(1) = 1, with resource reuse,

T(n) = c{log* n + log*(log* n) + log*[log*(log* n)]

+---4+ 1} at most 2¢ log* n.
V(n) also has an upper bound of 2(2n — 1)%/2.

There is a third way to carry out the integer mul-
tiplication so as to perform polynomial multiplication
in O(1) time with O(n®?) volume. However, the
hardware is used more inefficiently in this algorithm,
which might argue for using one of the previous al-
gorithms in practice. As we showed in Subsection
2.D, a DFT gate can perform thresholding in a trivial
way. The first bit of the DFT vector is the sum of all
the input bits. A comparison corresponds to an ad-
dition, which can also be performed with one DFT
operation. Reif and Tate?3 show that integer multi-
plication can be done in a constant depth [O(1/¢®), for
any € > 0] with threshold gates of a total size of
O(n?*%). A threshold circuit of size O(n%*2¢) corre-
sponds to a VLSIO circuit of volume O(n3*+3¢).
Hence, for performing integer multiplication of two
n-bit integers in O(1) time, O(n®*<) volume is re-
quired for some € > 0.

The polynomial multiplication requires (2n — 1)log
n-bit integer multiplications. These canbe doneina
time of O(1) and a volume of (2n — 1)(log n)¢. Hence
VLSIO polynomial multiplication is feasible in O(1)
time with O(n%/2) volume. The constants in this al-
gorithm have large magnitudes; hence, in practice
one of the other algorithms with a higher asymptotic
volume requirement is likely to be more efficient.

C. Barrel Shifting

1. Input

The inputs to this problem are a vector, x = [x,,
X1y ...,%,_1), and a shift value, 0 =c =n — 1.

2. Output
The output vector is cyclically shifted by0 < ¢ <n —
11 ¥ =1[Y0%1 > Yn-1], Where y; = 2;_cymoan-

3. Algorithm _

One can reduce a cyclic shift to a right-hand shift by
doubling the vector size, as described by Vuillemin. .44
Let vector X be the concatenation of x to itself: xx.
A right-hand shift by ¢ on X is equivalent to multi-
plication of the polynomial corresponding to X by the
polynomial x°. We have already developed a
polynomial-multiplication algorithm.

7334

4. Analysis

DFT—-circuit Model: The multiplication of two 2n-
degree polynomials can be done in a time of O(1) and
with O(n) size. The duplication of x and selection of
the left-hand half of the output also take a time of
O(1) and a size of O(n), for a total cost of O(1) time
and O(n) size.

DFT-VLSIO Model: Once again, the barrel-shift
cost is the cost of input duplication, output selection,
and polynomial multiplication. The input duplica-
tion and output selection take unit time and O®n)
volume, even in VLSI technology. Hence the
polynomial-multiplication costs dominate. This
leads to a total cost of either a volume of O(n%2) and
a time of O(log* n) or a volume of O(n%/?) with a time
of O(1), depending on the integer-multiplication
method employed.

D. Prefix Sum

1. Input

The input consists of n + 1 elements x,, x,, ..., X,.
2. Output

The output is all the prefix sums: I}_x;, forall 0 <

I <n.

3. Algorithm

The prefix sum can be reduced to a polynomial mul-
tiplication. In particular, consider the multiplica-
tion of two polynomials: =7, x;y* and EJ’-‘:o y’. The
multiplication of these two polynomials is 222, (Si_,
x;)x". Thus the ith coefficient of this product is the
ith prefix sum for 0 =i = n.

4. Analysis
DFT-circuit Model: The resource requirements cor-
respond to those of polynomial multiplication.
Hence this computation takes O(n) size with O(1)
time.

DFT-VLSIO Model: Once again, this takes either
a volume of O(n%/%) with a time of O(log* n) or O(n®/2)
volume with O(1) time.

E. Polynomial Division

1. Input

The inputs to this problem are two n- and m-degree
polynomials p(x) = 37, a;x* and q(x) = 2%, b;x’,
respectively.

2. OQutput

The output is two polynomials d(x) and r{x), such
that p(x) = d(x)q(x) + r(x), where degree[r(x)] <
degree[q(x)].

3. Algorithm

The polynomial division can be done with an n? size
in a time of O(1). In this case, the series 1/(1 — v) =
2i=0 Y is used in the following way:

1. Compute the degree-m polynomial ¢'(x) = 1 —
q(x). This process requires negating the coefficients
..., b, and computing 1 — b,. Recall that the
ﬁrst coefﬁcient of a DFT is the sum of all the inputs.
Hence (m + 1) DFT operations of constant degree
lead to the polynomial ¢'(x).

2. Get the reciprocal of q(x) of degreen — m (0 if
m = n) by use of the expression 1/[g(x)] = 1/[1 —
q'(x)] = 225" [q'(x)F. To find the reciprocal of g(x)
to within the desired accuracy, we need to compute
[g(x)f for1 =i = (n —m). For computing [¢'(x)7,
let g = [1 — bo, ~by,..., —b,,). First, get
DFI‘m+1(q) =[cy’,¢1'5--.,Cp']. Inthe Fourier do-
main, every component of DFT(q’) is raised to i to
derlve the DFT of [¢'(x)T, i.e., DFT{{q'(x)]} = [c,",
¢, ...,¢,"]. These powers of the coefficients can
be read from a lookup table. An inverse DFT then
gives [¢'(x)F. The (n — m) inverse DFT’s and poly-
nomial additions lead to the value of 1/g(x) within
degree (n —m). Note that, since we need to compute
1/q(x) as a degree-(n — m) polynomial, these DFT’s
and inverse DFT’s are (n — m)-point transforms.

3. Multiply 1/¢(x), derived above, and p(x) to de-
rive the output d(x), a degree-(n — m) polynomial.

4. Multiply d(x) and g(x) to get a degree-n poly-
nomial p'(x). Subtract p'(x) from p(x) to get r(x).

Reif and Tate23 give a general result in their corol-
lary 3.3 that any function f(x) with a convergent Tay-
lor series expansion of the form f(x) = =7 c;(x — x,)*
over an interval |x — xg| <¢,for0<e<])Wlth rational
coefficients of magnitude of at most 2* can be com-
puted with threshold circuits of size n°® in constant
depth. The polynomial quotient and remainder prob-
lems fit this profile according to the discussion above,
hence they can be computed with threshold circuits of
size n°? in constant depth. This corresponds to a
DFT-circuit size of n°Y and time of O(1), just what we
derived. For the DFT-VLSIO, this translates into a
volume of n®/2°W and a time of 0Q).

4. Analysis

DFT-circuit Model: The first step requires m + 1
subtraction gates and unit time. The most compli-
cated part is getting the reciprocal 1/g(x). The DFT
of g¢’(x) takes a size of m + 1 and a time of O(1).
Lookup is a unit-time operation. The size require-
ments for inverse DFT’s are (n — m)max[(m + 1), (n —
m)] with a time O(1). Addition of [¢'(x)] requires a
size of (n — m)max[(m + 1), (n — m)] and time of O(1).
The third step is a plain polynomial multiplication
with a size of O(n) and time of O(1). Step 4is also a
polynomial multiplication of degree-m and degree-(n —
m) polynomials; hence it takes a size of O(n) with O(1)
time. The subtraction also has the same resource
bounds. Hence the total resource requirements are a
size of O((n + m)?) and a time of O(1).

F. Toeplitz-Matrix Multiplication, Inverse and Polynomial
Greatest Common Divisor and Interpolation

An n X n matrix M is a Toeplitz matrix if all the
entries on the same diagonal are identical, i.e., M[i, j]

=M[i—k,j—k]lforall0<i,j=<n — 1, and V& such
that0 =i — %,j — k2 =n — 1. Note that an upper-
or lower-triangular Toeplitz matrix can be multiplied
by a vector by use of a single convolution, which
reduces it to the polynomial multiplication. For a
lower- (upper-) triangular Toeplitz matrix, a convo-
lution of the input vector with the bottom-most (top-
most) row gives the result.

Let the bottom-most row of an n X n lower-
triangular Toeplitz matrix M be M[n — 1, i{] = d;, for
0 =i=n — 1. Lettheinput vector x =[xy, x5, .. .,

.—1). The vector y = Mx can be derived by compu-
tatlon of the 1polynomlal y(z) = I, y2t = C4
d,_;_2YE4 x2"). The first n coefﬁc1ents of the
polynomial y(z) give the output vector y = [y,,
Y1r+++s Yn-1). This leads to a DFT—circuit cost of
O(n) size in constant time and a DFT-VLSIO cost of
O(n?/?) volume with O(1) time.

Now consider the multiplication of two n X n lower-
triangular Toeplitz matrices M and N. In this case,
multiply the two polynomials "0 M[n — 1,n — i —
1]x* and 32~ N[O, i]x*. The coeﬁ'iments ofx' for 0 =
i=n-—1 prov1de the P[0, {]for P = MN. SincePis
also a lower-triangular Toeplitz, the zeroth column
provides the whole matrix. The multiplication of
two upper-triangular Toeplitz matrices is identical.
To multiply an n X n lower-triangular Toeplitz ma-
trix M by an n X n upper-triangular Toeplitz matrix,
we need to perform n such polynomial multiplica-
tions. This can be seen as n instances of matrix—
vector multiplication, where M is multiplied by each
column of N by one polynomial multiplication of de-
gree n. The DFT-circuit cost of this operation is
O(n? size with constant time. The DFT-VLSIO
model takes O#5/?) volume with O(1) time.

The Toeplitz-matrix multiplication can be reduced
to four triangular Toeplitz-matrix multiplications.
Two of these multiplications involve one degree-n
polynomial multiplication each, whereas the other
two reqmre n, degree-n polynoxmal multiplications.
This gives a DFT- circuit (size, time) cost of [O(n?),
0(1)] for Toephtz-matrlx multlpllcatlon It takes a
volume of O(n®/?) and a time of O(1) in the DFT—
VLSIO model.

The inverse of an n X n triangular Toeplitz matrix
is reducible to a degree-n polynomial division.
Hence it can be done in the DFT—circuit with a size of
n? and O(1) time. The general Toeplitz inverse has
the same complexity as GCD and polynomial inter-
polation. All these problems require log n stages of
Toeplitz steps, as shown by Pan and Reif.2¢ Hence
they all take a time O(log n) with a size O(n2) for the
DFT-circuit. In the DFT-VLSIO, O(rn5/?) volume
and O(log n) time are needed.

G. Matrix Multiplication

1. Input

The input for matrix multiplication is two n X n
matrices, A and B.

7335

2. Output

The output for matrix multiplication is an n X n
matrix C, such that Ci;= 22;3 ai,kbk,j.

3. Algorithm

There are n?, n-point inner products to be performed.
For each inner product, we first perform the compo-
nentwise product and then compute the DFT of this
product. Each inner product is the first component
of the DF'I‘ which is the sum of the products This
involves n® integer multiplications and n?, n-point
DFT operations.

4. Analysis

DFT-circuit Model The n? integer multlphcatlons
take asize of n® and a time of 0(1) The following n?,

n-point DFT’s will also take a size of n® and a time of
O(1) for a total cost of an n3 size and O(1) time.

DFT-VLSIO Model: The integer multiplications
require O(n? log® n) volume and O(1) time, assuming
that the integer’s sizes are OSlog n) bits. The DFT
cost is O(1) time with an n’/“ volume. Hence the
complete computation takes O(1) time with O(n"/%)
volume.

H. Matrix Inversion

1. Input

The input for matrix inversion is a nonsingularn X n
matrix A.

2. Output

The output for this operatlon is the inverse matrix
A7'of A, such that AA™* =T

3. Algorithm

The algorithm is based on Newton’s iteration
method, which is described in Pan and Reif.25 Let
At denote the ith-iteration apprommatlon toA™!
The next approximationto A", A,,,' "1, is computed
with the followmg equation: A,+1" = 24,71
A r—1 AA =1

The re51dua1-error matan =1 — AA,'"* converges
very rapidly, R, = R,Z. The choice of the initial
approx:matlonA '~1 has a strong bearing on the con-
vergence of the algorithm. Pan and Reif?5 discuss
several methods of choosmg A, 7'. In particular,
the choice of Ay’ ™! = (1/m)A7, where m is the trace
(sum of its diagonal entnes) of ATA, leads to good
results. In fact, A~! can be computed to within n
bits of accuracy w1thm log n iterations of the equatlon
above.

4. Analysis
DFT-circuit Model: The computation of Ao ! re-
quires one matrix multiplication to compute AZA, fol-
lowed by the addition of » numbers and the d:msmn
of AT, The cost of matrix multiplication, which
takes n? size and a time of O(1), dominates.

Each iteration of the e%uatlon involves a scalar
multiplication of a size of n* in a time of O(1) and two
matrix multiplications. Once again, the matrix-

7336

multiplication cost dominates. There are log n iter-
ations of the equation taking an n2 size and O(log n)
time.

DFT-VLSIO Model: Once again the cost of ma-
trix multiplication dominates, except for two differ-
ences. In this model we do not have division and
mult1phcat10n gates. The division in the construc-
tion of Ay'~* can be performed in O(1) time with a
threshold size of (1/€)n’*c in a time of 1/€3 [or a
volume of O(n3) in a time of O(1)], as is shown in Reif
and Tate.?* Hence the initial approximation can be
done in a volume O(n°) and a time O(1).

The cost of each iteration consists of one multipli-
cation by 2, two matrix multiplications, and a matrix
subtraction. The multiplication by 2 is just a left-
hand shift in VLSI. The matrix multiplication cost
is O(1) time with an n"/2 volume. Hence the total
cost is O(log n) time and O(n®) volume.

|. Transitive Closure

Given an input of an n X n matrix A, its transitive-
closure computation can be reduced to a matrix mul-
tiplication. Hence it takes a time O(log) with an n®
size in the DFT-circuit model. The DFT-VLSIO
cost is O(log n) time with an n® volume.

4. Sorting

In this section, we describe sorting algorithms in the
DFT-circuit and DFT-VLSIO models. We show
that the sorting can be performed in a size of n% in a
time of O(1) determmlstlcally A randomized algo-
rithm sorts with a size of O(n®2) in a time of O(1) or
in a time of O(log log n) with a size of O(n®/%/log n).

A. Input for Sorting Algorithms

The input is a sequence S of n values a4, @, . - ., a,,
where each value is log n bits long. The output is a
sequence of the same values in a nondescending or-
der.

DFT—-circuit Model: The algorithm is a variation
of Flashsort, as reported in Reif and Valiant.4®> Let
us first show that a sequence of n numbers can be
rank sorted in a time of O(1) with an n? size. The
gate p; ; compares a; and a; and has an output of 1 if
a; > a;. The output is 0 otherwise. The rank of a;
is the sum of the output values of the gates p; ,,
Dig2 - -->D;n The zeroth component of the DFT of
these n values yields this sum. Let us present the
Flashsort-based sorting algorithm.

1. Take a random sample of n® elements of S to
form a sample set S’ of size n*, for 0 < e < 1/2.

2. Rank sort S’ in a time of O(1) with an n size.

3. Form a set S” by choosing every (log n)th ele-
ment from S’. A result reported in Reif and Val-
iant*® shows that S" splits S into the subsets of the
expected size of nl ¢ log n and with a high proba-
blhty, 1-1/ (log‘ n), of a size of at most (1 + w)n'"<c
log n, where . is of the order of d/(log n) wherec,d =
2

.4. Separate S into the sets Sy, S, ..., S, on the
basis of S”, where ¢ is in the range from n®/[(1 + p)ec

logn] + 1ton*/(clogn) + 1. This split can be done
with rank ordering by use of c[n®/(log n)]-sized circuit
for each element in S in a time of O(1) for a total size
of c[n'*</(log n)].

5. Use the algorithm recursively for each S,- in
parallel until the subproblems are reduced to a size of
nteach. Then the n!™¢instances of n® subproblems
can be rank sorted with an n'*© size in a time of O(1).
In this case, the whole algorithm takes the expected
time of O((1 — €)/€) with O(n'*¢) size. Thisis a time
of O(1) with O(n3/ 2) size for the maximum value of e.
Or the recursion can terminate when the subprob-
lems have a size of O(1) (Ref. 46). Then the total
time is O(log log n) with a size of O(n*"</log n)[O(n%/
2/log n) for the maximum value of €].

The straight rank ordering gives an O(1)-time algo-
rithm with an n? size.

DFT-VLSIO Model: The rank- sortmg algorithm
can be 1mplemented in the DFT VLSIO in a volume
of n5/2in a time of O(1). The n comparisons of (log
n)-bit values correspond to n?, Oog n)-point DFT’s
that can be done in an nZ(log n) volume in unit
time. The Boolean values can be generated by VLSI
circuits on the basis of the sign of the outcome. The
summation of n Boolean values for the rank of each
output takes one n-pomt DFT, hence all the n DFT’s
take a volume of n®/2 with a time of O(1).

The Flashsort algorithm can also be mapped into the
DFT-VLSIO model. Step 2 takes a time of O(1) and
a volume of n%4 for rank-sorting V7 elements. In
step 4, each element can be placed into the proper set
by rank- -sorting it with the ¢\/n/log n splitters. This
takes a time of O(1) and a volume of O(n%/%/(log n)*/?)
for each input value, hence a time of O(1) and a volume
of O(n®*/(log n)*/ 2) in all. The rank sorting of Vh,

n-sized subproblems i in step 5 can be done in a time
of O(1) and a volume of n7/4. Hence the total resource
use for this option is a time of O(1) and a volume of
O(n®*/(log n)*/?). The second option takes the same
volume but more time (O(log log n)), hence it is inferior
to the first approach.

B. Element Distinctness

The input to this problem is a set of n, log n-bit
values. The problem is to determine if all the n
words are distinct.

DFT-circuit Model: Sort the n elements of the
set. Then compare each element in the sorted list
with its left- and right-hand neighbors. The com-
plexity is dominated by the sorting algorlthm
Hence this is an O(1)-time algorithm with a size of
O(n®?). All the other bounds from sorting also hold.

DFT-VLSIO Model: Once again, the sorting part
has the complexity that was derived in the previous
subsection. This is followed by 3n comparisons.
Each comparison can be done in a time of O(1) and
O(log®”2 n) volume. Hence the sorting complexity of
0(1) time and O(n**/(log n)%/?) volume still domi-
nates the problem complexity.

5. String Matching

A. One-Dimensional String Matching

Given a binary string of A = a4, @4, 05,...,a, and a
binary pattern of B = by, b,, by, ..., b, withm = n,
find all the occurrences of B in A.

1. Algorithm

We reduce the problem of string matching to that of
polynomial multiplication. The reduction of string
matching to integer multiplication was known to Ko-
saraju?’ and is due to M. Fischer. We extend it to
the reduction to a polynomial multiplication as fol-
lows.

Consider two polynom1als derived from the
strings A and B: A(x) = 27 a;x" and B(x) = 37,
b_x’ = 7o bix’. The product of two polynoml-
als C(x) = A(ij(x) can be written as 323" ¢;x’,
wherec; =3 ;a;b;_;. Notethata coefﬁc1ent c;, for
m=i= n, equals the number of places where b,
by... b, l-matches the substringa; ., @; .41 - - . a;,
ie. the ‘number of places where both strmgs haveal.
Repeat the same process for the complementary
strings of A and B by building the polynomials A(x) =
P _Oax and B(x) = 20 bm_jx’ =20 b, 's’. Once
agam compute the product C(x) = A(x)B(x) e
¢;x', such that¢; = 27, a;b;_;. The sum of ¢, andc
ism + 1if by bl b matches the substnng a;_
Qi1 - O ThlS procedure requires two polyno-
mial multlphcatlons and O(n) scalar operations.

2. Analysis

DFT—-circuit Model: The two polynomial multiplica-
tions of degree n take a time of O(1) with O(n) size.
O(n) scalar operations can also be done in an O(1)
time with O(n) size.

DFT-VLSIO Model: The same reduction gives
0(1) time and O(n®?) volume VLSIO circuit. The
complements can be derived in unit time and O(n)
volume by 31mple VLSIinverters. The sum of¢; and
¢; for all m < i < n can be accomplished in O(n log3/ 2
m) volume and unit time.

B. Two-Dimensional String Matching

This idea can be extended to 2- D string matching as
well. Here the input is A = (a; jfo<; j<,) and B =
(®; Josi,j=m). We wish to find a match of B in A, that
is, 1f 3¢, j, VR, 1 € (0, ..., m)a; 4 ;11 = by,

1. Algorithm
The solution uses the 2-D DFT in a way that is sim-
ilar to 1-D string matching. The 2-D string-
matching problem can be reduced to a multiplication
of two polynomials in two variables. Let us form
polynomials A(x, y) = 27_o 27, a; jx'y’ 'and B(x, y) =
Sheo 2% by —bm—iX y Let the product of A(x, y)
and B(x, y) be given by 2%, 7% ¢; .x'y/, where c; ;
2k =0 2"l Oat,.]bm —i+ ,m—_]+l lmllarly let (Z =0 (1
)xy)[zkl O(m km l)xky](zz,_]—Oct,)xyj)
en there is amatch ati’,j "ife; p+ G p=(m+ 1)2.

7337

Table 2. Comparison of the DFT-VLSIO Algorithms with the VLSIO Lower Bounds

Upper Bounds
Lower Bound
Algorithm E(VT®?) E VTe/?

1-D DFT Qn¥? 0n®? o@n%?
Poly multiplication Q@3 O@n®3 o3
Barrel shift Qn¥? On®? 0(n®/?)
Prefix sum Qn¥?) o(n®? on®?
Toeplitz matrix Q@33 O(n5/2 log n) O(n®?2 log¥? n)
Inverse and poly GCD and Qn¥? 02 log n) O®n®? log®2 n)

interpolation
Matrix multiplication Qmn3) o@n'"?» on"/?
Matrix-inversion transitive Q@3 O®n®) O(n® log®2 n)

closure
Sorting Qn®?) O®n®/? 0(n%?

Or Randomized Randomized

Qn®/2) O(n®*/(log n)*'?) O(n®*/(log n)*'?)
Element distinctness Same as sorting Same as sorting Same as sorting
1-D string matching Qn*? on®? 0(n®?)
2-D string matching Q@n*?) Oo(n®3 on®?)
2. Analysis too restrictive to model thick optical components

DFT-circuit: This requires two n2-point 2-D DFT
operations. The resource requirements are O(1)
time with a linear size of O(n).

DFT-VLSIO Model: Once again, O(1)-time and
O(n®%)-volume VLSIO circuit suffices for 2-D string
matching.

6. Comparison with VLSIO Lower Bounds

As we stated in Section 1, we do not have lower
bounds for the DFT—circuit model to compare the
optimality of our algorithms. However, Barakat
and Reif?! showed a lower bound of Q(I3/2) on VT3/2
of a VLSIO computation, where V is the volume and
T is the time of the computation. This lower bound
applies to the DFT-VLSIO model as well. In Ref.
22, we derive a lower bound of Q(I%/?) for the unis-
witch energy of a VLSIO computation. All these al-
gorithms can be realized as uniswitch computations.
Then the uniswitch energy is equivalent to the vol-
ume. Hence the other useful lower bound on these
problems in the DFT-VLSIO is V = Q(°/%. For
most of the problems presented in Sections 3-5, the
information complexity I is Q(n). Table 2 compares
our algorithms with respect to these lower bounds.

All the algorithms except those for matrix multi-
plication, inversion, and transitive closure are within
a polylog factor of the lower bounds. The determin-
istic sorting algorithm is also off by a factor of n.
Since the algorithms for the DFT-circuit and DFT-
VLSIO models are identical, in the absence of lower
bounds for the DFT—circuit model we surmise that
the same type of optimality is achieved in the DFT—
circuit model, as well.

7. Generalization of the Discrete Fourier Transform
Model

Our assumption that an optical box can compute only
a 2-D DFT in unit time is appropriate for many thin
(linear) optical filters. But this assumption may be

7338

(such as volume holograms). In this case, we gener-
alize our models so that an optical box or gate can
compute a matrix multiplication of displacement
rank d in unit time using an n-sized circuit (or n
processors). The resulting model is called the DFT,
model here.

A matrix A has a displacement rank d if A = 3¢,
U;L;, where U; (L;) is the upper- (lower-) triangular
Toeplitz matrix (as defined in Subsection 3.F). The
notion of displacement rank was first introduced in
Ref. 48 and is restated in Ref. 49. Note that, if A has
a displacement rank d, then it can be multiplied in 2d
triangular Toeplitz matrix multiplications and thus
2d convolutions. Thus the DFT; model can be sim-
ulated by the DFT; model to within a factor of 2d
slowdown.

Recently, Karasik and Sharir8° considered a more
general model of optical computing to solve various
computational geometry problems in constant time,
They expand our optical-computing model by incor-
porating several constant-time primitive operations:
pointwise addition, subtraction, and multiplication,
complement, thresholding, 1-D and 2-D Fourier
transforms, conformal change of coordinates, Radon
transform, convolution, differentiation, and full
thresholding. Note that we have assumed the avail-
ability of only one constant-time optical primitive op-
eration, the 2-D Fourier transform. In this model,
Karasik and Sharir give constant-time algorithms for
computing unions, intersections, and Minkowski
sums of plane figures. They also construct the con-
vex hull of a planar set of points in constant time.

Another variant of the modeling of capabilities of
optical technology emphasizes optical communication.
Anderson and Miller5° employed dynamically configu-
rable optical routing switches to consider pointer-
based efficient algorithms in a model called the
optical communication parallel computer. MacKen-
zie and Ramachandran3! explore the relation be-

tween the optical communication parallel computer
model and the exclusive read concurrent write
(ERCW)-PRAM model.

8. Conclusions

VLSI is, perhaps, the most commonly used technol-
ogy for building parallel processors. However, we do
not write our algorithms at that level of abstraction.
The PRAM has proved to be a nice abstraction of
parallel architectures from an algorithm designer’s
perspective. However, the primitive operations sup-
ported by a PRAM are not necessarily the strong
points of an optical computer. This paper attempts
to identify those natural strengths of optical-
computing technology that support a framework for
parallel-algorithm development.

As a first step in this direction, we have identified
the capacity of current optical-computing technology
to perform a DFT in unit time as the transform most
easily exploited in algorithm design. Hence we pro-
pose a model of parallel computing that incorporates
the DFT as a primitive operation. We have strived
to develop a “bag of tricks” for an algorithm designer
working with an optical-computing architecture that
supports DFT operation. In particular, we used two
algorithms very frequently. We provide an efficient
algorithm for computing the 1-D DFT from the phys-
ically available 2-D DFT. We also provide an effi-
cient solution to the parallel-prefix computation.
Using these two techniques, we have provided
constant-time or near-constant-time algorithms for
many problems, including matrix computations, sort-
ing, and string matching. The string-matching al-
gorithm is particularly new. We also showed that
most of these algorithms are optimal to within a poly-
log factor with respect to VLSIO lower bounds.

We believe that the development of such algorithm-
design paradigms is crucial for bridging the gap be-
tween the optical-computing-architecture and
algorithm-designer communities. An increased syn-
ergy between the two communities can lead to the
identification of the best optical-computing-
architecture primitives that are likely to be exploited
by the algorithm designers.

There are many more applications that can benefit
from optical computing, hence algorithms for many
other applications need to be developed for this
model. Similarly, some nontrivial lower bounds for
this model would be desirable.

John Reif was supported in part by the Defense
Advanced Research Projects Agency (DARPA)-Army
Research Office under contract DAALO03-88-K-0195,
by the Air Force under contract AFOSR-87-0386, by
the DARPA-Information Systems Technology Office
under contract N00014-88-K-0458, by NASA under
subcontract 550-63 of primecontract NAS5-30428,
and by the National Science Foundation (NSF) under
grant NSF-TRI-91-00681. Akhilesh Tyagi was sup-
ported by the NSF under grant MIP-8806169, by the
North Carolina Board of Science and Technology un-
der grant 89SE04, and by a Junior Faculty Develop-

ment award from the University of North Carolina
(UNC), Chapel Hill. This study was performed
when A. Tyagi was with UNC, Chapel Hill. A pre-
liminary version of this paper appeared in Ref. 51.
The authors are grateful to the two anonymous re-
viewers whose comments led to a significant improve-
ment of the paper.

References and Notes

1. H. T. Kung, “Let’s design algorithms for VLSI systems,” in
Proceedings of the Caltech Conference on Advanced Research. in
VLSI: Architecture, Design, Fabrication (Caltech, Pasadena,
Calif,, 1979), pp. 65-90.

2. C. D. Thompson, “Area—time complexity for VLSI,” in Proceed-
ings of the ACM Symposium on Theory of Computing (Associ-
ation for Computing Machinery, New York, 1979), pp. 81-88.

3. D. P. Casasent, “A hybrid digital/optical computer system,”
IEEE Trans. Comput. C-22, 852—-858 (1973).

4. A. Huang, “Design for an optical general purpose digital com-
puter,” in 1980 International Optical Computing Conference I,
W. T. Rhodes, ed., Proc. SPIE 232, 119-127 (1980).

5. A. Huang, “Architectural considerations involved in the design
of an optical digital computer,” Proc. IEEE 72, 780786 (1984).

6. E. S. Maniloff, K. M. Johnson, and J. Reif, “Holographic rout-
ing network for parallel processing machines,” in Holographic
Optics II: Principles and Applications, Y. N. Denisyuk and
T. H. Jeong, eds., Proc. SPIE 1183, 283-300 (1989).

7. A. Louri, “Three-dimensional optical architecture and data-
parallel algorithms for massively parallel computing,” IEEE
Micro 11, 2481 (1991).

8. L. R. McAdams and J. W. Goodman, “Liquid-crystal 1 X n
optical switch,” Opt. Lett. 15, 11501152 (1990).

9. L. R. McAdams, R. N. McRuer, and J. W. Goodman, “Liquid-
crystal optical routing switch,” Appl. Opt. 29, 1304-1307
(1990).

10. A. Sawchuk and T. Strand, “Digital optical computing,” Proc.
IEEE 72, 758~T779 (1984).

11. J. W. Goodman, “Architectural development of optical data
processing systems,” Aust. J. Electr. Electron. Eng. 2, 139-149
(1982).

12. T. E. Bell, “Optical computing: a field of flux,” IEEE Spec-
trum 23, 34-57 (1986).

13. H.J. Caulfield, J. A. Neff, and W. T. Rhodes, “Optical comput-
ing: the coming revolution in optical signal processing,” La-
ser Focus 19(11), 100-110 (1983).

14. D. G. Feitelson, Optical Computing, A Survey for Computer
Scientists (MIT Press, Cambridge, Mass., 1988).

15. J. L. Horner, Optical Signal Processing (Academic, San Diego,
Calif., 1987).

16. K. lizuka, Engineering Optics, 2nd ed., Vol. 35 of Springer
Series in Optical Sciences (Springer-Verlag, Berlin, 1983).

17. M. V. Klein and T. E. Furtak, Optics, 2nd ed. (Wiley, New
York, 1986).

18. A. D. McAulay, Optical Computer Architectures: the Applica-
tion of Optical Concepts to Next Generation Computers (Wiley,
New York, 1991).

19. S. Fortune and J. Wyllie, “Parallelism in random access ma-
chines,” in Proceedings of the ACM Symposium on the Theory
of Computing (Association for Computing Machinery, New
York, 1978), pp. 114-118.

20. W. J. Savitch and M. Stimson, “Time bounded random access
machines with parallel processing,” J. Assoc. Comput. Mach.
26, 103-118 (1979).

21. R. Barakat and J. Reif, “Lower bounds on the computational
efficiency of optical computing systems,” Appl. Opt. 26, 1015—
1018 (1987).

22. A Tyagi and J. Reif, “Energy complexity of optical computa-

7339

23.

24.

25.

26.

27,

28.

29.

30.

31.

32,

33.

34.

35.

36.

37.

tions,” in Proceedings of the Second IEEE Symposium on Par-
allel and Distributed Processing (Institute of Electrical and
Electronics Engineers, New York, 1990), pp. 14-21.

J. Reif and S. Tate, “On threshold circuits and polynomial
computation,” SIAM J. Comput. 21, 896-908 (1992).

V. Pan and J. Reif, “Some polynomial and Toeplitz matrix com-
putations,” in Proceedings of the Twenty-seventh IEEE Sympo-
sium on Foundations of Computer Science (Institute of Electrical
and Electronics Engineers, New York, 1987), pp. 173-184.

V. Pan and J. Reif, “Fast and efficient parallel solution of dense
linear systems,” Comput. Math. Appl. 17, 1481-1491 (1989).
D. Coppersmith and S. Winograd, “Matrix multiplication via
arithmetic progressions,” in Proceedings of the ACM Sympo-
sium on the Theory of Computing (Association for Computing
Machinery, New York, 1987), pp. 1-6.

M, Ajtai, J. Komlos, and E. Szemeredi, “An O(n log n) sorting
network,” Combinatorica 3, 1-19 (1983).

R. Cole, “Parallel merge sort,” SIAM J. Comput. 17, 770-785
(1988).

O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and U. Vish-
kin, “Highly parallelizable problems,” in Proceedings of the
ACM Symposium on the Theory of Computing (Association for
Computing Machinery, New York, 1989), pp. 309-319.

Y. B. Karasik and M. Sharir, “Optical computational geome-
try,” in Proceedings of the Eighth Annual Symposium on Com-
putational Geometry (Association for Computing Machinery,
New York, 1992), pp. 232-241.

P. D. MacKenzie and V. Ramachandran, “ERCW PRAM’s and
optical communication,” in Proceedings of the European Con-
ference on Parallel Processing, EUROPAR 96, Vol. 1124 of
Lecture Notes on Computer Science Series (Springer-Verlag,
Berlin, 1996), pp. 293-302.

C. D. Thompson, “A complexity theory for VLSI,” Ph.D. dis-
sertation (Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pa., 1980).

V. P. Heuring, H. F. Jordan, and J. Pratt, “Bit-serial architec-
ture for optical computing,” Appl. Opt. 31, 32133224 (1992).
H. F. Jordan, “Pipelined digital optical computing,” OCS Tech.
Rep. 89-34 (Optoelectronic Computing Center, University of
Colorado, Boulder, Colo., 1989).

D. Gabor, “Light and information,” in Progress in Optics, E.
Wolf, ed. (North-Holland, Amsterdam, The Netherlands,
1961), pp. 111-153.

F.T. Leighton and A. L. Rosenberg, “Three-dimensional circuit
layouts,” SIAM J. Comput. 15, 793-813 (1986).

F. P. Preparata, “Optimal three-dimensional VLSI layouts,”
Math. Systems Theory 16, 1-8 (1983).

7340

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

I. Parberry and G. Schnitger, “Parallel computation with
threshold functions,” J. Comput. Syst. Sci. 36, 278301 (1988).
R. Moenck and A. B. Borodin, “Fast modular transforms via
division,” in Conf. Record, IEEE 13th Annual Symp. on
Switching and Automata Theory (IEEE Press, Piscataway,
N.J., 1972), pp. 90-96.

A. B. Borodin and I. Munro, The Computational Complexity of
Algebraic and Numerical Problems (Elsevier, New York,
1975).

D. Bini and V. Pan, Polynomial and Matrix Computations
(Birkhauser, Boston, Mass., 1994).

R. C. Agarwal and C. S. Burrus, “Fast one-dimensional digital
convolution by multidimensional techniques,” IEEE Trans.
Acoust. Speech Signal Process. ASSP-22, 1-10 (1974).

J. L. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach (Morgan Kaufmann, San Francisco,
Calif.,, 1990).

. J. Vuillemin, “A combinatorial limit to the computing power of

VLSI circuits,” IEEE Trans. Comput. C-32, 294300 (1983).
J. Reif and L. Valiant, “A logarithmic time sort on linear size
networks,” J. Assoc. Comput. Mach. 34, 60-76 (1987).
Technically, for the probabilistic analysis of Flashsort to work,
the problem size should be at least a polynomial in log (poly-
log). At that point a less efficient deterministic algorithm can
beused. However, for simplicity of exposition we have chosen
to give this inaccurate version, as they both lead to the same
amount of resources.

S. R. Kosaraju, Department of Computer Science, Johns Hop-
kins University, Baltimore, Md. (personal communication,
1989).

M. Morf and T. Kailath, “Recent results in least-squares esti-
mation theory,” Ann. Econ. Soc. Meas. 6, 261-274 (1977).

T. Kailath, S. Y. Kung, and M. Morf, “Displacement ranks of
matrices and linear equations,” J. Math. Anal. Appl. 68, 395—
407 (1979).

R. J. Anderson and G. L. Miller, “Optical communication for
pointer-based algorithms,” Computer Research Institute Tech.
Rep. 88-14 (University of Southern California, Los Angeles,
Calif., 1988).

J. H. Reif and A. Tyagi, “Efficient parallel algorithms for op-
tical computing with the DFT primitive,” in Proceedings of the
Tenth Conference on the Foundations of Software Technology
and Theoretical Computer Science, Vol. 472 of Lecture Notes
on Computer Science (Springer-Verlag, Berlin, 1990), pp. 149—
160.

